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Abstract. The purpose of this paper is to study the dynamics near a reducible lower-
dimensional invariant tori of an autonomous analytic Hamiltonian system fvidegrees of
freedom. We will focus in the case in which the torus has (some) elliptic directions.

First, let us assume that the torus is totally elliptic, with Diophantine frequencies. In this
case, it is shown that the diffusion time (the time to move away from the torus) is exponentially
big with the initial distance to the torus. The result is valid, in particular, when the torus is of
maximal dimension and when it is of dimension 0 (elliptic point). In the maximal-dimension
case, our results coincide with previous ones. In the zero-dimension case, our results improve
the existing bounds in the literature.

Let us assume now that the torus (of dimensip < r < ¢) is partially elliptic (let us call
m, to the number of these directions), and satisfying some generic conditions of nondegeneracy
and nonresonance. In this case we show that, given a fixed number of elliptic directions (let us
call my < m, to this number), there exist a Cantor family of invariant tori of dimensianmn,
that generalize the linear oscillations corresponding to these elliptic directions. Moreover, the
Lebesgue measure of the complementary of this Cantor set (in the frequencyRspdee is
proven to be exponentially small with the distance to the initial torus. This is a sort of ‘Cantorian
central manifold’ theorem, in which the central manifold is completely filled up by invariant
tori and it is uniquely defined.

AMS classification scheme numbers: 34C15, 34C20, 34C27, 34C30, 34C50, 58F27

1. Introduction

The study of the solutions close to an invariant object is a classical subject in dynamical
systems. Here we will address the problem of describing the phase space near an invariant
torus of a Hamiltonian system. To fix the notation, let us denotefiby real analytic
Hamiltonian with¢ degrees of freedom, and let us assume it has an invaridimensional
torus, 0< r < £. Note that we are including the two-limit cases, that is, when it is an
equilibrium point and when it is a maximal-dimensional torus.

To start the discussion, let us assume that the torus has some elliptic directions, that is,
that the linearized normal flow contains some harmonic oscillators. A natural question is:
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Do these oscillations persist when the nonlinear part of the Hamiltonian is added? If the
torus is totally elliptic, another natural problem is the (nonlinear) stability around this torus.

There are known answers to these questions in some concrete cases0 Ifthe torus
is an equilibrium point) and it is totally elliptic, KAM theory says that there is plenty of
maximal-dimension invariant tori around the point (see [7]): the complementary of the set
filled by invariant tori has a measure exponentially small with the distance to the point. It
is well known that if¢ = 2, the maximal-dimensional tori split the energy levéls= h
into disconnected components. This is the basis to prove the nonlinear stability of the
point. Unfortunately, if¢ > 2, the invariant tori do not separate the energy levels. In
this case it is generally believed that some diffusion can take place in the phase space (see
[2]). Nevertheless, it is still possible to give lower bounds on the diffusion time, that are
exponentially big with the distance to the point (they follow immediately from [7]).

If » = ¢ (the torus has maximal dimension) we cannot speak about normal behaviour
since there are not ‘available directions’. The nonlinear stability has been studied in [16, 17]
(among others), where it is shown that the diffusion time is also bounded by an exponentially
big (with the distance to the initial torus) quantity. In [16] this exponentially big stability
time is also related to the density of invariant maximal-dimensional tori around the initial
one, by showing that the total measure of the gaps between the invariant tori nearby is not
bigger than an exponentially small quantity with respect to the distance to the initial one.
In fact, in [16] it is proved that under an extra steepness condition (that we will not use
in this paper) the diffusion time is, at least, superexponential. This condition corresponds
to the classical quasiconvexity hypothesis used to obtain a ‘global’ and exponentially big
stability time of a perturbed integrable Hamiltonian system with respect to the size of the
perturbation (see [6] and references therein).

In this work we will consider these problems for a lower-dimensional torus. The two-
limit cases mentioned above are included, and the results obtained can be summarized
as follows: for a totally elliptic torus, we have obtained exponentially big lower bounds
for the diffusion time. They agree with the bounds of [16] in the case ¢ but, for
the caser = 0, they are better than the ones directly derived from [7]. Moreover, we
study the existence of quasiperiodic solutions that generalize the linear oscillations of the
linearized normal flow to the complete system. If the torus has normal behaviour of the
kind ‘some centrest‘some saddles’ we obtain Cantor families of invariant tori around
the initial one by adding to the initial set of frequencies those new ones coming from the
nonlinear oscillations associated to any combination of elliptic directions. Those invariant
tori have the same normal behaviour as the initial one (of course, skipping the centres that
give rise to the family). This result is a sort of ‘Cantorian central manifold’ theorem, in
which we obtain an invariant manifold parametrized on a Cantor set and completely filled
up by invariant tori. The gaps in this manifold have measure exponentially small with the
distance to the initial invariant torus (this will be precisely stated later on). We note that
we obtain a Cantorian central ‘submanifold’ for each combination of elliptic directions, and
that it is uniquely defined. The notion of a Cantorian manifold has been previously used in
a similar context in [14].

There are some previous results about the existence of families of lower-dimensional
elliptic tori. In [8] it is proved that those families exist in a neighbourhood of an elliptic
equilibrium point, but without accurate estimates on the measure of the space filled by
invariant tori. Similar results for lower-dimensional elliptic tori can be derived from the
results and methods contained in [8]. More recent results (in a more general context, but
without exponentially small estimates on the measure of invariant tori) are contained in [4]
and [20]. A numerical application of the results contained in this paper can be found in [13].
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The proofs are based on the construction of suitable normal forms. The estimates on
the difussion time are obtained bounding the remainder of these normal forms, while the
existence of families of lower-dimensional tori is proved by applying a KAM scheme to
these remainders.

The paper has been organized in the following way. Section 2 summarizes the main
ideas and results contained in the work. Section 3 contains the details concerning the normal
form and the bounds on the diffusion time. Section 4 is devoted to the existence of families
of tori near the initial one and, finally, in section 5, we have included some basic lemmas
used throughout the paper.

2. Summary

Here we have included a technical description of the problem, the methodology used in the
proofs and the results obtained. We have omitted the technical details of the proofs in order
to simplify the reading.

2.1. Notation and formulation of the problem

Let H be a Hamiltonian system d@fdegrees of freedom defined &3¢, having an invariant
r-dimensional isotropic torus (that is, the canonical 2-fornRéf restricted to the tangent
bundle of the torus vanish), & r < ¢, with a quasiperiodic flow given by the vector of
basic frequencie&©® € R”. We assume, from the isotropic character of the torus, that we
can introduce (with a canonical change of coordinateaiigular variable§ describing the
initial torus. Hence, the Hamiltonian in these coordinates takes the form

H@O,x,1,y) =091+ 3:"B@)z + Hi(0,x.1.y)

wherez" = (xT, y"). Here, x andy arem-dimensional real vectors, arfdand I belong
to R, r+m = £. Of coursed andx are the positions anfland y the respective conjugate
momenta. A9 is an angular variable, we assume titatdepends on it in az2-periodic
way. Moreover, we will use:"v to denote the scalar product of two vectors.

We also suppose that the Hamiltoniah can be extended to a real analytic function
defined on the seb, ,, (0o, Ro) given by

Dym(po, Ro) = {0, x,1,y) € C* : |Imd| < po, |z| < Ro, 111 < RZ}  (2.1)

where| - | denotes the sup norm of a complex vector (we will use the same notation for
the matrix norm induced). The different scaling for the variahlesd 7 in D,.m(po, Ro) IS
motivated by the definition of degree for a monomial of the Taylor expansion (with respect
to z and ], see (3.1)) used in this paper:

deghy ()2 1) = |1 + 2| (2.2)

with I € N2, s ¢ N", and whereglk|; is defined as)_; |k;|. The reason for counting the
exponents twice will be clear later (it is motivated, basically, by the properties of the
Poisson bracket).

We assume the initial invariant torus is given by= 0 and/ = 0. Hence, we can take
B() as a symmetric 2-dimensional matrix, with real coefficients that dependdoim an
analytic and 2 -periodic way. Moreover, the Taylor expansion &f aroundz =0, / =0
begins with terms of degree at least three.
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2.1.1. Reducibility. We will assume that the normal variational flow around this torus
(given by the matrixJ,,B(®@r), where J,, is the canonical 2-form ofC?") can be
reduced to constant coefficients by means of a real linear change of variables that depends
quasiperiodically orr, having®© as a vector of basic frequencies (quasiperiodic Floquet
reduction). If the torus were reducible except by a small remainder, it would still be possible
to derive similar results (by adding a perturbative parameter, see [10, 12] for the main ideas
and related results). Moreover, this hypothesis does not seem to be very restrictive in our
context, since the partially elliptic tori obtained by standard KAM techniques have reducible
normal flow (see, for instance, [8,18,9,4,12]). This property allows us to construct a
canonical change of coordinates that transforms the ma&fy to constant coefficients.
Hence, we will assume thdt is a real symmetric matrix, independent frémand that the

initial Hamiltonian in those Floquet variables looks like:

HO,x,1,y) =& +1:"Bz + Ho0,x,1,y) (2.3)
where H, begins with terms of degree at least three.

2.1.2. Linear normal behaviour of the torusWe also assume that the matrik, B

has different eigenvalues, given by the complex vectoe C?", that takes the form

AT = (A1, ..., Am, —A1, ..., —Ay) (this structure comes from the canonical character of the
system). We note that in this case, different eigenvalues also means nonzero eigenvalues.
We will refer to those eigenvalues as the normal eigenvalues of the torus. We remark that
if A; =ip (with g € R\ {0} and i= +/—1) is an eigenvalue, thex},,, = —ip. The vectors

of R?” that are a combination of eigenvectors corresponding to (couples of) eigenvalues of
this form are called the elliptic directions of the torus.

The study of the behaviour of the initial torus in those directions is the main issue in
this paper. Moreover, there may be other eigenvalues, with real parts different from zero,
that define the hyperbolic directions of the torus. They can be grouped in one of these two
following forms:

(i) if A; = € R\ {0}, theni,;,, = —«,

(i) if A; =a+ip (with @, 8 € R\ {0}), then, from the real character of the matfix
we can take\;;1 = o — i, and hence}j;,, = —a — i andi 11 = —a +ip.

The imaginary parts of the eigenvalues are usually called normal frequencies of the
torus.

For reasons that will be clear later, it is very convenient to put the maii® in
diagonal form. This is possible with a complex canonical change of basis, that transforms
the initial real Hamiltonian system into a complex one. Thus, the complexified Hamiltonian
has some symmetries because it comes from a real one. As these symmetries are preserved
by the transformations used throughout the proofs, the final Hamiltonian can be realified.
In fact, complexification is not necessary, but it simplifies the proofs. Nevertheless, in the
proofs we have not written explicitly the preservation of those symmetries. This is because
the details are very tedious and cumbersome and, on the other hand, the interested reader
should not have problems in writing them (it is a very standard methodology). For further
use, we denote b T = (XT,YT) those complex (canonical) variables, and By the
complex symmetric matrix such thdj, 5* = diag(A).

2.1.3. Seminormal form: formal descriptionNow we take a linear subspack of R?",
invariant by the action of the matrix, 3, and such that the restriction @f,3 to G only has
elliptic eigenvalues. We putr2, = dim(G) (we recall that this dimension is always even)
and we callo© e R™ the vector of normal frequencies associated with this subspace. As
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G will be fixed throughout the paper, we introduce some notation related to it. First, we
assume that the first; eigenvalues ok are the ones associated wiihthat is,A; = i&)}o),

j=1,...,m;. We also denote b§c € C2m=m) the vector obtained removing fromthe
2m1 eigenvalues associated with This introduces in a natural way the decomposition

T=XT,X"), YT =T, ¥T), obtained by taking apart the first; components from
the lastm — m;. Moreover, we defin&Z” = (X7, YT) and ZT = (X7, Y7). A similar
notation can be used for any vectfoe N2, splitting/" = ( lT) wherely andly are the
exponents of andY in the monomialz’ (zZ! = x'xy'r). Then we introduce)® e R" "
asw@T = (9T, »9T), and we ask for a Diophantine condition of the following form,
ik 0@ +1T4| > “f" k e 7'\ {0} [ e N2m=m) o< |IL<2 (2.4)

1
whenu > 0 andy > r + my — 1. This nonresonance condition allows us to construct
(formally) a seminormal form related to the chosén The Diophantine condition can
be relaxed whenri/|; = 2 and/T4 only involves hyperbolic eigenvalues. In this case,
the results are proved using a combined method based on a fixed-point scheme for the
hyperbolic directions and a Newton method for the remaining ones. This technique allows
us to have multiple hyperbolic eigenvalues.
If we express the Hamiltonian in terms of the variahfgghis seminormal form is done

by removing fromH the monomials of the following form (see (3.2) for the notations):

higexp(ik’6)Z!' T [ e N2 seN
kel k|1 + |lx — Iyl #0 0, <2

where/ is the part of/ that corresponds ta. After this normal-form process, using the
preservation of the symmetries that come from the complexification, we can rewrite this
(formal) seminormal form, in terms of suitable real variables, in the following form:
H@,x,1,y) =01+ 32782+ F(I) + 327 Q)2 + 03(2) (2.6)

where, for simplicity, we do not change the name of the Hamiltonian, and where we extend
the decomposition introduced above to the varialilesy). Here, the matrix5 is a real
symmetric matrix obtained by projectin on the directions given by the eigenvalues
corresponding to the elgenvectdrsl is a compact notation fof T = (IT,I7), where the
actions] can be taken as (xj + yf)/z, Jj =1,...,my, if we choose the real normal-
form variables(x, y) associated with the considered elliptic directions in an adequate (and
a standard) way (see (3.34) in the proof of theorem 3.11). Of coufse; 0,(I) and
Q= 01(I).

Now, we proceed to describe the normal behaviour of the torus derived from this
seminormal form. It is not difficult to check that we have the following (formal)
quasiperiodic solutions for the canonical equations of (2.6):

0(t) = (d»“” + a;(l(o») t +6(0)
I(t) = 1(0)

% (t) = \/2[;(0) sin ((&)@ + 2?(1(0))) t+6; (0)) 2.7)
J
3;(t) =/ 2I;(0) cos((@@ + 2;?(1(0») 1+ éj<0>)

Z2(H =0

(2.5)
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That is, we obtain a@ +m1)-dimensional invariant manifold (= 0) foliated by a(r +m)-
dimensional family of(r 4+ m1)-dimensional invariant reducible tori, parametrized/§9).

The selection of the parameté(0) is natural, asly, ..., I,;,, are first integrals of the
Hamiltonian (2.6) restricted to the invariant manifdd= 0. We remark that the tori of

the family collapse to lower-dimensional ones when any of E}(@) become zero. In
particular, if we takel/ (0) = O we recover the initial-dimensional one. In fact, for every

0 < my < mq1 we have, for this seminormal forrr( ) different (r + my)-dimensional
families of (r + my)-dimensional invariant tori. They are associated to every invariant real
subspace of;. The skeleton of these families comes from the natediimensional family

of r-dimensional tori containing the initial one. This family is associated to the neutral
directions of the torus (the neutral directions are conjugated to the tangent ones), and it
is obtained by taking7 = 0 in our notation. Moreover, we also remark that in (2.7) we
only have real tori when all théj(O) > 0. This comes directly from the definition dfas

a function of the real normal-form variables. To explain this fact let us give the classical
example of a one-dimensional pendulum near the elliptic equilibrium pbditsin(x) =

The linear (normal) frequency at the equilibrium point is 1. Moving the energy level in the
real phase space we obtain periodic orbits with a frequency smaller than 1. If one wants
periodic orbits with a frequency bigger than 1, one is forced to extend the phase space
from R? to C?, keeping the time iR. This same phenomenon happens when we study the
normal elliptic directions of a torus. It is important to note that, for us-dimensional
complex torus is a map frorfi* to C%*. Hence, we will use the word ‘dimension’ to refer

to the real dimension.

2.2. Results and main ideas

A basic result in this paper is the quantitative version of the seminormal form, if we only
kill the monomials like (2.5) up to some finite order. From the estimates on this seminormal
form, we deduce the long-time effective stability of any real trajectory close to a totally
elliptic torus. Moreover, under certain nondegeneracy conditions, we obtain that the normal
behaviour of the initial torus described in section 2.1.3 is ‘correct’ in the sense of the
classical KAM ideas: the ‘majority’ of these tori really exist (but slightly deformed) in the
initial Hamiltonian system. In the following sections we present the explicit description of
those results, and we explain the main ideas used in the proofs.

2.2.1. Seminormal form: bounds on the remaindéNe start with the Hamiltonian (2.3),
where the normal flow is reduced to constant coefficients. Then, we perform a finite number
of (semi)normal form steps, by using suitable canonical transformations that remove the
monomials (2.5) up to a finite degree. This allows us to show the convergence of the
process on the s&, ,, (o1, R), wherep; is independent fronR and R is small enough. By
selecting the order up to which the seminormal form is done as a suitable functi®n of

it is possible to obtain a remainder for the seminormal form which is exponentially small
with R. This is contained in theorem 3.8.

2.2.2. Elliptic tori are very sticky. Now let us assume that the inital torus has all the normal
directions of an elliptic type. In this case we can take= R?", the whole set of normal
directions.

Then, using the normal form explained above, one can write the initial Hamiltonian
as an integrable one plus an exponentially small perturbation. Hence, it is very natural
to obtain exponentially big estimates for the diffusion time: the time needed for a real
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trajectory to go away from the s&, ,,(p, R) (for a precise definition of ‘going away’ see
theorem 3.11) is bigger than

2
1\7+
T (R) = constant ex;(constan(R) ) (2.8)

where the constants on the definition ©®fR) are independent fronR. As usual, we call
the exponent Xy + 1) the stability exponent.

Let us compare this result with previous ones in the literature. In the case in which
the initial torus is of maximal dimension, note that the normal variables- (x, y ") are
missing everywhere. So, the sBt,,(p, R) (see (2.1)) reads

Deolp. R) =1{(0.1) e C" x C* : Imd]| < p, 1] < R?}.

To compare with [16] we must redefin®? as R, in order to have the same units. Then,
the stability exponent in (2.8) coincides with [16].

If the initial torus is an equilibrium point, the variablésand I are the ones that are
missing. Hence]D, ,,(p, R) becomes

Do, (0, R) = {(x,y) € C* x C" 1 |(x, y)| < R}.

Hence, no rescaling is necessary to compare the diffusion time of (2.8) with the one derived
from [7]: the improvement is that the exponent(it + 1) in [7] becomes here 2y + 1).

We note that this improvement is not only on the diffusion time, but also on the measure
of the destroyed tori (see remark 4.5).

2.2.3. Cantor families of invariant tori. It is clear from section 2.1.3 that computing the
seminormal formal form associated wi¢haround the initial torus, up to finite order, and
skipping the non-integrable remainder, those elliptic directions define a uiigten)-
dimensional family ofr +m1)-dimensional tori around the initiakdimensional one. When

we approach the initial torus, the intrinsic frequencies of the tori of the family can be selected
such that they tend to©.

In this case we will show that when we add the remainder of the seminormal form most
of these tori still persist in the complete systém having also reducible normal flow. The
normal eigenvalues of these tori are close to the eigenvaltat are the ones not related
to G). Of course, due to the different small divisors involved in the problem, we cannot
prove the persistence of all the invariant tori predicted by the normal form.

The hypotheses needed are standard in KAM methods. The first one is a non-resonance
condition, involving the frequencied® and the normal ones, that depends on the concrete
selection ofG and it is explicitly given in (2.4). The second hypothesis is a nondegeneracy
condition, asking that all the frequencies vary with the actions. Note that, in general, we
have more frequencies 4 m) than actions«(+m1, m1 < m). This introduces the classical
lack-of-parameters problem when working with a lower-dimensional torus, that needs a
special treatment (for related results, see [8,5,19,4,12]). The idea that we have used here
is to choose a suitabl@ + mj)-dimensional set of parameters, and to ask for the existence
of lower-dimensional tori associated with some of the values of these parameters. Here, the
natural parameter is the vector of intrinsic frequeneies R+ of the invariant tori. To
use this parametrization we need a typical nondegeneracy condition on the frequency map
from I to w, this is that this map be a (local) diffeomorphism aroung 0. This condition
can be explicitly formulated computing the normal form of section 2.1.3 up to degree 4 and
it is given in (4.3). The control of the remaining — m; normal frequencies (normal to the
(r +my)-dimensional family of tori) is more difficult, since there are no free parameters to
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control them. Note that those frequencies are functions of the intrinsic ones. Then, the idea
is to eliminate all the frequencies for which the Diophantine conditions needed to construct
invariant tori are not satisfied. This will lead us to eliminate valuesdb: (a) control
the intrinsic frequencies and (b) control the normal ones as a function of the intrinsic
ones. To control the measure of the set of intrinsic frequencies for which the associated
normal ones are close to resonance, we use the same kind of method as in [12]: we ask for
an extra set of nondegeneracy conditions for the dependence of these normal frequencies
with respect to the intrinsic ones. Those conditions are given in (4.7). They have already
been considered in [15, 8]. The existence of lower-dimensional tori under more degenerate
conditions has been considered in [19, 4].

With the formulation given above, the result is that the measure of the complementary
of the preserved tori is exponentially small: we introduce

UA) ={w e R o — 0@ < A) A>0 (2.9)

and let us defined(A) as the set of frequencies of(A) for which we have reducible
invariant tori. Then, ifA is small enough, we have

mesU(A) \ A(A)) < constant ex<_con3tan<l)m)
mesl{(A)) i

where me¢) denotes the Lebesgue measur®bf™:, y is the exponent of the Diophantine
condition (2.4), and the constants that appear in this bound are positive and independent
from A. This result is formulated in theorem 4.2. Nevertheless, as we have noted in
section 2.1.3, some of the frequencies4fA) give rise to complex tori. If one wants to
ensure that the obtained tori are real tori, one can look at the formulation of theorem 4.3.
Let us describe how those result are proved. For this purpose, we start from the
seminormal form provided by theorem 3.8, and we assume that the reader is familiar with
the standard KAM techniques (see [3] and references therein).
Initially, we have the seminormal form tori parametrized by the vector of ‘actions’
I e R (see (2.7)). By using the nondegeneracy condition of (4.3), we can replace this
parameter by thér + m1)-dimensional vector of frequencies (see lemma 4.1 for details).
The main issue is to kill, for a given frequency, the part of the remainder that obstructs
the existence of the corresponding invariant torus in the complete Hamiltonian. This will
be done by a standard iterative Newton method. As usual, we need to have some control
on the combinations of intrinsic frequencies and normal eigenvalues that appear as divisors
during the process, to keep them satisfying a suitable Diophantine condition (such as (2.4)).
This control can be done using the nondegeneracy conditions of (4.7). As we will start these
iterations from an integrable Hamiltonian (at least in the direc@ipmvith an exponentially
small perturbation, we can take thein (2.4) of the same order. This produces convergence
except for a set of ‘bad frequencies’ with an exponentially small measure.
Now, we use Poincérvariables (see (4.10) and (4.11)) to introduce extfaangular
variables to describe the invariat+ mj)-dimensional tori of the seminormal form. When
we introduce those variables, there is also another source for degeneracy that, essentially,
is due to the fact that the family @f +m1)-dimensional tori comes from arrdimensional
one. It causes the Poinéavariables to become singular when some offthare zero. This
is the same problem that appears when we transform to action-angle variables around an
elliptic equilibrium point of a one degree of freedom Hamiltonian system. A neighbourhood
of the origin has to be excluded since the change of variables is singular there. We remark
that this degeneracy corresponds, in the seminormal form (2.6), to the families of invariant
tori of dimensions betweenandr +mj; —1 (assumingn; > 1). If we ask for real invariant
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tori, this degeneracy also corresponds to the transition manifold from real to complex tori.
We remark that we have an exact knowledge of the manifold of degenerate frequencies for
the seminormal form, but the exponentially small remainder ensures that we only know the
set of degenerate frequencies up to an exponentially small error. This is the main reason that
forces us to refine the seminormal form as we approach the initial torus. The same remarks
apply when we look for real tori: we know the boundary of the set of frequencies that
are needed to give a real torus in the complete Hamiltonian, with an exponentially small
error. To remove the degeneracy, we will take out a neighbourhood of the frequencies
corresponding to the transition manifold. As the terms of the remainder are exponentially
small with R, this neighbourhood can be selected with exponentially small measure with
respect toR.

Finally, we note that the application of the results mentioned above shows that, around
the initial torus, there exists (Cantorian) families of tori of dimensions betwearr +m,
(we recallm, is the number of elliptic directions of the initial torus), under generic conditions
of nonresonance and nondegeneracy.

3. Normal form and effective stability

This section contains the technical details of the seminormal form process with rigorous
bounds on the remainder, as well as bounds on the diffusion time around an elliptic torus.

3.1. Notation

First, let us introduce some notation. We will consider analytic functibs x, 7, y)
defined onD,.,,(p, R), for somep > 0 andR > 0, and Z-periodic with respect t6. We
denote the Taylor series afas

h= Y h@:T. (3.1)

(1,5)eN2n x N

Moreover, the coefficients; ; will be expanded in a Fourier series,

his©@) =" hisexp(ik’6). (3.2)
kezZm

We will denote byh;, = h; o the average ofy (), and define; () = hy () — hy.
Then, we use the expressions (3.1) and (3.2) to introduce the following norms:

hislp =Y hisil €xp(klip) (3.3)
kezZm™

hlor= > lhs|, R0 (3.4)
(1,s)eN2m xNr

Some basic properties of these norms are given in section 5. Here we only note that, if
the sums defining the norms are convergent, they are bounds for the supremum norms of
h,’s(é) (on the complex strip of widtlp > 0) and ofz (on D,.,,(p, R)).

Let us recall the definition of the Poisson bracket of two functions depending on

(6 s Xy f’ ,Y)'
’ ()0 ai ai 345 BZ " 3Z '
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We use a similar definition wherf and g depend on(d, X, I, Y). Note that, with our
definition of degree (see (2.2)), jf and g are homogeneous polynomials afif g} # 0O,
one has

deg{f, g}) = deq f) + degg) — 2. (3.5)

To introduce more notation, let us definé= {(, s) € N*" x N : |l]1+2|s|, > 3}, and
let S be a subset alV. We will say thath € M(S) if i, = 0 when(l,s) ¢ S. We will
also use the following decomposition: giveére M(N), we writeh = S(h) + (N \ S)(h),
whereS(h) € M(S) and (N \ S)(h) € M(N '\ S).

Let us split/™ = (/],1]), with [,,1, € N". Now, givenh € M(S), we say that
h e M(S) whenh, o = 0 for all (,s) € S such thatl, # [, andh; s = h,s if I, =1,.
We say thath € M(S) if h;, =0 for all (,s) € S such that, = = I,. Note that, for any
h e M(S), we haveh = S(h) +S(h) with S(h) e M(S) andS(h) € M(S) We remark
that the functions in\M(S) only depend on’ and on the products;y;, j =1, .

3.2. Bounding the remainder of the normal form

We introduceS c N in the following form: we recall that the firsz; components of.
are eigenvalues associated withand then, we puf = S1 U Sy, with

St =AU, s) € N lLuysal + -+ lhnl + nmpral + -+ - + ll2n| < 1}
82 = {(la S) S N : |lml+1| + -+ |lm| + |lm+ml+1| +-- 4+ |12m| = 2}
This splitting of S will be used during the proof of lemma 3.1 to identify in a precise form
the contribution toM (S) from the Poisson brackets involving monomials.bf(S) (see
bounds (3.21) and (3.22)). This is essential to obtain the estimates of lemma 3.5.

We take the Hamiltonia# (4, x, 1, y) of (2.3), we write it in the variableg (introduced
at the end of section 2.1.2) and we decompose it in the following form:

HO, X, 1,Y)=6OTi +12"B*Z+ NX,1,Y)+ SO, X, I,Y)+T@,X,1,Y) (3.7)

with N € M(S), S € M(S) andT € MW\ \S). We also defineS; = S1(S) and

S, = S»(S). With this formulation, we say thaV is in normal form with respect t&, that

S contains the terms aff that are not in normal form with respect& and thatT” contains

the terms of the Taylor expansion &f not associated witls. We will show that, assuming

the Diophantine conditions of (2.4), we can itin normal form with respect t&, with a
canonical transformation defined around the initialimensional torusZ = 0 and/ = 0,
leaving a small remainder. This remainder will be exponentially small with respetioto

the setD, ,,(p1, R), provided thatR be small enough, for certajpm > O independent from

R. This is done with a finite iterative scheme, with general step described in the following
lemma.

(3.6)

Lemma 3.1. We consider the HamiltoniaH given in (3.7). We assume that it is defined on
Drm(p, R), With0 < p < 1and0 < R < 1, and that there existgo > Oandy > r+m;—1
such that
likT&©@ +1Ta| > Ho
(Ikly + |1 = Iyl
and, givens > 0, let us introducepj =p— ]8 and R; = Rexp(—js). Then, we can
construct an analytic functio (9, X, I,v)e M(S) such that for anyd < § < p/8 we
have the following properties:

(i) G is defined orD, ,, (o1, R1), and if we decomposé = G1+ G2, whereG; = Sl(G)
and G, = S,(G), the bounds fotG| ks 1G1lpy, k, @NA|G2lpy g, are given in (3.14).

V(l,s) e SVk e Z' with |1, — Iy]1 + k|1 # O,
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(i) Let us denote by ¢ the flow at timer of the Hamiltonian syster@. Then, if
NPWS
where A depends only oy and i, we have
\I;]_G’ ‘115;1 . Dr,m (104» R4) — Dr,m (,03, R3)-

(i) If we take (8, X,1,Y) € D,.(ps Ry, and we put(f*, X* I* Y*) =
w30, X, 1,Y), then we haved* — | < 8, |Z* — Z| < RSexp(=1/2)/2, |I* — I| <
R?§ exp(—1). The same bounds also hold f&“, .

(iv) Defining H® = H o WY, and using the same decomposition as in (3.7), we have

HY = $OTf 4 %ZTB*Z +NO L sO 7@ (3.9)
with the bounds (3.19)—(3.23).

Remark 3.2. In the Diophantine condition of the statement of the lemma, we remark that
if we write AT = (AT, —AT), then, for anyl € N*", we havel"x = (I, —[,)TA. Hence,

this condition is equivalent to the one formulated in (2.4), and one can jigkas the
minimum of . and min{|/T |}, where this last expression is taken on theZ2m—m1 with

0 < i1 < 2 andl, — I, # 0. Moreover, we remark that if we take > r +m; — 1, the set

of vectors®@ and for which any Diophantine condition of this kind is not satisfied, has
zero measure.

A

Remark 3.3. The canonical transformation generated Gyhas been chosen to remove
the termS in the decomposition (3.7), formulating the homological equation in terms of
the monomials of degree 2 of the Hamiltonian. This is, in fact, a classical (and linearly
convergent) normal form scheme.

Remark 3.4. The bounds ol ® given by lemma 3.1 are not very concrete. This is because
we will use this lemma in iterative form, but the estimates used in the first steps will be
different from the ones used in a general step of the iterative process. A description of a
general step is given in lemma 3.5.

Proof. We look for a generating functio& € M(S), such that
S+{0®TI+12"B"Z,G} =0.
From the definition of the Poisson bracket, we have

3G AG\"
S+ [-——aQ+272"B*J, | — =0.
96 0Z

ExpandingG and S, we obtain
St.s.k

G sk = = ~
PET T OO 4+ (I, —1,)TA

(3.10)

for the subscripts/, s, k) corresponding to monomials WV(S) (otherwiseG, ; « is defined
as 0). Then, from the definition a¥, we have

H =HoWi - @I +1Z"B*Z+N+T+(N+T,G)

1
d .
= / a(t1L1+(1—t)(d)<°>T1+%ZTB*Z+N+T+{N+T,G}))ow,G dt
0

1
= f {tH+A-0@OTT+1Z"B*Z+N+T+(N+T,G),G} oWl dt
0
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1
+ | H-6OTI-12"B*Z-N-T—{N+T,G)owld
0
1

= / {tS+ @A —1){N+T,G},G} oW dt. (3.11)
0
Hence, we haveV® = N + S(N + T, G} + H*), 8" = Si(IN, G1} + H*), S5° =
So({N, G} + ({T,G1} + H) andT® =T + (N \ S)({N + T, G} + H*). To give the
expressions ob\" and S$”, we remark tha{T, G1} € M(N \ S1), {T, G2} € M(N'\ S)
and{N, Go} € M(N \ S1). Those facts are a consequence of the definitio§:0£S,, the
structure of N € M(S), and the properties of the Poisson bracket.

We now proceed to describe the effect of the transformatigh and to bound the
transformed Hamiltoniad/ o WS . For this purpose, we take a fixed valuesod < § < p/8.
Then, for any(l, s) € S, k € Z", with |l, — ;|1 + |k|1 # O, we have from (3.10)

ik Z' exp(ikTh)
ikT®© 4+ (I, —1,)Ta
’ p1, R
< (Ikle + 1l = Ly1D)Y
Mo

exp(—8lkly — 81111)| S| R exp(lk|1p)

< suple” exp(—(Sa)}MR'”l exp(lk|1p). (3.12)

a>l Mo

Now, using that for any > 0 ands > 0,

y Y
igf{oﬂ’ exp(—éa)} < <5 exp(l)) (3.13)

we deduce from (3.12),
14 v |S|p R
G < —. 3.14
| |,01,R1 (8 exp(l)> [LO ( )

Moreover, the same bounds hold fé@; = S1(G) and G, = S»(G), if one adds the
subscripts 1 or 2 t@; and S in (3.14). Hence, using lemma 5.2, we have

E < |G|p1,R1 < |G|'01,R1 (315)
f I,r,  R2EXp(—25)(1—exp(—26)) ~ R?5exp(—25)
G |Glpw. Ry < 26l 16
9Z |, r, Rexp(=8)(1—exp(=5)) ~ RSexp(—s)
G < |G o~y
30 |k, 0€XP(D)
where in (3.15) and (3.16) we have used that, ¥ @ < 1, then
% < 1—exp(—a). (3.17)

Now, to check the bounds
G G
‘ ol 3z
we use (3.8) with the following\:

v\ 4expd)
exp(l)) Mo

< R exp(—1)
P2, R2

< RS exp(—=1/2) ‘BG

2 30

~
p2,R2 p2,R2

A()/, MO) = (
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If we use the notationw¢ — Id = (6%, X9, 76, V) (see lemma 5.7), then we obtain,
120 oo < RZ3€XP(=D) 167 |z, <8
1271 pp.k, < RS €XP(—=1/2)/2

for any —1 < ¢ < 1, being Z° = (X%, Y°). From the bounds (3.18), and using the
inequality (3.17), we can also deduce that the transformatibfisand W% act as we
describe in the statement of this lemma. Moreover, (3.18) and lemma 5.5 allows us to
bound (3.11) as

|H*|p4,R4 < |{Sv G}'pz,Rz + |{{T7 G}, G}'pg,R3 + |{{N» G}’ G}|p3,R3' (319)

Finally, the same arguments can be used to bound the term#$'bin (3.9) by

(3.18)

IN® = Nlpory <N, Glpp.r, + UT. Gy, + 1 H | py. s (3.20)
1S5 1pake < HUN. G1}l ok, + 1H Lo s (3.21)
1S5 ke < N, Gy iy + 1820T. GiD g r, + 1 H |, (322)
TP = Tlpyry < HUN, Glpp.r, + UT. Glppry + [H |py s (3.23)

O

Before giving more concrete estimates on the bounds of lemma 3.1, we assurié that
is in normal form up to certain order, to be determined later (the reduction Efto this
finite normal form will be described in the proof of theorem 3.8). Then, taking advantage
of this fact, the bounds of lemma 3.1 produce better estimates on the different steps of the
normal-form process (this is done in lemma 3.5). This allows us to produce a very accurate
bound on the final remainder. We want to stress that these bounds are not so good if the
initial Hamiltonian is not in normal form up to degrge

Let us introduce now the following notation: we break the Hamiltonian (3.7) as

N = N4+ N* T=T3+T" (3.24)

where N4 contains the monomials oV of degree 4 and’; contains the monomials of
degree 3 off'. Then, we assume that, f& small enough, we have the bounds

|S1],.2 < SRPF1 |1S2l,.2 < SR” IS|,.x < SRP (3.25)
|Nalp.x < NaR? IN*,.x < N*R® T,z < T3R® IT*,x < T*R*

being §, N4, N*, T3 and T* positive constants. Hergs € N, p > 6, is the order of the
previous normal form and will be chosen later.

Lemma 3.5.Let us consider the Hamiltonia® of (3.7), with the same hypotheses as in
lemma 3.1. We use the notations (3.24), and we assume (3.25). We also assuime fiat
N* < N* and T* < T**, for someS*, N** and 7**. Let G be the generating function
obtained in lemma 3.1, and 16t 0 < § < p/8, be such that

SRr=2
iz ST
(A is given by lemma 3.1). o
_ Then, there exists a constafit, depending only om, m, y, uo, Na, N**, §*, T3 and
T**, such that the following bounds hold for the transformed Hamiltorfian w¢,
Rp+l R2p—1 )

@ _ (= +
|N Nlpsr, < TIS ( sr+2 + 52(v+2)
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1587 |y ke < TISRPF R R R R
1 lpa, Ry X sr+1 Sy+2 Sr+2 52(v+2)

sV < TISR? R® R LR
| 2 |P4~,R4 =X Sr+1 + Sr+2 + §2(r+2)

@ R Rp+1 R2p71
|T —T|p4,R4<nS ((W—’_(W)

Remark 3.6. (A very important one.) Ifp is big enough and > R, the dominant term
in the bounds ofs{” and S{" is given by the factorR?/57+1, This will be the factor of
decreasing of those terms during the normal form process and it allows us ® aékeder
R? 0+ that will produce the exponent/@, + 1) in (3.26). As we have Ay + 1) < 1,
we can deduce that an adequate selectiorpfis p = 8. This allows us to keep bounds
like (3.25) during all the iterative processes.

If we start with a ‘raw’ Hamiltonian (without any previous step of normal form) the
decreasing factor obtained is of ordRys*+1, that forces us to seleétof order RY ¥+,
This produces a worse exponent(it + 1) in (3.26). For instance, let us assume that
the normal form has been done around an elliptic equilibrium point. Here the important
observation is that the bounds obtained when killing degree 3 are much worse than the
bounds obtained for the other degrees (this has been observed numerically in [21]). Hence,
to apply the same bounds to all the degrees results in poor estimates.

Remark 3.7. The exponent Xy + 1) in remark 3.6 can be improved in some very
degenerate cases. For instance, let us consider a totally elliptic torus, and We=taRé".
Let ¢ be the lowest degree of the monomials Mfcorresponding to the (formal) normal
form of H around the torus (of coursg,> 4). Then,s can be taken of ordeR@—2/+D,
that produces the exponefit — 2)/(y + 1) in (3.26).

Proof. During this proof we will use different constanis;, j > 0, that will depend only
on the same parameters as the final condtaof the statement of the lemma. First, from
the bound (3.14) of lemma 3.1, we have that

SRpH1 SRP SRP

SR
8V |G2|01,R1 < HO(ST |G|p1,R1 < HosT

where, as in lemma 3.1g; = p — jé andR; = Rexp(—,jé). Then, to obtain the bounds
for the different terms of the transformed Hamiltonian, we only need to bound the Poisson
brackets that appear in (3.19)—(3.23).

To obtain precise estimates, we will look carefully into the critical bounds of the different
partial derivatives involved, that is, the ones associated/4@and 75. So, we estimate,
separately, the contribution d¥4, N*, T3 and T*, taking into account thatv does not
depend ord, N, is a polynomial of degree 4, ants only contains terms of degree 3.
Moreover, to boundS,({T, G1}) we note that (from the definition af; and S5) it only
contains terms corresponding &, and not to- or 2. Thus, using the bounds on the
Poisson bracket provided by lemma 5.3 (see remark 5.4 for the case in which one of the
terms has finite degree), we have

|Gl|p1,R1 < 1-[0

~ N R2 R3
|Sz({T, Gl})|p2,R2 < Hlst <5V+1 + (W)

n Rp+l

|{T7 G}',Oz,Rz g HZSW

& R? R4
1
|{N, G1}|p2,Rz < H3SRP+ (87’+1 + W)
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R? R*
{N. G}l ok, < TI4SR” <5y+1 * 8V+2>

. R?r—2
I{S, G}lﬂz.Rz < H5SW
R2p71
T, G, Glpsrs < T8 5,1
Rzp R2p+2
{{N, G}, G}|03,R3 X H7S (32y+3 + 52()/+2)>

and finally

R2p72 R2p71
Sr+2 + 82(V+2))

|H*|,04,R4 g H8*§<
From that, with a suitable definition dfl as a function ofl1g—Ilg, the bounds of the
statement of the lemma are clear, if we recall that we have takerb. [l

Now, we are in conditions that formulate a quantitative result about ‘partial reduction to
seminormal form’ of the initial Hamiltonian. For this purpose, we consider the Hamiltonian
H of (2.3), written as in (3.7) in terms of th& variables. We assume that is defined
on D, ., (po, Rp), for some O0< pg < 1 and O0< Ry < 1, with the following bounds:
INlppr < NR* |S|,02 < SR® and|T|,,x < TR3, for any 0< R < Ro, beingN, § and
T, positive constants (independent frak). Then, we prove the following result.

Theorem 3.8.We consider the Hamiltonia/ of (3.7), with the hypotheses previously
described. We suppose that there exiggs> O andy > r + my — 1 such that
Mo

(Ikly + |1 = Iyl
Then, for anyR > 0 small enough (this condition oR depends only on, m, y, o, po, Ro,
N, § and T), there exists an analytical canonical transformatm’f such that

(i) Wk — 1d and (WR)~! — Id are 2r-periodic oné.

(i) WX : D, ,.(3po/4, R exp(—po/H) —> Dym(po, R)

and (%)~ : D, ,(11p0/16, R €xp(—5p0/16)) —> D;..u(po, R).

(i) If we take (4,X,1,Y) e Dym(3p0/4, Rexp(—po/4) and we define
0", X*, I*,Y*) =WR@, X, 1,Y), then|6* — | < po/16, |Z* — Z| < Rpoexp(—1/2)/32,
|[* — I| < R?poexp(—1)/16. Moreover, the same bounds hold far®)~if (9, X, 1,Y) €

Dy.m(11po/16, R €Xp(—5p0/16)).
(iv) Defining H® = H o ¥*, and using the same decomposition as in (3.7),

Hf=6OT[ +12"B*Z + N 4 s* 4 T*
we have:|N® — Nulap,/a rexp(—pojay < CONStANtR®, | TR — T3]3, /4 R exp(—po/4) < CONStANtR?,

where N4 and T3 were introduced in (3.24), and can be computed with a normal form with
respect taS up to degreet, and

likTo©@ +1Tx| > Y(,s) e SVk e Z’ with [, —1,]1 + [k|1 # O.

2
1\71
|SR [300/4, R exp(—po/4) < CONStant exy(—constan(R) )RS (3.26)

where the constants that appear in the bounds 6f T® and S® are positive and independent
from R. Moreover, for anyR for which the result holdsiZ ® is in normal form with respect
to S, at least up to degre8.

Remark 3.9. The dependence oF? on R is not continuous but piecewise analytic.
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Remark 3.10. From the bounds provided by lemma 3.5 for the iterative normal form
procedure described in lemma 3.1, this exponentially small bound seems to be the best
that one can obtain by using this linearly convergent scheme.

Proof. The proof is done simultaneously for any<OR < Rg. The bounds where is

not written explicitly are independent froR. All these bounds and the different conditions

on the smallness ak will depend only on the fixed parameters of the statement. The main
idea of this proof is to use lemma 3.1 recursively, and to iterate the bounds provided by
lemma 3.5 forp = 8 (see remark 3.6). Hence, to use this lemma, we need to put the initial
Hamiltonian in normal form with respect 18, up to degree at least 8. For this purpose, we
construct recursively the generating functia®®, G®, ..., G®, provided by lemma 3.1.
Putting H® = H, we define

" 1
HO+D — g o LIle” =H®™ 4 {H(”), G(n)} + 5{{1{(")’ G(")}, G(")} R (3.27)

forn = 0,...,5. Let us consider first the expression (3.27) as a formal transformation.
From the property (3.5) for the Poisson bracket, and from the way in which the different
GY) are selected in lemma 3.1 (see remark 3.3), we can ensure that the non-resonant terms
associated witl$ that remain inH ©® are of degree at least 9. To show that this construction

is not only formal, we are going to prove the well defined character of the transformations
wé" n=0,...,5, and to boundi™, n = 1, ..., 6. For this purpose, we expari™ as

in (3.7), but adding the superscrigt) to N, S andT. We defined, = po/192, to introduce

p© = pg, RO = R, and p™ = pr=D —45,, R™ = R"Vexp(—48y), n = 1,...,6.

Then, we are going to show that takidg= 8o in lemma 3.1, we have fot =0, ..., 6,
that, if R is small enough,
IN®| o gor < NORM 1Sy g < SW(R™)"3 3.28
7™ o ko < TP R™)2. (826)

This is proved by (finite) induction: assuming that (3.28) holds for sanf® < n < 5)
and using that, ifR is sufficiently small,

S(n) (R(11))n+1

y+2
80

(A is provided by lemma 3.1), we have
WP W Dy (0, R — Dy (0 — 380, R exp(—350)). (3.30)

Then, the fact that the successive steps increase at least by one the degree of the normal form
with respect taS, makes evident the estimates of (3.28)/icr 1. For more details one can
rewrite, with minor changes, the proof of lemma 3.5, using (3.28) instead of (3.25). Here, the
different R-independent constanté™, 7™ and $™, defined recursively fon =0, ..., 6,
depend only on the same parameters involved in the formulation of theorem 3.8. We remark
that condition (3.29) forn = 0, ..., 5, imposes only a finite number of restrictions &n
Let R} the biggest value oR for which they hold.

The next step is to continue with the iterative normal-form process, but using lemma 3.5
(with p = 8) to boundH™, 6 < n < L + 1 (L will be defined below). This will be done
in an inductive way, showing that bounds like (3.25) hold for eat®, n > 6. Hence,
we add in (3.25) the superscript) to S, Si, S», N* and T*, and we replacel, N* and
T+ by §™, N®* and 7™*. All these bounds have been taken Bp,,(p™, R™), for
somep™, R™ that will be defined below. Initially, forn = 6, we can take for instance
N® = N® and N®* = N©/(R%)2. The definition of the other supg6) constants

<1 (3.29)
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can be done similarly. Before continuing the iterative procedure, we remark that, as the
following steps only affect high-order term@/, and T3 remain invariant during all the
normal-form procedure. Then, remark 3.6 suggests the defirfitier8(R) = (AR)%¥+D,
where A > 1 will be determined later (independently froR). From this value ofs we
define, recursivelyp ™D = p™ — 45, R+ = R™ exp(—46), for n > 6. To preserve the
positiveness op™, we restricts < L(R), whereL(R) is the greatest integer for which we
have 4L — 5)é < po/8. This implies the following restriction of:

2
po (1 \
cesem(L) @1
Hence, we takd. as the integer part of (3.31). This impli&sexp(—po/4) < R™ < R

if 6 <n < L+1. To apply lemma 3.5, we assume that for the current HamiltoRi&n,

6 <n < L, we haveS®™ < §©, N+ < N* and T™* < T**, for someN** and 7** to
be exacted later (those bounds are necessary to dédfimelemma 3.5, independent from
n). If for the current value ofi we have

S (RMH6

then, the canonical transformatiohf‘"’ given by lemma 3.1 acts as stated in (3.30),
replacingdy by §. Therefore, using lemma 3.5, and recalling that2+ 1) <1, A > 1
and R™ < R < 1, one obtains the following bounds for the transformed Hamiltonian:

(R™)°

R R(mMY9 R(mMH15 2TIS™
INCTD — N iy gasy < TIS® <( IS ) <

S§A2R? 52A4R4 A2
(R(n))Z (R(n))4 (R(n))S (R(n))G >

(n+1) o(n) r p(n)\9
IS g, oy < TISTER )<A2R2 SA2RZ ' SA2RZ ' §2A4RA

ATIS™
< T R0y

A2
. R(n) 2 R(n) 3 R(n) 7 31‘[3(")
|Sén+l)|p(n+1),R(n+1) < HS(n)(R(n))B <( ) ( ) ( ) ) X

A2R? §A2R? 82A4RA A2
(R(n))g (R(n))15 _ 21—13(71)
SA2R2  §2A4R4) T A2

(R(n))8

(R™M)4,

T — T®| iy gy < TIS® (

We takeA = max{l, J/8I1 exp(l)}, and then, recalling thaR”*Y = R™ exp(—45), we
can define inductivelyr( > 6),

{otD) _ (exp(46))° S
exp(1)

o ~ 1 .
N(n+1)* — 9 N(n)* (n)
(exp(49)) < + 7exp(1)S )

. . 1 .
Fo+De o (fmx Y\
(exp(49)) < +exp(1)S )
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1
72

S = §© exp((6 — n)(1 — 369)) < §© exp((6 —n)/2)

AssumingR small enough such that< we obtain

5 . . 1
N®™* < exp(365(n — 6)) (N(G)* + S<6>)

(exp(1) — 1) (3.33)

~(n)* < _ 7(6) q(6) .
T™* < exp(365(n — 6)) (T +S (exp(l) 1))
As we are only interested in those boundssog L + 1, from the restriction o in (3.31)
we can easily introduce-independent bound&’** and 7** for N®* and 7™*. Now,
assuming that all the steps are well defined, if one putsL(R) + 1 in (3.33), we obtain
an exponentially small bound fa¥+9. To justify that we can reach this value, we note
that (3.32) holds for all the previous if we restrict R with AS©®R3 < 1.

Then, to prove theorem 3.8, we only have to introdue® = WG o ... 0 WG",
and hence,(W*)"1 = wG"” o... 0 WG, If those transformations act as it has been
said in the statement of theorem 3.8, the proof is finished. First, and from the domains
of the definition of the different canonical transformatiosi§” (see (3.30), replacingo
by § if n > 6), we deduce tha®® is defined on the domain given in the statement of
theorem 3.8. Moreover, from the bounds for the different componenlfféﬁ'f— 1d given by
lemma 3.1, and remarking thadBt (L —5)8 < po/16, the final bounds fow ® — Id follow
immediately. We consider noyW %)=, In this case, and using the same arguments on
WG, one can check that if we defing = 11p0/16+n80, R, = R exp(—5p0/16+ ndo) for
n=0,...,6,andp, = 11py/16+ 650+ (n —6)3, R, = R exp(—5p0/16+ 689 + (n — 6)8)
forn=6,...,L+ 1, then we have

n)
lI‘f:(L : Dr,m(pna Rn) —> Dr,m(er—la Rn+l)

for 0 < n < L. The proof of this fact can be done by combining the boundwﬁﬁ) —1Id
with the inequality (3.17). Moreover, this allows us to estimak&) ™t — Id as it has been
done with the case ot . O

3.3. Effective stability

An immediate consequence of theorem 3.8 is that we can bound the diffusion speed around
a linearly stable torus of a Hamiltonian system. In this case, we GakeR?", and hence,

S = N. Then, we apply theorem 3.8, without taking into account the térrof the
decomposition (3.7). In fact, in this case one can rewrite the proofs of lemmas 3.1 and
3.5, and theorem 3.8, in a simpler form (although the actual formulation also holds in this
particular case), to obtain exponentially small bounds for the remaisler

Theorem 3.11.We consider the real analytic Hamiltonian (2.3) defined®n, (oo, Ro) for
some0 < pp < 1 and Ry > 0. We also assume that all the eigenvalued,pB are of the
elliptic type, and that there exisjg, > 0 andy > ¢ — 1 such that

Mo
(Ikly + |1 = Iyl
Let R € (0, Rg), and let us take real initial conditions at= 0 contained inD,.,, (0, R).
Then, we can define > 2 such that, ifR is small enough, the corresponding trajectories
belong toD, ,, (0, « R) for any time0 < r < T(R), with

1\
T(R) = constant ex constan<R>

likTo©@ +1Ta| > Vi e N"Vk e 7' with I, —1,]1 + |k|1 # 0.
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being the constants in the definition BtR) independent fronk.

Remark 3.12. In the proof, and only for technical reasonsdepends omg. Nevertheless,
we can takex as close as we want to 2 (by taking an initigl small enough, see the proof
for details), but this implies a reduction on the set of allowkdand on the constants of
the stability time.

The reason that forces us to take> 2 is the norm used for the normal variables. If
one takes the Euclidean norm instead of the supremum norm, the conditio@ can be
replaced byx > 1.

Proof. In order to simplify the proof, we assume that the initial real varialtes)) of
(2.3) correspond to the ones that @iin canonical real form, that is,

m
2 Bz =) aj(x?+y?)
=1

J

with X; = ie;, j = 1,...,m. Moreover, we assume th& < 1. We introduce(X, Y) to
denote the complexified variables
X: +iY; iX,+7Y;
xy = 2t Nt i m (3.34)

- ) v = 77]'
V2 ! V2
that put the matrix/,, B in the diagonal formJ,,3*. Then, we can write the Hamiltonian
in these variables as
H=00TI+12"B*Z+NX,[,Y)+S@,X,1,7)

whereN can be rewritten as a function 8f 17 = (I7, IT), with I; = iX;Y; = (x?+y?)/2,
and S verifies N'(S) = 0. This corresponds to the decomposition (3.7) if one puts \.

‘H is defined orD,.,, (po, Ro/~/2), with bounds of the following formiN |55, 8 < NR*and
[Slpor < SR3, for any 0 < R < Ro/+/2. Now, we apply theorem 3.8 and we obtain,
for any R small enough, a canonical change® such that in the new coordinate system
@, X,1,Y)=WR@R XR [R YR) we have

HE=Ho W =oOTIR 4+ 3(Z%) B ZF + NR(X®, IR, ¥") + SR@F, x® 1%, vF)
being N* a function of (I%)T = ((I")T, (I®)T), with IX = ixRyF. HE is defined on
Dr,m (3;00/43 R exp(—P0/4)). with

2
1\
|SR|3p0/4,Rexp(—p0/4) < constant ex;{—constant(R) >R8 = M(R).

The canonical equations feX*, I®, Y®) are

x  OHE : aHR
R __ R __ H—
7 i B A
(3.35)
) oHR oSk
IR— H = j:l,...,r.

J T 4R aAR

907 90,
From this, one obtains (using that® is in fact only a function of , and recalling = r+m),
KR OHR SR . QSK

IR =i YR — xXR=ji——_ yk_ji—_xR& i=r+1,...,4.
J aij J aij J aij J aij J J
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We puthR(éR, XR IR YR) for the expressions on the right-hand sideif j =1.....¢.

We use lemma 5.2 to bound these expressions. Then, fod, ..., r one has
4AM(R)
R _ <— . 3.36
IZ;" lo.r exp(—po/2) 3p0exp(l) (3.36)
If we combine lemma 5.2 with the inequality (3.17), one obtainsjfer r + 1, ..., ¢ that,
2M (R) exp(—po/2) 16M (R) exp(—po/4)
1ZF0.r exp(—por2) < < . 3.37
JOREREMIZ S exp(—po/4) (1 — exp(—po/4)) po (337

To continue the proof, we putx?, y®) for the variables that come from the ‘realification’
of (XX, Y®), thatis, X} = (xf —iyf)/v/2, Y} = (yF —ix[)//2. In fact, as¥* preserves
the symmetries of{ (due to the complexification of a real Hamiltonian, see section 2.1.2),
we have that the Hamiltonian in the variable@%, y®) is real analytic. To work with those
different representations of the variables, we give the following remarks: (i) the set of real
variables(x;, y;) such thatlx;|, |y;| < A is contained in the set of complgX;, ¥;) such
that |X;|, |Y;| < A, (i) the set of complexX;, ¥;) such that|X;|, |Y;| < A, is contained
in the complex set fo(x;, y;) such that|x;|, |y;| < V/2A (this property has been used to
say thatH is defined inD,.,(po, Ro/~/2)), (iii) the set of real(x;, y;) such that/; < A?,
is contained in the set of re&t;, y;) such thatlx;|, |y;| < V2A. Those remarks are used
when working with these different kinds of variables, and one wants to control the size of
the corresponding domains, when we change the variable representation.

Now, we take real values fa9®, x&, IR, yR) as initial conditions at = 0. To prove
the lower bound for the stability time, we consider a fixe&k (8 < 1, and we restrict to
initial conditions such that, when expressed in termséd, XX, [%, Y®), they belong to
D,..(0, RB exp(—po/2)/+/2). Then, we have that the corresponding initial actiéRsare
bounded by|/f(0)| < R?%exp(—po)/2, j = 1,...,¢. Using this, we deduce from the
bounds (3.36) and (3.37) that, for the trajectories of the Hamiltonian equations (3.35), we
have|I (1)| < R?exp(—po)/2 for 0< t < T(R), where we can take

R?poexp(—3po/4)(1 — p?)

32M(R) ’
This bound comes from (3.37), which is the worst case. This is the expression for the
stability time of the statement of theorem 3.11. To use the bounds (3.36) and (3.37)
for Z}*, we need that these trajectories expressed in term@ofX R, IR, Y®) belong to
Dm0, Rexp(—pp/2)) up to time T(R). As we have|IjR(t)| < R?exp(—po)/2, this
follows from remarks (iii) and (i). From that we deduce, using the boundg¥dn = — 74
provided by theorem 3.8 and remark (ii), that the corresponding real trajectories in terms
of @, x, I, y) are contained irD,,,(0, R1), being R; defined by

— 2 _
Ry = max{fz(Rexp(_@ DY [t s Rp16r><1>}

T(R) =

Then, if we give for(d, x, 7, y) a real set of points such that, expressed in terms of
0, X,1,Y), they belong to the domaitw®)~1(D,,,(0, RB exp(—po/2)/~/2)), then, the
trajectories ofH with initial conditions in this set remain i®, , (0, R1) for a time span

T (R). With similar arguments as the ones used to deRagusing now remark (ii)), one
can check that this domain can be takerfxs, (0, R,), being R, defined by

RBexp(—po/2)  Rpoexp(=1/2) [R?*B2exp(—po)  R?po exp(—l)}

Ry = mi
2 m'n{ Nz 32 : 2 16
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If one considers the flow¢/! defined fromD, (0, R2) N R?* to D,,,(0, Ry) N R, for
0 <t < T(R), then, puttingR = R, in the statement, and taking aindependent value
of B close enough to 1 such th&t > 0, we can definee = R1/R>. O

4. Estimates on the families of lower-dimensional tori

Let us consider the real analytic reduced Hamiltontawof (2.3) and a fixed linear subspace
G of elliptic directions of J,,5. In theorem 3.8 we have proved that, under standard
Diophantine conditions, one can pé in normal form with respect to the s& (see
(3.6) for the definition), with an exponentially small remainder. If we write this seminormal
form in terms of the complexified variables, and without changing the name of the
Hamiltonian, we have

H=oOT1+12TBZ+F(H)+ 12702+ TG, X, 1,Y)+R@O, X, 1.Y). (4.1

To explain the notation used, let us recall that the different resonant terms depend only on
I and on the product¥;Y;, j =1, ..., m, but, from the structure of, not all the possible
combinations of those monomlals take placeMf(S). Then, we introducd " = ar,im,
with I =iX;Y;, j =1,...,mq, and with this definition (4.1) can be described as follows:
the symmetric math* is defmed fromB* skipping the 21, eigenvalues associated o

Jn_ mlB = dlag(x) F and Q correspond to the normal form with respect§pwith the
expansion ofF starting at second order with respecttpand with Q(0) = 0. It is not
difficult to check that by choosing the variabl&sin a suitable form (as has been done in
the proof of theorem 3.11)F is real analytic. MoreoverQ is a symmetric matrix such
that J,,_,, Q is diagonal,7 € MM\ S) (soT = 03(Z)) andR € M(S)

We assume that this normal form has been done for a given (and small enRugh)

in the formulation of theorem 3.8. We only consider tRedependence when we give the
bounds of the different terms of (4.1). To obtain these bounds, let us defire3p0/4,
where we recall thapy is the width of the strip of analiticity, with respect tq for the
initial Hamiltonian. Then, theorem 3.8 implies that, for aRysmall enough, we have

|Flox < FR* |F3lo.r < FaR®
1Qlo.x < OR? |Q2lo.r < Q2R
" 4.2)
A y+1
T r <TR? IR|,,r < constant ex;(—constant<R> >R8

To derive these bounds dh,,, (0, R), we have considered the functions that depend on
I as functions ofZ. Here, we have spliF = F, + Fs andQ = Q1 + Q,. F» and the
components of; are polynomials o of degrees 2 and 1 respectivel§fs and @, contain
the remaining terms. We note that the definition/ofand Q; does not depend on the order
of the seminormal form.

This seminormal form has been formally explained in section 2.1.3, and we will use the
notation related to (2.7) to represent the normal-form tori.

The main purpose of this section is to study the persistence of those tori when we add
the remaindefR. We note that, a$R| is exponentially small withR, we can expect that
the tori of (2.7) will survive, except the ones corresponding to a set of paramét@s3 (
of exponentially small measure with respectRo We will show that this assertion holds,
assuming certain standard nondegeneracy conditions on this family of tori, that have been
explained in section 2.2.3 (conditions that, as we will see, can be checked by computing a
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normal form up to degree 4, that is, frof, and Q1). As it is a more natural parameter,
the results will be formulated in terms of frequencies instead of actions.

4.1. Nondegeneracy conditions

Before the rigorous formulation of the results, let us give in explicit form the nondegeneracy
conditions that we will use in the proof. They are of two kinds: on the intrinsic frequencies
of the motion along the torus and on the normal frequencies.

4.1.1. Nondegeneracy of the intrinsic frequencieghe first one is a standard
nondegeneracy condition on the dependence of the frequencies with respect to the actions:
we require

9% F>
012
This allows us to parametrize the tori of the family by their vector of intrinsic frequencies

(instead ofI (0)). Of course, we have to be close enough to the initidlmensional torus.
This assertion is justified by the following lemma.

detC£0 C= 0). (4.3)

Lemma 4.1.Let us assume thatetC £ 0. Then, ifR is small enough, there exists a real
analytic vector valued functiofi(w), defined on the set

o e o -0 < gUCT) TR (4.4)
such that

%(I(w)) =o—-o?
with Z(»©®) = 0. Moreover, we havéZ (w)| < R?/4 for any w in the set (4.4), and b,
»® belong in (4.4), then

Z(@®) = Z(@®)] < 2CH0® — o],

Proof. We haveF(I) = %ITCI + F3. Then, we take a fixed in the set (4.4), and we
want to solve the equation:

T(w) =C1t <w — 09 — 3{5"’(1@))) ) (4.5)

Putting the superscript& + 1) and (k) to Z(w) in (4.5), we can consider this expression
as an iterative procedure, usifi® (w) = 0 as the seed. If we assuniE® (w)| < R%/4,
then, using Cauchy inequalities, we have fosmall enough,

F3R® 1
JZS < ZR?
aR?

1
T (@) < IC7H | SUCTTD TR + <
8 4
where we have used the bounds of (4.2) f&; remarking thatFs|o.z is a bound for the
supremum norm ofFs(7) if |I| < R?. Moreover, to ensure convergence, we remark that
using the mean value theorem one has,

A

.7:3R6
2

(5) R*

1
1T (@) — I (w)| < (r +my) IZ® () — %D (w)| < 5 IZ® () — T ()|
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if R is small enough. Clearly, the limit function is analytic with respecbtand from the
real analytic character of, Z is in fact real analytic. Taking™, »® in the set (4.4), one
has

I(@Y) - Z(@?) =C o™ —0®) + (aa?a(w@)) - E’3“73@(@(”)))

and with the same arguments previously used, we obtaik fsmall enough
IZ(@Y) = Z(@®)] < 2IC7 Y0P — 0®.
O

4.1.2. Nondegeneracy of the normal frequenciebhe other nondegeneracy condition
considered refers to the normal eigenvalues. Ignoring the remaRdfar every invariant

tori parametrized byl (0) in (2.7), the corresponding normal eigenvalues are the ones of
the diagonal matrix/m,ml(é* + Q(1(0))). Using the parametrizatioh = Z(w) provided

by lemma 4.1, we can consider those eigenvalues as functionsrsdtead of functions of
1(0),

Inmy(B* + Q(Z())) = diagh© (w)). (4.6)
Then, we ask for the condition

0 N
Im (a(lTA“”)(w“”)) ¢ Zr+m | € Z2m=m1) O<|lh<2  lg#l; (4.7)
w

where we have used the notatibh= (/,1]). To check this condition, we only need to
know the first-order approximation t@, since from (4.6) one has

N A ]
W) =1, + (al Q1 ,»+mm1(0)> CHo - 09) + 020 —0®)  (4.8)

j=1....m—my and thatl%, = -3 Note that (4.7) implies that the derivative

with respect taw of the divisors that will appear during the process (see (4.22)) is different
from zero. With those assumptions and notations, we can formulate the following results.

4.2. Theorems

Theorem 4.2.We consider the real analytic Hamiltonidt of (2.3), defined o, ,,, (0o, Ro)
(for some0 < pg < 1 and Ry > 0), and such that the firstz; componentsQ < m; < m) of
the vector of eigenvalues of,, B are of an elliptic type. LeS c A be the set introduced
in (3.6). We also assume that there exjsts> 0 andy > r + my — 1 such that

Mo
(Ikly + I — Lyl0)Y
(this allows us to putd in seminormal form with respect 8 up to finite degree). Let us
suppose that this seminormal form up to degfeis nondegenerate, in the sense that the
two nondegeneracy conditions given in (4.3) and (4.7) hold. Then, there exists a Cantor
subset4 c R"*™ such that, for anyw € A, the Hamiltonian systen/ has an invariant
(r +m1)-dimensional (complex) torus with as a vector of basic frequencies, with reducible
normal flow. Moreover, ifA(A) = U(A) N A (wherel{(A) is the set defined in (2.9)), then,

likTO©@ +1Ta| > Y(,s)e SVk e Z" with [, — I,|1 + |k|1 # O

mesl(A) \ A(A)) < constant eXF<—00nstan< % )m)

where the constants in this bound are independent flom
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The key to prove theorem 4.2 is the parametrizafigw) of the invariant tori of the
normal form given by lemma 4.1. To construct this function, we t&kef orderv/A in
theorem 3.8, and we obtain a Hamiltonian in normal form with resped {as the one
of (4.1)), with exponentially small bounds f@® as a function of4, of the same order of
the measure of destroyed tori in theorem 4.2. Using lemma 4.1 on the fufetafn(4.1),
we can construct for any frequeney close tow'® the corresponding actionl, = Z(w),
that gives in (2.7) the invariant torus of the seminormal form having this concrete vector
of intrinsic frequencies. Nevertheless, as the actiocan have some of thé < 0, the
corresponding torus in (2.7) can be complex. This is not an obstruction to construct an
invariant (and complex) torus for the complete Hamiltonian (4.1), but the final torus and its
reduced variational normal flow can be@h If we want to have real tori in (2.7), we need
to takew € W(A),

aF o
W(A) = {w cUA) o=+ S (D with [; >0, =1.. ml} . (4.9)

Note that the degenerate (transition) tori have frequencies whose corresponding actions
satisfyij = 0, for somej. Then, we are forced to remove actions in a tiny slice around
the hyperplanes?j = 0, that implies to take out iW(A) the corresponding frequencies.
Unfortunately, 7 changes withA as A — 0 by increasing the order up to which this
seminormal form is done. This is necessary because the successive approximaftons to
given by theorem 3.8 do not converge in general, and hence, as we want to eliminate only
an exponentially small set of frequencies, we need to know this map with an exponentially
small precision.

In this context, we have the following result about the existence of real invariant tori.

Theorem 4.3.With the same hypotheses as in theorem 4.2, there exists a Cantor subset
A c R"t™ such that, for anyo € A, the Hamiltonian systery has an invariant(r + m)-
dimensional real torus with a vector of basic frequencies givemw.bioreover, the normal
flow of this torus can be reduced to constant coefficients by means of a real change of
variables.

A can be characterized in the following form: for ay> 0 small enough, there exists
a convergent (partial) seminormal form with respectitdit takes the form (4.1)) defined on
D,..(p1, R) (being p; independent fronR), and such that if we putl(R?) = W(R?) N A
(see (4.9) for the definition 0f/(A)), then, we have

2 2 1 =
megW(R) \ A(R%)) < constant ex;<—c0nstant<R) )

being the constants in this bound independent fldm

Remark 4.4. Let us explain how the transition set (in the frequency space) from real to
complex tori can be constructed independently from the seminormal form. For any tori
of dimensions, r < s < r + m1, obtained applying theorem 4.3 to an invariant subspace
G1 C G, with dimG; < 2mj, we consider thér + m;)-dimensional vector of frequencies
obtained joining the intrinsic frequencies of the tori, with the the normal frequencies that
generalize the ones associated withnot added as new intrinsic frequencies. We note
that those normal frequencies are well defined from the reducible character of the normal
variational flow of the constructed tori. Then, as a union of those vectors, we obtain a
Cantor set that acts as a transition set, with an exponentially small err@t (as0), to
separate the real and complex tori.
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Remark 4.5. In the case of maximal dimensional tori, this result can also be compared with
[16] and [7]. We remark that as we work with; < m, the estimates on the measure of
invariant tori in theorem 4.3 are given in the frequency space and not in the phase space,
where the total measure filled by those tori is zero whgn< m. In the case of maximal
dimensional tori, it is not difficult to check (for example, if one uses a formulation of the
proof in terms of the actions instead of the frequencies, see section 4.3 for more details)

that the measure of the complementary of the set that the real tori i} jn0, R) NR? is

of order constant ex@-constant(1/R)%*D). This result coincides with [16], if we look

for maximal-dimensional invariant tori around a given maximal-dimensional one (we note
that we need to do the same rescaling as in section 2.2.1 in order to compare the results),
but it improves the estimates on the measure of invariant tori around an elliptic fixed point
of [7].

In what follows, we will only prove theorem 4.3. The proof of theorem 4.2 is very
similar, and it is done by splitting the séf(A) as the union of the sets of frequencies
defined like (4.9), but taking into account all the possible combinations of condition®
andl; <0,j=1,...,ms.

4.3. Proof of theorem 4.3

Before starting with the details, let us mention a technical problem that will appear during
the proof. At each step of the iterative KAM process, we will have to deal with the classical
small divisors problem. This will lead us to eliminate a dense set of resonant frequencies,
to avoid convergence problems. Hence, after the first step of the process the frequency
set has an empty interior. To bound the measure of the eliminated set of frequencies, we
need some kind of regularity. So, we have used Lipschitz conditions because they are well
defined on sets even if they have an empty interior. The control of this kind of dependence
on Cantor sets is analogous to the control of differentiable dependence on open sets. There
are alternative methods to solve this problem, for instance the so-called ‘ultraviolet cut-off’
(see [1] for the first example). This is based on dropping the harmghissich thatjk| is
bigger than some quantit® (2") (n is the step). Hence, at each step, we deal with only a
finite number of resonances. This allows us to work at every step on open sets.

To work with the Lipschitz dependence, we introduce some notations and definitions.
Given f(¢) a function defined fop € &£, £ c R”" for somen, and with values inC, C™
or M, »,(C), we define the Lipschitz constant gfon £ as

Le{f}= sup M

(ﬁl,(pzég |(P2 - (p1|
P1792

If Le{f} < 400, we say thatf is Lipschitz on&, with respect to the normh- |. We also
define|| flle = sup,c¢ [f(9)|. The same definitions can be extended to analytic functions
depending on the parameter Hence, if (0, ¢) or f(0, x, I, y, ¢) are, for everyp € &,
analytic, Zr-periodic ond, and defined ofp € C”" : |Im8| < p} or D, ,,(p, R), respectively,

we can introduceCe ,{f}, | fllc.p, OF Le o r{f} and|| fll¢ , z, taking the supremum on the
norms|-|, or |- |, r, respectively. Some basic results related to those kind of dependences
are given in section 5.

4.3.1. Preliminaries. First, we take a fixed value oR, small enough, and we use
theorem 3.8 to put the initial Hamiltonia® in (semi)normal form with respect to the
setS, except a remaindeR of exponentially small size with respect f2 Hence, we can
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work with the HamiltonianH of (4.1) as if it were the initial one. As the order of this
normal form depends oR, we have to write explicitly thiR-dependence in all the bounds.
We take the analytic functiotF of (4.1) and we construct the parametrizatib(w)
provided by lemma 4.1, which is well defined & is small enough. Then, as we want to
work with (r + m1)-dimensional tori, we introduce new; angular variable$ conjugated
to the actions/ previously added to describe this family of invariant tori. That is, for any
frequencyw € R™™ close tow®, we replace the real (semi)normal form varialles y;),
j=1,...,my, by the new canonical variablé§;, I;) defined as

% =+/2U; + I;j()) sin(6)) §; =/ 2(; + Z;(w)) cos(f)) (4.10)

or, in terms of the complexified variabléX;, ¥;) (see (3.34)),

X;=-iy+Lexpd) Y=\l +Lexp=id). (4.11)

We remark that thosé are not exactly the same ones used to parametrize the tori (2.7),
because they differ in a translation Byw). This is done to put the-invariant torus, with
respect to the seminormal form, in= 0. Hence, we extend this translation to the whole
set of actiond by performing the transformation

I = I+ Zj(w) j=1. (4.12)

Moreover, we denote by™ = (97,6 ") the vector of all the angular variables. Then, we
have constructed, for eaehy a new canonical system of coordinates (with mz; angular
variables) that put the corresponding seminormal form torus # 0. If we insert those
new variables in the Hamiltonian (4.1), we obtamoadependmg family of Hamiltonians
H©, that we simply denote by# © = HO @, X, 1, Y, w),

HO =TI + 12TBZ + FU+T(@) + 327 QU + T(w)Z + T* + R*

where 7* and R* are 7 and R expressed in terms af and /, and composed with the
translation (4.12). We cagi @ into the following form:

H® =¢Q@) + 0" 1 +12TB%%w)Z + %ITC(())(a))I +H? +H© (4.13)
where¢© = F(Z(0)), BO* = B* + Q(Z(w)), C© = P2 (T(w)), H® = R* and

612

oF
HY = F(I + 1) = FZ@) = (T =317 [2 S @@

+1Z7QU +I(w) — QL)) Z +T*

where we have used the properties Tfw) (see lemma 4.1). We remark that, if one
considersH? for a fixedw, and one skips the ter © in (4.13), then] =0 andZ =0
correspond to an invariarnt + m1)-dimensional torus with vector of basic frequencigs
with reducible normal variational flow given by the (complex) diagonal makgix,,, 5©*.
Moreover, in this case the variablésand Z are uncoupled up to first order.

Nevertheless, the coordinates of (4.11) become singular/ fex 0 when we take
frequencies» with somel; = I;(w) = 0. Thus, we have to eliminate a neighbourhood of
the set of those critical frequencies to ensure that the change is well defined.

Let M(R)R® be the expression (with/ exponentially small inR) bounding|R|,,  in
(4.2). We consider a fixed value @&, small enough, such tha# (R) < 1, and we take a
fixed number O< @ < 1, to be exacted later. Then, as we are only interested in real tori,
we use definition (4.9) to introduce the following set:

EOR) =WEICTI) IR \ (T M (VAB(M (R))™)))
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being V(A) = {I € R*™ : || < A, foranyj = 1,...,mi}. That is, we
eliminate fromW(%(|C*1|)*lR2) the frequencies corresponding to actighslose to any
of the hyperplanes/; = 0. As from lemma 4.1 we hav¢Z(w)| < R?/4 for any
w € W(E(CY)~1R?), the measure oP(R) = V(16M%) N TOV(:(IC7Y)~1R?) is of
order (M(R))*. Then, to control the measure that this set fills9An(;(IC~1)~1R?), we
pUt W(R) = Z-1(V(16M%*)) N W((C~1)~1R?), and then we have

mesW(R)) = /~ dow = f |detDZY(1)|dI (4.14)
W(R) V(R)

where, from the definition of in lemma 4.1,7-%(I) = 0@ + 2 (). Then, the bounds
on F in (4.2) suffices to justify that me’BTJ(R)) is also of orden M (R))%.

Now, we are going to see th&© is defined on a small neighbourhood b= 0 and
Z = 0, with positive (and bounded from below) distance to the critical set of frequencies.
To do that, and as we will work with functions @, X, 7, ¥), we will take the different
norms on domains of the forr®, ., m—m,(.,.). More concretely, we will see that, for
anyw € EQ(R), HO is well defined oD, ;,, —m, (0@, R?), beingp© = py/2 (this is
smaller than the width of analyticity for th@ variables in the seminormal form given by
theorem 3.8) an®R@ = 2M“. Let us check that.

First, we remark that a& only depends or, we deduce from (4.2) thaf|o » < FR*.
Then, assumingk?/2 + 4M?* < R?, and using lemmas 5.5 and 5.6, we obtain

IFZ (@) + Dllgo o ro < FR

FRA (4.15)

Leo o go{FZ(w)+ D} < (r+ ’"01722'6_1'
4

where we have used th8to {Z} < 2|/C%| (see lemma 4.1). Similar bounds can be derived
for 73, Q and Q.

To bound7* andR*, we need to show that the transformation (4.11) is well defined.
Using lemma 5.8 (we recall that, from the definition &P, one hasZ;(w) > 16M%* for
any o € £©), and using thapo < 1, it is not difficult to check that if we consideX;, ;)
in (4.11) as a function of9, X, I, Y) andw, we have forj =1, ..., ma:

ma><{||f(j||£<0),p(0>,1e<0>, II?jllgw),pw),R(m} < 3R (2— ,/3/4) exp(1/2) < BR

and

2|C1 exp(1/2) P IC
8M</3/4 T 2M<’

AssumingR small enough such thatd? + R?/4 < (15/16)2R? (this is used to control
the transformation (4.12)) one has, using lemmas 5.5 and 5.6 on the bounds (4.2), that

max{Lco ,0 o {)A(j b Leo p0 go {?j 1<

IT* g0 0 g < TR IR*lco p0 g0 < MRE (4.16)
and
TR3 TR2M* |c1
,Cg(O),p(O)yR(O){T*} < r722|6*1| + 2””117% (4.17)
(1- &) w6k
MR® MR8 |C1
L:S(O),p‘O),R‘O){R*} < ’"T2|C71| + 2my p % (4.18)
(1- () & i
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where, to bound™*, we have used that it i©3(2).

Now, we can bound the different terms &f© in (4.13). First, one hag¢©@| 0 <
FR* We do not care about its Lipschitz constant because this term can be eliminated
without changing the canonical equations (so, we only need to worry about its bounded
character). To bound©@ we remark thatC® = C + %(I) with detC # 0. Using
the bounds onF; (that can be obtained in a similar form as the onesfoin (4.15))
one has that dé&t® # 0 on £©@, if R is small enough. In quantitative form, it means
that |(C?) Y|lco < m©, for certain R-independent constan&®. Moreover, we also
have |COc0 ,0 < M@, Leo ,0{C?P} <m©®. We have used the norift- [0 ,0 for the
constant matrix’© because, in the successive steps of the inductive procedure, the matrices
replacingC© will depend ond. To control the normal eigenvalues, we remark that from
the expression (4.8), we can wriig”, j = 1....,2(n — my), in the following form:

)ALJ(.O) (w) = ij + iva(a) — w(o)) + X;O) (w) (4.19)

wherev; € C"*" and1'¥ = 05(w — »@). From the non-degeneracy hypothesis of (4.7),
we have that Re;) ¢ Z"*™ and, if we putv;; = v; — v;, then Rév; ;) ¢ Z"+", for j # L.
Moreover, using the expression (4.8) and the fact that the eigenvalue,agfl’;‘* are all
different, it is also easy to check the existenceReindependent constants9a.” < of?,

@ > 0, such that 0< o” < %) — 1%)I, «{”/2 < A% W) < o)’ /2, for
anyw € £9, j # 1, and Leo{A”} < p”. We do not give here explicit bounds on

the i}o), as those functions do not appear in the iterative process, but we remark that
one has thath<o>{i;°)} is of order R. This will be used in section 4.3.4. Moreover, if
one uses bounds like (4.15) fof and Q, and the ones of (4.16) and (4.17) f@r, it

is not difficult to check that for certain positivR-independent constan®® and 7©,

one has|H||z0 ,0 g0 < D@ and Lo ,0 g0 {H} < ©. Finally, using the bounds

of (4.16) and (4.18) forR*, one can bound the size of the perturbative teli? by
IHO | co 0 g0 < M and Leo 0 go{H®} < M. Some of these bounds are far from
optimal, but they suffice for our purposes.

4.3.2. The iterative schemeNow, we can describe the iterative procedure used to construct
invariant(r+m1)-dimensional tori. This process is given by a sequence of canonical changes
of variables, constructed as the time-one flow of a suitable generating furfiohe
changes are constructed to kill the terms that obstruct the existence of an invariant reduced
torus with a vector of basic frequencies given dy As usual (to overcome the effect of
the small divisors), the changes are chosen to produce a quadratically convergent scheme,
instead of the linear one of lemma 3.1.

First, we describe a generic step of this iterative process. For this purpose, we expand
the HamiltonianH © of (4.13) in the following form

H® =a0)+b0) Z+cO) 1+ 32"BOZ+ITEO)Z+31"COI+Q6,X,1,Y)
(4.20)
where we do not write explicitly theo-dependence and where we have skipped the

superscripi0) in the different parts of the Hamiltonian. From this expansion, we introduce
the following notations: §#®]; ;, = B, [H?],; = E and(H®) = H® — Q. From

the bounds on the terms of the decomposition (4.13), we havéifitatc — o, B — BO*,
C —CO and E are all 0(H©®). Note that if we are able to remove the termsh and
¢ — w, we will obtain an invariant torus with intrinsic frequeney Nevertheless, as we
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want to have simple equations at every step of the iterative scheme (this is, linear equations
with constant coefficients), we are forced to kill something more. Then, we ask the final
torus to have reducible normal flow given by a diagonal matrix. This is, we want that the
new matrixB verifiesB = J,,_, (B) where, for a(2s)-dimensional matrixA (6) depending
2r-periodically ond, we defineJ;(A) = —J,dp(J;A). Here, dgA) denotes the diagonal
matrix obtained taking the diagonal entries 4f Moreover, we have to eliminat& to
uncouple the ‘neutral’ and the normal directions of the torus up to first order. Thus, for
each step of the iterative process, we use a canonical change of variables, given by a
generating function of the form

SOX, LY)=6"0+d@) +e@ Z+ fO) 1+127GO)Z+1TF©)Z

whereg € C'*™, d =0, f = 0 andG is a symmetric matrix, with7,,_,,,(G) = 0. The
transformed Hamiltonian ig7® = H©@ o w5, We expandH® in the same way a#/©

in (4.20), keeping the same name for the new variables, but adding the supectipt

a, b, c, B, C, E andQ. Then, we aski® =0, p® =0, Y —w =0, E® =0 and

BY = 7,_,..(BD). We will show that this can be achieved up to first order in the size of
H© . For this purpose, we write those conditions in terms of the initial Hamiltonian and

the generating function, and then, we obtain the following equations:

(e i~ 9w=0
q_a @(I)—

9 .
(eqp) b — 8720) FBO% L e=0

— _y _ O <3d>T _
(eq) c —w 890) C (§+ 59 =0

G A A
(eq4) B* - n.7mfm1(B*) - %w + B(O)*JmfmlG - GJmfmlB(O)* = O

OF .
(ex) E* — T FJpm,BO* =0

B — B [amﬁ‘” <g+ <8d>T> o0 }
- - A - —=JIm-m €
al 36 Y .
. o (e |oH? ad\"\ o9HY
E*=E-C -~ E4 (=) |- —dume| .
36 a1 96 Y .
(1,2)

being

To solve those homological equations, we expand them in a Fourier series and we equate the
corresponding coefficients, obtaining the formal solutions. The next step is to derive bounds
on those solutions. As we will use these bounds in iterative form, we want to make clear
which bounds change from one step to another, and which ones can be taken independently
from the step. For this purpose, we take fixed positive constant&, m, az, 1, v, b

defined as twice the corresponding inital valuie®, n©@, 7@, o, g2, ©, 5@ and a
fixeday, 0 < a1 < aio). In what follows, N will denote an expression depending only:en

m, a1, az, v, the different dimensions, m, m, plusy and pg. N will be redefined during

the description of the iterative scheme to meet a finite number of conditions. The idea is
to perform the bounds on the iterative scheme putting the superggyiph the terms that
change at every iteration. Hence, we write the bound$6h as ||If1<°>||g<o>,p<o>,R<o> <MO
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and Leo 0 go{H®) < L@, with MO (R) = M(R) and LO(R) = (M(R))*~*. Hence,
using lemma 5.2,

2(m — my)M®©
la = ¢@lleo 0 < MO [Elleo 0 < %
MO . Q(m —my) + HM©
c—w < =55 B—B%* S
I leo 0 < (R©)2 I leo o0 < (R)2 (4.21)
MO Q(r +m1) + HM©
||b||5(0,,p(0) < RO c —C(0)||5(0),p(0) < (R©)4

120 0 g0 < DO+ MO,

Moreover, we can use lemma 5.9 to deduce that the same bounds hold for their Lipschitz
constants ori£©@, replacingM© by L©, andd© by 5©@. Then, to prove the convergence

of the expansion of, we need some kind of control on the different small divisors involved.
For this purpose, we restrict the parameteto the subse€™ (R) c £©(R) for which the
following Diophantine estimates hold: we say that £@ if v € £©, and

@ (R)

ik o +1TAQw)| > -
k|1

k e Zrm\ {0} [ e N20m=m) O<|l1<2

(4.22)

for certainu©@(R) > 0. We expect the measure & \ £® to be of orden® and, hence,
as we want to have exponentially small bounds for this measure, weutdke: (M ©@)*.
Then, we proceed to bound the solutions of the different homological equations. For this
purpose, we use lemma 5.1. More precisely, we defifle= (M @), and we takes©@ as
a value fors to use the different estimates provided by this lemma. In order to simplify
the proofs, we assume® — N§© > po/4, whereN e N will be a fixed integer that will
be determined after the description of the iterative scheme. Moreover, we also assume that
(M) < RO < 1. Then, one can solveeq)—(egs) as follows.

(equ) Ford, we have

a .
dey= Y. ikawexp(lkTé))
keZr+m1\ (0}

that implies,

< N(M(O))lfafay )

? fallgw,p0
||d||gm,p<o>_s<o><( 4 ) .

8@ exp(1) n©
(eqp) For anyj, 1< j < 2(m —my), we have

b'k T
e;(0) = — ~0 EXNik’0)
kezr+mi ikTow+ )Lj

and hence,

2 y 1 & o (0)) 1—20—a
lellew, po_s0 < (011 + <8(0)exp(1)> W) 1b]lgw o0 < N(M( )) v,

(eqg) Taking an average with respect o we obtain

AT
£=(C™* (5 —w—CO (2‘9[) ) :
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Thus,
IEllew = €)% en < II(C_(O))‘lllgm|I5(°)S||g<1>

oo (3
36
£W.0

- A ||d||5<1),p<0>76<0) 3 O\ 1-a—ay
<m (HC —wllgw p0 +m (00 — 50) exp(D) < NM™) .

To solve the equation fof, we define

ad 3d
* C(O) C(O) C©
¢ 5= 26 + 20

and then, for any X j < r + m1, we have

o= ¥

kezr+m1\{0}

(IIC — ollgwo+

To bound f, first we have that

. . © ldllew, po—s0 3 ( g ©1-20—ay
Ic*llgw po_250 < |ICllew po + ICT7 lcw po <||§||5(1> + 50 exp(l) SNM™)

and from here

Il fllew, po_z50 < (

Y *
Y ||C ||g(1)_ 0 _25(0) N o
) P < N(MO)yl3e—2oy,

5 exp(1) u©
(ew) We defineB** = B* — J,_,(B*), and then, ifG = (G;;), 1 < j, I < 2(m —my),
we have
Gji(6) = L= EXikTO).

c o kT + 30 + 3

In this sum we have to avoid the indicég I, k) for which |j — 1| = m —m; andk = 0. In
these cases we have trivial zero divisors, but also the coeffiéighy is 0. Moreover, we
remark that the matrixG is symmetric. Then, to bound, we have to bound**. First,
we have

1B* = BO*[lca po_250 < |B — BO*[|gw p0_250

IHL lew o0 go

dllcw po_s0
(@ — 1) + D ) <||s||gm+w““’>

5@ exp(1)

0
! )Ilgu),p(O),R(O)

IIH. . e
+24(m — my)? lellgw o050 < N (M@)o

(RO)3
and from the definition o8B** and the norm used, the same bound holdsAbtt. Then,
1 y Vo1
1Glewpo-z0 < ( -+ 50 axp ) 5@ ) 20 =m0 1B lew yo_zs0

< N(M(O))lf7ot72oty )

(eg) The different components df are given by

Eﬂ"lk .
Fu@)= Y ’7A(O)exp(|kT9)

keZr+m1 |kTa) +
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forj=1,....,r+myandl =1,...,2(m —mq). Thus,

||€||g<1> 0 _§(0)
P

50 exp(1)

ldllew, p0_s0
5@ exp(1)

IE*[lew o250 < IEllew po + 20m — m)[[CP[lgw po

IHO lew p0 . g0

+4(m — m1)(r +my) (RO)S5

(||5||5<1> +

0
LNH w0 g0

(RO)4 lellew po_s0 < N(M@)-Te—er

+8(m — my)

and, hence,

2 y Y1 .
| Fllew, 0350 < 071 + pr(l) W 2(m —my) ”E Hgm.p(m_g(;(o)

< ]\A](M(O))l—&)l—zol)/ .

We use these estimates to bound the transformed Hamiltd#i&n For this purpose,
we defineH @* = (H©, §} = HO* + H®*, with

HO" = {01+ 32782 + 317¢O1 + HO, 5}
and H\”* = {H©_ 5}. Note that we are splitting the contributions that @e(#©) and
0,(H©). Then, by construction of, one has

HO 4+ H”* =¢® 40" 1+ 127TBYZ + L1Tc @)1 + HO
with BO* = 7,_,. (BY*) and (H{") = 0. Hence,H® takes the same form a§© in
(4.13) if we define

1
AY = HO o w$ - O — gO* = f (H* + (1 — ){H%, §}) o WS dr. (4.23)
0

To bound the different terms aff @, we use lemma 5.3 to bound the Poisson brackets
involved in the previous expressions:

IH 2 [lc0 o450, g0 exp(_s0y < N (M@)L- 122y

IHHL*, SHlew 0850, kO exp—2s) < N (M ®)2-24rday (4.24)

||H2(O)*||g(1)!p(0>_45(0)!R(0) exp(—5©) < N(M(O))Zflzafzay. (4.25)

Hence, to boundd® one only needs to control the effect &f°. To this end, we remark
that from the bounds on the solutions (@ft)—(egs), one has

IVSllew 0 _ss0 go < N(M @)=y (4.26)
where Vs is taken with respect t¢, X, I, ¥). If we assume that
IVSlew y0_s0 ko < (R®)?8© exp(—1)/2 (4.27)

then,wS is well defined fromD, 1, 1u—m, (0@ =58, R® exp(—8®)) t0 D, 4y m—m, (0@ —
450 ROy for any —1 < ¢ < 1, and for anyw € £V (this follows from lemma 5.7 and
(3.17)). More precisely, we have that

||‘~Ilts —ld|gw po_550 RO exp(—50) < [IVSlew p0_s50 go (4.28)

for any —1 < ¢ < 1. From (4.26) we have that (4.27) holdsNf(M @)1-12—20r < 7
condition that will follow immediately from the inductive restrictions. Applying the bounds
(4.24), (4.25) and (4.28) to (4.23) and using lemma 5.5, we deduce

||I'}(l) lew p©_g50 RO exp(—350) < ]\A/(M(O))Z_Z%_My. (4.29)
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Moreover, the bound omll(o)* produces
16D — ¢ Ollew < N (M @)t-12-2r
||l§(1)* . 3(0)*”5(1) < N(M(O))lflzuafzay
”C(l) _ C(0)||g(1),p(0)745(0) < N(M(O))l_l&l_z"”’

IH® — HOllew 0 _450 g0 exp(—s0y < N(MO)-12-27,

(4.30)

We takeN > 6, and we defin@® = p© — N§© and R® = RO exp(—(N — 3)5©).
Then, it is not difficult to rewrite the bounds d&® as the ones o © in (4.21), but now

oN Dy imym—m, (PP, RY). To iterate this scheme, we only need to check that the bounds
assumed o © to defineN still hold on H®. This is done in the next section.

4.3.3. Convergence of the iterative schemkooking at the bounds of the previous section,
we takea > 0 small enough such that, for= 2(1 — 16a — 2ay), we haves > 1. Then,
assumingV > 1, we define¥® = (NM©)s (note that this is a bound for the norm &fY

in (4.29)). If the hypotheses needed to iterate hold, we obtain recursit/ély= (N M ©)s",

and hence, forR small enough, we have lim ., M™ = 0. Let us define€*(R) as the

set of parameters) for which all the steps are well defined. We assume that, for any
w € £*(R), the composition of canonical transformatiows = ¥3” o w$” o ... (where

S™ is the generating function used at thestep of the iterative procedure) is convergent.
Then, the limit HamiltonianH* = H© o W* takes the form:

H* = ¢* (@) + o I +32TB*(@)Z + 317C*"0, )] + H} (0, X, 1Y, »)

with (H}) = 0. This is, we obtain for anyw € &£* a Hamiltonian with an(r + m1)-
dimensional reducible torus, with linear quasiperiodic flow given:by

Let us prove that the inductive bounds hold. First, we check that we can define,
recursively, constantg:™, m®™, o!”, " and 1™, replacing the initial supet@) ones,
such that they are also bounded &y m, a1, ap and ¥, respectively. To prove that, we
note that the expressions in the right-hand side of (4.30) can be bound@dms§?)*/2 (we
remark that the same bound holds for (4.26)). Hence, iterating this bound, we only need to
use that the sum

S WM (4.31)
n=>0

is convergent forR small enough (and in fact, that it goes to zero whdoes), to justify
thesen-independent bounds. The same arguments can be used to proyg‘that< +oo.
Here, we only check the bound™ < m, because it is the only one that does not follow
directly: note that one can define

n©
1— mO(NMO)s/2

and then, takingR small enough, we havaY < m. Hence, iterating this definition and
assumingn) <m, j=0,...,n —1, we have

D —

n—1 1
o L= m(NM @)

m® < n_’L(O)

Under this inductive hypothesis, one can bour® by an infinite product that it is
convergent because (4.31) does. From here, the boufid< m follows immediately
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for R small enough. Finally, with the inductive definitiong"*? = p™ — N§™ and
R™D = R™Wexp(—(N —3)8™), n > 0, we need to check thg™ > po/4 and
R™ > M™, We remark that, as we talé&” = (M ™))%, we have,

D 8W < MO+ Y (NMOy < 2y (4.32)

n=0 n=1

at least forR small enough. Then, a8 will be a fixed number, the bound g is clear,
taking R small enough. Moreover, we also har¥” > R© exp(—po/4) > R?/2 =
M© > M™_ To justify this last inequality, we only need to takResmall enough such that
M® < MO, Under this assumption, the sequerid&™},~o is clearly decreasing.

Finally, to prove the well defined character of the limit Hamiltonian, it only remains
to check the convergence d@f*. To do that we write, for simplicity¥™ = \llf‘"’ and
we defined® = WO o...0 W™ forn > 0. We also putp, = p®™ — py/8 and
R/ = R™ exp(—po/8), n > 1. Then, using in inductive form the bounds (4.26), (4.27) and
(4.28), it is not difficult to check that from lemma 5.6 we have

”q_;(n-&-l) _ \I/(n)||5*,ﬂ,/,+zaR:,+z <1+ A(NM(O))’Q—Za)H\Ij(l) 0...0opnrth
Do ow® |+

’ 7
’pn+2'Rn+2

where A only depends om, m, m1, po and N. Iterating this bound and taking small
enough, one obtains (fa@ small enough)

. o n A s n 2 n 42

||\I}(n+1) _ \I,(n)||£*$p’,l+2.R’,l+2 < l_[(1+ A(NM(O))/TQ“)(NM(O))T < 2(NM(0))T
j=0

where we have used again the convergent character of the sum (4.31). From this bound, it

is clear that ifp > ¢ > 0, then

P — Tz 0 0 erp o < Y 2NMO) T
j>q
bound that goes to zero ap,q — +oo. This allows us to check that the
limit canonical transformationd* goes from D, .., m—m,(00/8, R© exp(—3p0/8)) to
Drerl,mfml(p(O)a R(O))-

4.3.4. Bounds on the measureThen, we have shown the existence of real invariant
reducible tori for a set of parametess € £*. It only remains to bound the measure
of £&* or, equivalently, the measure of the complementary set. To do that, we start recalling
how £* is constructed. Iterating the definition 6fY from £©@, we define€™+ from £™
in the same way as it has been done in (4.22), replagifig= (M©)* by u™ = (M™)«,
Then, we havee* = N,>1E™. This is,£* is constructed by taking out, in recursive form,
the set of parameters for which the Diophantine conditions (4.22), formulated on the
eigenvalues of the previous step and depending on the size of the remaining perturbative
terms, do not hold. Then, the set of removed parameters can be obtained as a union of sets
for which one of those conditions is not satisfied at some step of the iterative process.

To estimate the size of the removed sets, we will use a Lipschitz condition with respect
to w for the different eigenvaluefs;”) of B™*, for n > 0. To this end, we will prove that
this kind of regularity holds for the successive transformed Hamiltonians. As this condition
holds for the initial one, we have to check, by induction, that the canonical transformations
used preserve this kind of dependence. The key point is to bound the Lipschitz constants
of the different solutions ofeq)—(egs). To do it, we recall that we have bounds like the
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ones of (4.21) for the Lipschitz constants of the different terms of the decomposition (4.13)
of H9. Then, we only have to prove that those bounds for the Lipschitz constants, can be
iterated in the same way as the bounds on the norms. To see that, we can use the different
results given in item (a) of lemma 5.9 to bound the Lipschitz constants of the solutions of
(eqp)—(eqs). We remark that, for the denominators that appear solving these equations, we
have

Leo{ikTo+ 12O < |k + ﬂio)|l|1-

Then, combining lemma 5.9 with standard inequalities to bound the Lipschitz constants of
sums and products, it is not difficult to check that one can iterate bounds of the following
form:

ﬁgu),p(l),Ru){ﬁ(l)} < N(M(O))Zn
Egu),pu)yku){BA(l)* — [;’(O)*} < N(M©@)yn
Lew p0 g {CP —CO) < N(M@)n
Lo o (B — HO) < (MO

that are analogous to the ones of (4.29) and (4.30)> 1 depends on the same parameters

as N, pluss, v and B,. Moreover, takingr small enough, we haves2 > 1. Here, the
selection of N (used to defingp™™ and RV) is done depending on the number of times
that we need to use Cauchy estimates to bound the different norms and Lipschitz constants.
Iterating those expressions, it is not difficult to check (by induction) that we can define
inductively 72, 5™ and g\" for which the assumed-independent bounds hold. The
deduction of those Lipschitz bounds is tedious but it only involves simple inequalities. Full
details in a very similar context can be found in [11] or [12].

Let us particularize those bounds on the eigenvalueg®f. If we expandk
j=1...,2m —mi),n >0, as in (4.19), replacing only the superscripi by (n), we
have thathm {A ™y < NR, beingN a positive constant independent fraRy j andn. To
justify this assertlon we note that it holds fer= 0, and that the contributions that come
from the next steps are exponentially small wRh

Those bounds on the Lipschitz constants)\éﬂ) plus the nondegeneracy conditions
(4.19) are the key to control the measuredf \ £#*+Y. To this end, we consider the
decomposition

5(n) \g(n+l) — R(”)
IEZE(;”J*”‘N keZ”L’”Jl\{O} "

0<|/[1<2

I3 #l;

(n)

with

. ™ (R
RV (R) = {a) e EMR) ik w+1TAM (w)| < “|k|(y )} )
1
To estimate the measure &}, we takeo® andw® in this set and then, we have
N N 2u™
kT @ —0®) + TAP D) — A" @] < -
1
Let us start with the casg|y = 1. Then,/Ti® = 3! for somej = 1,...,2(m — my).

Hence, the previous expression can be rewritten as

2u ™

itk +v)T @ = 0®) + 47 @) = 1) < T
1
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Assuming thatv® — w@ is parallel tok + Re(v;), we have

0® — @], = |(k + Re(v;) T (@® — 0®@)] U )T (@ —0?)]

X

[k + Re(v;)]2 |k + Re(;)]2
. . 2u™
< R 1A @) =17 @) + )
Jk + Re(;)]2 ( ! ! K
. 2u™
<— (NR|a)(1) — 0@+ 2 )
[k + Re(v))2 k7

being | - |> the Euclidean norm of a real vector. Using that(®g # 0 (see (4.19)), we
obtain that there exists a positive constaht independent frony, £ andn, such that

w®

|k|{+l

for R small enough. In fact, this bound can be extended to the |éase 2, I, # [, using
that Rev;, ;,) # 0 if ji # j». This is a bound for the width of a section ﬁf,("k) by a line
in the directionk + Re(v;). Then, the measure &;") can be bounded by

0® — 0@y <y

(n

) r+mp—1
M 1,
1

where 2/r + m1%(|C_1|)_1R2 is a bound for the diameter &K% (R). Then, we have

1
megg(n) \g(n+l)) < HZRZ(H'"”_DMM) o
keZr+m1\{0} lkly
where 1, does not depend on and R. Using that #k < Z't : |k|; = j} <

2(r +my)j7*™~1 and thaty > r +m1 — 1 we obtain
mesg(n) \6(n+1)) < H2R2(r+ml_l)/l,(n) Z 2(7‘ + ml)j)‘+m1—2—y < H3R2(r+ml_l)pl,(n>
i>1
beingI1; also independent from andR. As u™ = (M™)*, we deduce, using (4.32), that
for R < 1 small enough,

meig(o) \g*) < 1—[3R2(r+m171) ((M(O))Ot + Z(NM(O))X"Q) g 21—[3(M(0))0(

n=>1

Taking into account the bound on the measur\efi (IC~))1R?)\ £© (we have shown,
from (4.14), that it is of ordetM©)?*), one obtains the exponentially small bounds on the
measure of destroyed tori. To finish the proof, we defihasUog.g<g-E*(R), WhereR* is

the maximum value ofk for which the iterative scheme converges.

5. Basic lemmas

In this section, we give some basics results used to bound the norms (3.3) and (3.4) and the
related Lipschitz constants, as well as the expressions and transformations involved in the
different proofs. Similar lemmas appear in [12].

Lemma 5.1. Let f(#) and g(0) be analytic functions of complex arguments defined on a
strip of width p > 0, 2z-periodic on#, and taking values irC. Let us denote by} the
Fourier coefficients off, f = ",., fcexp(ik'6). Then we have:
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(W) [fkl <111, €Xp(=Ikl1p).

(i) 11glp < 1f1ol8lp-

(i) For every0 < § < p,

of £l .

00| Sesexpny T

T

o
(iv) Let {di}rez\o € C, with |d| > w/Ikl}, for somex > 0andy > 0. If we assume
that f = 0, then, for any0 < § < p, we have that the functiog defined as

gO) = Y ?exp(ikTe),

kezr\{oy “k

satisfies the bound

y "I flp
18lp-s < <5 exp(1)> o

All these bounds can be extended to the case in wfiieimd g take values inC" or
M, 1, (C).

Proof. Items (i) and (ii) are easily verified. Proofs of (iii) and (iv) follow immediately
using (3.13). O

Lemma 5.2. Let f(0,x,1,y) and g8, x, I, y) be analytic functions oD, ,,(p, R), and
2m-periodic ond. Then, A

W) If f =3 gewonw fis(@)2' T, we havelfil, < |f1p.r/RI20.

(") |fg|p.R < |f|p.R|g|p,R-

(i) Forevery0 < § < pand0 < x < 1,wehaveforj =1,...,randk =1,...,2m:
‘fif £ ok ‘fif _flor | _ ISl
36, = sexp(l) |, p, (1= x>R? 92kl (L= R

As in lemma 5.1, all the bounds holdfifand g take values irC" or M, ,,(C).

p—68,R

Proof. The proof of (i) and (ii) is straightforward. (iii) is proved using item (iii) of
lemma 5.1 and applying Cauchy estimates to the funclign,) yzm | fislp2' IS O
Lemma 5.3. Let us considerf (9, x, I, y) and g(é, x, I, y) complex-valued functions, such

that f and Vg are analytic functions defined dB, (o, R), 2r-periodic oné. Then, for
every0 < § < p and0 < x < 1, we have:

V|f|p,R r|f|p,R
sexp(1) R%(1— x?)

ag g
a6 9z
Remark 5.4. If f has a finite Taylor expansion with respect(g z), the expressions in
the bound of|{f, g}|,—s r, that come from the Cauchy estimates on the derivativeg of
with respect tol or z, can be replaced by bounds on the degree of the different Taylor
expansions. Moreover, if does not depend o, the first term on the bound can be
eliminated. Similar comments can be extendedvia This remark has been used in the
proof of lemma 3.5.

g

s 2m|f|p,R
al

R(1—x)

S gHo-s.rx <

p—38,Rx pP—8,Rx p—38,Rx

Proof. It follows from lemma 5.2. O

Lemma 5.5.Let us take0 < pg < p and0 < Ry < R, and let us consider analytic
functions®, Z with values inC”, and X', ) with values inC™', all defined for(®, x, I, y) €
D;.m(po, Ro), and 2z-periodic ond. We assume thad®|,,.z, < 0 — 00, |Zlpp.r, < R,
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and thatmax{|X'| 5, ro, |V p0. .} < R. Let f(6%, x*, I'*, y*) be a given 2r-periodic ono*)
analytic function, defined o®, (o, R). If we introduce:

FO,x,1,y)=fO0+06,X,7,))

then, | F |y z, < 1 flp k-

Proof. It can be directly checked by expandirfgin a Taylor series as in lemma 5.2, and
using item (ii) of lemmas 5.1 and 5.2. O

Lemma 5.6. Let us conside®), W, X and YV, j = 1, 2, in the same conditions
of the ones of lemma 5.5, but with the following bound®|, r, < p — po — 4,
1T po.ry < R? — o, and max{| XD |, gy, 1V 5000} < R — x, With0 < 8 < p — po,
0 <o < R?and0 < x < R. Then, if one takes the functighof lemma 5.5 to define

FO@O,x,1,y) = f(6 + 0V, XV, TV, Y0y j=12

one hag F® — F@|, r < K|fl,., Where if we puZ’ = (XT,YT), then

o’

= [CCICI o IZO —Z®),0 g, n 1 S 20 = 2P0k
= 0, X0 *
sexp(1) o = / J

Proof. It follows from the same ideas used to prove lemma 5.5. O

Lemma 5.7. Let S(8, x, 1, y) be a function defined o®, ,,(p, R), with p > 0and R > 0,
being VS analytic onD, ,,(p, R) and 2z -periodic oné. If we assume that

N
20

BNy aS
< R*(1-xH < —
PR 9z

— <RA-y)
R al

p.R

for certain0 < x <1and0 < § < p, then one has

(@ V5 D, (p—38,Rx) —> Dyulp, R), for every—1 < t < 1, where¥? is the flow
timet of the Hamiltonian system given By

(b) If one writes¥’ — Id = (®5, X5, 75, Y5), then, for every-1 <t < 1, we have
that ®5, Y5 and 25 = (X5, V%) are analytic functions o, ,,(p — 8, Rx), 2r-periodic on
6. Moreover, the following bounds hold:

s 3S
1O/ lp—s,rx < i

aS
20

as
|Z;S|p78,RX < 87
PR

S
|I[ |p78,Rx g ‘

p,R P, R

Proof. A similar result can be found in [6], where it is proved working with the supremum
norm. The ideas are basically the same, but here we use lemma 5.5 to bound the composition
of functions. O

Lemma 5.8.Let 19, /@ ¢ R, with L2 < 19, 1D for someL > 0, and let us consider the
functionsf;; (1) = /1YW + I, j =0, 1. Then, for ever) < M < L, one has

| frolom < \/W(Z— m)

1O — D)
|f1‘0) - f1(1>|O,M S 07—
S 2L/1— M?/L2

where the different norms are taken 1 (0, M).
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Proof. As fio(I) =Y 40 (MW7) ) +Y2[%, one has

| froloy < VIO <1/2>‘ <L2>

k>0

1/2 (M2
0 _ — _
(-2 () ()
10 (2 /1= M2/L2> .

Moreover, asfyo (1) — fio(I) = ¥ yo0 (D) (@) *+Y2 — (1D)~k+1/2) [k one obtains

1/2 1
[ fio — frolom < Z < Ii )’ ‘2

k>0

2 k-1
72 (1/2>( 1)k 1(AZZ> 11O _ [

k=1

—-1d
=Tl$< 1=3)

g M2
1z

k (Lz)fkfl/z(Mz)kll(O) _ 1(1)|

|I(0) ](1)|'

O

In the following lemma we describe how to control the Lipschitz dependences related
to the norms introduced in (3.3) and (3.4). For this purpose, we consider a fixed subset
£ c R" (for somen) and functions defined o&.

Lemma 5.9. We assume that(0, ¢) andg (0, x, I, y, @) are, for anyp, analytic with respect
to (0, x, I, y) and 2r-periodic on ther complex argument8. We assume that for every
@ € &, f is defined on a strip of width and g is defined orD, ,,(p, R), respectively. Then,
one has the following results:

@) () If f = 1cp fil@)exp(ikT0), thenLe{ fi} < Le p{ f}exp(—Ikl1p).

(i) For every0 < § < p,
af Le oS}
L =1,.
5”5{89} sexp(l) J

(iii) Let {di(¢)}rezr\j0) bE @ set of complex-valued functions definedgoe £. We
assume that the following bounds hold:

()] > ﬁ Leldi) < A+ Blkly
1

for somex > 0,y >0, A > 0and B > 0. We assumg = O for everyg € &, and we
consider the functio (9, ¢) defined fromf and {d;(¢)} as in the item (iv) of lemma 5.1.
Then, for any0 < § < p, we have:

Y 2y+1 2y
4 Lep{f} 2y +1 1 flle.p 2y I flle.o
Le, slg) < B A
en-s8) (5 exp(l)) v \Gexpd) 2 2\ Sexa) 12
(0) () If ¢ = Xy cromnr 8150, 9)2 %, thenLe g1} < Le . pigh/RIF2h,

LT

(i) Forevery0 <8 <pand0< x <1, wehaveforj=1,...,randk =1,...,2m:
d L ad L
e, 12 < e.o.r{8} oty g < Lo Rz{g}2
00; s exp(1) 1-x%R

{ag} ['S,oR{g}
1- xR
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Proof. It can be immediately verified, using the same ideas as in lemmas 5.1 and 5.2, plus
standard inequalities for the Lipschitz dependence. O
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