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Abstract. The purpose of this paper is to study the dynamics near a reducible lower-
dimensional invariant tori of an autonomous analytic Hamiltonian system with` degrees of
freedom. We will focus in the case in which the torus has (some) elliptic directions.

First, let us assume that the torus is totally elliptic, with Diophantine frequencies. In this
case, it is shown that the diffusion time (the time to move away from the torus) is exponentially
big with the initial distance to the torus. The result is valid, in particular, when the torus is of
maximal dimension and when it is of dimension 0 (elliptic point). In the maximal-dimension
case, our results coincide with previous ones. In the zero-dimension case, our results improve
the existing bounds in the literature.

Let us assume now that the torus (of dimensionr, 06 r < `) is partially elliptic (let us call
me to the number of these directions), and satisfying some generic conditions of nondegeneracy
and nonresonance. In this case we show that, given a fixed number of elliptic directions (let us
call m1 6 me to this number), there exist a Cantor family of invariant tori of dimensionr+m1,
that generalize the linear oscillations corresponding to these elliptic directions. Moreover, the
Lebesgue measure of the complementary of this Cantor set (in the frequency spaceRr+m1) is
proven to be exponentially small with the distance to the initial torus. This is a sort of ‘Cantorian
central manifold’ theorem, in which the central manifold is completely filled up by invariant
tori and it is uniquely defined.

AMS classification scheme numbers: 34C15, 34C20, 34C27, 34C30, 34C50, 58F27

1. Introduction

The study of the solutions close to an invariant object is a classical subject in dynamical
systems. Here we will address the problem of describing the phase space near an invariant
torus of a Hamiltonian system. To fix the notation, let us denote byH a real analytic
Hamiltonian with` degrees of freedom, and let us assume it has an invariantr-dimensional
torus, 06 r 6 `. Note that we are including the two-limit cases, that is, when it is an
equilibrium point and when it is a maximal-dimensional torus.

To start the discussion, let us assume that the torus has some elliptic directions, that is,
that the linearized normal flow contains some harmonic oscillators. A natural question is:
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Do these oscillations persist when the nonlinear part of the Hamiltonian is added? If the
torus is totally elliptic, another natural problem is the (nonlinear) stability around this torus.

There are known answers to these questions in some concrete cases. Ifr = 0 (the torus
is an equilibrium point) and it is totally elliptic, KAM theory says that there is plenty of
maximal-dimension invariant tori around the point (see [7]): the complementary of the set
filled by invariant tori has a measure exponentially small with the distance to the point. It
is well known that if` = 2, the maximal-dimensional tori split the energy levelsH = h
into disconnected components. This is the basis to prove the nonlinear stability of the
point. Unfortunately, if` > 2, the invariant tori do not separate the energy levels. In
this case it is generally believed that some diffusion can take place in the phase space (see
[2]). Nevertheless, it is still possible to give lower bounds on the diffusion time, that are
exponentially big with the distance to the point (they follow immediately from [7]).

If r = ` (the torus has maximal dimension) we cannot speak about normal behaviour
since there are not ‘available directions’. The nonlinear stability has been studied in [16, 17]
(among others), where it is shown that the diffusion time is also bounded by an exponentially
big (with the distance to the initial torus) quantity. In [16] this exponentially big stability
time is also related to the density of invariant maximal-dimensional tori around the initial
one, by showing that the total measure of the gaps between the invariant tori nearby is not
bigger than an exponentially small quantity with respect to the distance to the initial one.
In fact, in [16] it is proved that under an extra steepness condition (that we will not use
in this paper) the diffusion time is, at least, superexponential. This condition corresponds
to the classical quasiconvexity hypothesis used to obtain a ‘global’ and exponentially big
stability time of a perturbed integrable Hamiltonian system with respect to the size of the
perturbation (see [6] and references therein).

In this work we will consider these problems for a lower-dimensional torus. The two-
limit cases mentioned above are included, and the results obtained can be summarized
as follows: for a totally elliptic torus, we have obtained exponentially big lower bounds
for the diffusion time. They agree with the bounds of [16] in the caser = ` but, for
the caser = 0, they are better than the ones directly derived from [7]. Moreover, we
study the existence of quasiperiodic solutions that generalize the linear oscillations of the
linearized normal flow to the complete system. If the torus has normal behaviour of the
kind ‘some centres’×‘some saddles’ we obtain Cantor families of invariant tori around
the initial one by adding to the initial set of frequencies those new ones coming from the
nonlinear oscillations associated to any combination of elliptic directions. Those invariant
tori have the same normal behaviour as the initial one (of course, skipping the centres that
give rise to the family). This result is a sort of ‘Cantorian central manifold’ theorem, in
which we obtain an invariant manifold parametrized on a Cantor set and completely filled
up by invariant tori. The gaps in this manifold have measure exponentially small with the
distance to the initial invariant torus (this will be precisely stated later on). We note that
we obtain a Cantorian central ‘submanifold’ for each combination of elliptic directions, and
that it is uniquely defined. The notion of a Cantorian manifold has been previously used in
a similar context in [14].

There are some previous results about the existence of families of lower-dimensional
elliptic tori. In [8] it is proved that those families exist in a neighbourhood of an elliptic
equilibrium point, but without accurate estimates on the measure of the space filled by
invariant tori. Similar results for lower-dimensional elliptic tori can be derived from the
results and methods contained in [8]. More recent results (in a more general context, but
without exponentially small estimates on the measure of invariant tori) are contained in [4]
and [20]. A numerical application of the results contained in this paper can be found in [13].
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The proofs are based on the construction of suitable normal forms. The estimates on
the difussion time are obtained bounding the remainder of these normal forms, while the
existence of families of lower-dimensional tori is proved by applying a KAM scheme to
these remainders.

The paper has been organized in the following way. Section 2 summarizes the main
ideas and results contained in the work. Section 3 contains the details concerning the normal
form and the bounds on the diffusion time. Section 4 is devoted to the existence of families
of tori near the initial one and, finally, in section 5, we have included some basic lemmas
used throughout the paper.

2. Summary

Here we have included a technical description of the problem, the methodology used in the
proofs and the results obtained. We have omitted the technical details of the proofs in order
to simplify the reading.

2.1. Notation and formulation of the problem

LetH be a Hamiltonian system of̀degrees of freedom defined onR2`, having an invariant
r-dimensional isotropic torus (that is, the canonical 2-form ofR2` restricted to the tangent
bundle of the torus vanish), 06 r 6 `, with a quasiperiodic flow given by the vector of
basic frequencieŝω(0) ∈ Rr . We assume, from the isotropic character of the torus, that we
can introduce (with a canonical change of coordinates)r angular variableŝθ describing the
initial torus. Hence, the Hamiltonian in these coordinates takes the form

H(θ̂, x, Î , y) = ω̂(0)>Î + 1
2z
>B(θ̂)z +H1(θ̂ , x, Î , y)

wherez> = (x>, y>). Here,x andy arem-dimensional real vectors, and̂θ and Î belong
to Rr , r+m = `. Of course,θ̂ andx are the positions and̂I andy the respective conjugate
momenta. Asθ̂ is an angular variable, we assume thatH depends on it in a 2π -periodic
way. Moreover, we will useu>v to denote the scalar product of two vectors.

We also suppose that the HamiltonianH can be extended to a real analytic function
defined on the setDr,m(ρ0, R0) given by

Dr,m(ρ0, R0) = {(θ̂ , x, Î , y) ∈ C2` : |Imθ̂ | 6 ρ0, |z| 6 R0, |Î | 6 R2
0} (2.1)

where | · | denotes the sup norm of a complex vector (we will use the same notation for
the matrix norm induced). The different scaling for the variablesz and Î in Dr,m(ρ0, R0) is
motivated by the definition of degree for a monomial of the Taylor expansion (with respect
to z and Î , see (3.1)) used in this paper:

deg(hl,s(θ̂ )z
l Î s) = |l|1+ 2|s|1 (2.2)

with l ∈ N2m, s ∈ Nr , and where|k|1 is defined as
∑
j |kj |. The reason for counting the

exponents twice will be clear later (it is motivated, basically, by the properties of the
Poisson bracket).

We assume the initial invariant torus is given byz = 0 andÎ = 0. Hence, we can take
B(θ̂) as a symmetric 2m-dimensional matrix, with real coefficients that depend onθ̂ in an
analytic and 2π -periodic way. Moreover, the Taylor expansion ofH1 aroundz = 0, Î = 0
begins with terms of degree at least three.
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2.1.1. Reducibility. We will assume that the normal variational flow around this torus
(given by the matrixJmB(ω̂(0)t), where Jm is the canonical 2-form ofC2m) can be
reduced to constant coefficients by means of a real linear change of variables that depends
quasiperiodically ont , having ω̂(0) as a vector of basic frequencies (quasiperiodic Floquet
reduction). If the torus were reducible except by a small remainder, it would still be possible
to derive similar results (by adding a perturbative parameter, see [10, 12] for the main ideas
and related results). Moreover, this hypothesis does not seem to be very restrictive in our
context, since the partially elliptic tori obtained by standard KAM techniques have reducible
normal flow (see, for instance, [8, 18, 9, 4, 12]). This property allows us to construct a
canonical change of coordinates that transforms the matrixB(θ̂) to constant coefficients.
Hence, we will assume thatB is a real symmetric matrix, independent from̂θ , and that the
initial Hamiltonian in those Floquet variables looks like:

H(θ̂, x, Î , y) = ω̂(0)>Î + 1
2z
>Bz +H2(θ̂ , x, Î , y) (2.3)

whereH2 begins with terms of degree at least three.

2.1.2. Linear normal behaviour of the torus.We also assume that the matrixJmB
has different eigenvalues, given by the complex vectorλ ∈ C2m, that takes the form
λ> = (λ1, . . . , λm,−λ1, . . . ,−λm) (this structure comes from the canonical character of the
system). We note that in this case, different eigenvalues also means nonzero eigenvalues.
We will refer to those eigenvalues as the normal eigenvalues of the torus. We remark that
if λj = iβ (with β ∈ R\ {0} and i= √−1) is an eigenvalue, thenλj+m = −iβ. The vectors
of R2m that are a combination of eigenvectors corresponding to (couples of) eigenvalues of
this form are called the elliptic directions of the torus.

The study of the behaviour of the initial torus in those directions is the main issue in
this paper. Moreover, there may be other eigenvalues, with real parts different from zero,
that define the hyperbolic directions of the torus. They can be grouped in one of these two
following forms:

(i) if λj = α ∈ R \ {0}, thenλj+m = −α,
(ii) if λj = α + iβ (with α, β ∈ R \ {0}), then, from the real character of the matrixB,

we can takeλj+1 = α − iβ, and hence,λj+m = −α − iβ andλj+m+1 = −α + iβ.
The imaginary parts of the eigenvalues are usually called normal frequencies of the

torus.
For reasons that will be clear later, it is very convenient to put the matrixJmB in

diagonal form. This is possible with a complex canonical change of basis, that transforms
the initial real Hamiltonian system into a complex one. Thus, the complexified Hamiltonian
has some symmetries because it comes from a real one. As these symmetries are preserved
by the transformations used throughout the proofs, the final Hamiltonian can be realified.
In fact, complexification is not necessary, but it simplifies the proofs. Nevertheless, in the
proofs we have not written explicitly the preservation of those symmetries. This is because
the details are very tedious and cumbersome and, on the other hand, the interested reader
should not have problems in writing them (it is a very standard methodology). For further
use, we denote byZ> = (X>, Y>) those complex (canonical) variables, and byB∗ the
complex symmetric matrix such thatJmB∗ = diag(λ).

2.1.3. Seminormal form: formal description.Now we take a linear subspaceG of R2m,
invariant by the action of the matrixJmB, and such that the restriction ofJmB to G only has
elliptic eigenvalues. We put 2m1 = dim(G) (we recall that this dimension is always even)
and we callω̃(0) ∈ Rm1 the vector of normal frequencies associated with this subspace. As
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G will be fixed throughout the paper, we introduce some notation related to it. First, we
assume that the firstm1 eigenvalues ofλ are the ones associated withG, that is,λj = iω̃(0)j ,

j = 1, . . . , m1. We also denote bŷλ ∈ C2(m−m1) the vector obtained removing fromλ the
2m1 eigenvalues associated withG. This introduces in a natural way the decomposition
X> = (X̃>, X̂>), Y> = (Ỹ>, Ŷ>), obtained by taking apart the firstm1 components from
the lastm − m1. Moreover, we defineZ̃> = (X̃>, Ỹ>) and Ẑ> = (X̂>, Ŷ>). A similar
notation can be used for any vectorl ∈ N2m, splitting l> = (l>X, l>Y ), wherelX andlY are the
exponents ofX andY in the monomialZl (Zl = XlXY lY ). Then, we introduceω(0) ∈ Rr+m1

asω(0)> = (ω̂(0)>, ω̃(0)>), and we ask for a Diophantine condition of the following form,

|ik>ω(0) + l>λ̂| > µ

|k|γ1
k ∈ Zr+m1 \ {0} l ∈ N2(m−m1) 06 |l|1 6 2 (2.4)

whenµ > 0 andγ > r + m1 − 1. This nonresonance condition allows us to construct
(formally) a seminormal form related to the chosenG. The Diophantine condition can
be relaxed when|l|1 = 2 and l>λ̂ only involves hyperbolic eigenvalues. In this case,
the results are proved using a combined method based on a fixed-point scheme for the
hyperbolic directions and a Newton method for the remaining ones. This technique allows
us to have multiple hyperbolic eigenvalues.

If we express the Hamiltonian in terms of the variablesZ, this seminormal form is done
by removing fromH the monomials of the following form (see (3.2) for the notations):

hl,s,k exp(ik>θ̂ )Zl Î s l ∈ N2m s ∈ Nr
k ∈ Zr |k|1+ |lX − lY |1 6= 0 |l̂|1 6 2

(2.5)

where l̂ is the part ofl that corresponds tôλ. After this normal-form process, using the
preservation of the symmetries that come from the complexification, we can rewrite this
(formal) seminormal form, in terms of suitable real variables, in the following form:

H(θ̂, x, Î , y) = ω(0)>I + 1
2 ẑ
>B̂ẑ+ F(I )+ 1

2 ẑ
>Q(I )ẑ+O3(ẑ) (2.6)

where, for simplicity, we do not change the name of the Hamiltonian, and where we extend
the decomposition introduced above to the variables(x, y). Here, the matrixB̂ is a real
symmetric matrix obtained by projectingB on the directions given by the eigenvalues
corresponding to the eigenvectorsλ̂. I is a compact notation forI> = (Î>, Ĩ>), where the
actionsĨ can be taken as̃Ij = (x2

j + y2
j )/2, j = 1, . . . , m1, if we choose the real normal-

form variables(x, y) associated with the considered elliptic directions in an adequate (and
a standard) way (see (3.34) in the proof of theorem 3.11). Of course,F = O2(I ) and
Q = O1(I ).

Now, we proceed to describe the normal behaviour of the torus derived from this
seminormal form. It is not difficult to check that we have the following (formal)
quasiperiodic solutions for the canonical equations of (2.6):

θ̂ (t) =
(
ω̂(0) + ∂F

∂Î
(I (0))

)
t + θ̂ (0)

Î (t) = Î (0)

x̃j (t) =
√

2Ĩj (0) sin

((
ω̃(0) + ∂F

∂Ĩj
(I (0))

)
t + θ̃j (0)

)

ỹj (t) =
√

2Ĩj (0) cos

((
ω̃(0) + ∂F

∂Ĩj
(I (0))

)
t + θ̃j (0)

)
ẑ(t) = 0.

(2.7)
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That is, we obtain a 2(r+m1)-dimensional invariant manifold (ẑ = 0) foliated by a(r+m1)-
dimensional family of(r +m1)-dimensional invariant reducible tori, parametrized byI (0).
The selection of the parameterI (0) is natural, asI1, . . . , Ir+m1 are first integrals of the
Hamiltonian (2.6) restricted to the invariant manifoldẑ = 0. We remark that the tori of
the family collapse to lower-dimensional ones when any of theĨj (0) become zero. In
particular, if we takeI (0) = 0 we recover the initialr-dimensional one. In fact, for every
0 6 m2 6 m1 we have, for this seminormal form,

(
m1

m2

)
different (r + m2)-dimensional

families of (r +m2)-dimensional invariant tori. They are associated to every invariant real
subspace ofG. The skeleton of these families comes from the naturalr-dimensional family
of r-dimensional tori containing the initial one. This family is associated to the neutral
directions of the torus (the neutral directions are conjugated to the tangent ones), and it
is obtained by takingG = 0 in our notation. Moreover, we also remark that in (2.7) we
only have real tori when all thẽIj (0) > 0. This comes directly from the definition of̃I as
a function of the real normal-form variables. To explain this fact let us give the classical
example of a one-dimensional pendulum near the elliptic equilibrium point,ẍ+sin(x) = 0.
The linear (normal) frequency at the equilibrium point is 1. Moving the energy level in the
real phase space we obtain periodic orbits with a frequency smaller than 1. If one wants
periodic orbits with a frequency bigger than 1, one is forced to extend the phase space
from R2 to C2, keeping the time inR. This same phenomenon happens when we study the
normal elliptic directions of a torus. It is important to note that, for us, as-dimensional
complex torus is a map fromTs to C2`. Hence, we will use the word ‘dimension’ to refer
to the real dimension.

2.2. Results and main ideas

A basic result in this paper is the quantitative version of the seminormal form, if we only
kill the monomials like (2.5) up to some finite order. From the estimates on this seminormal
form, we deduce the long-time effective stability of any real trajectory close to a totally
elliptic torus. Moreover, under certain nondegeneracy conditions, we obtain that the normal
behaviour of the initial torus described in section 2.1.3 is ‘correct’ in the sense of the
classical KAM ideas: the ‘majority’ of these tori really exist (but slightly deformed) in the
initial Hamiltonian system. In the following sections we present the explicit description of
those results, and we explain the main ideas used in the proofs.

2.2.1. Seminormal form: bounds on the remainder.We start with the Hamiltonian (2.3),
where the normal flow is reduced to constant coefficients. Then, we perform a finite number
of (semi)normal form steps, by using suitable canonical transformations that remove the
monomials (2.5) up to a finite degree. This allows us to show the convergence of the
process on the setDr,m(ρ1, R), whereρ1 is independent fromR andR is small enough. By
selecting the order up to which the seminormal form is done as a suitable function ofR,
it is possible to obtain a remainder for the seminormal form which is exponentially small
with R. This is contained in theorem 3.8.

2.2.2. Elliptic tori are very sticky. Now let us assume that the inital torus has all the normal
directions of an elliptic type. In this case we can takeG = R2m, the whole set of normal
directions.

Then, using the normal form explained above, one can write the initial Hamiltonian
as an integrable one plus an exponentially small perturbation. Hence, it is very natural
to obtain exponentially big estimates for the diffusion time: the time needed for a real
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trajectory to go away from the setDr,m(ρ, R) (for a precise definition of ‘going away’ see
theorem 3.11) is bigger than

T (R) = constant exp

(
constant

(
1

R

) 2
γ+1

)
(2.8)

where the constants on the definition ofT (R) are independent fromR. As usual, we call
the exponent 2/(γ + 1) the stability exponent.

Let us compare this result with previous ones in the literature. In the case in which
the initial torus is of maximal dimension, note that the normal variablesz> = (x>, y>) are
missing everywhere. So, the setDr,m(ρ, R) (see (2.1)) reads

D`,0(ρ, R) = {(θ̂ , Î ) ∈ C` × C` : |Imθ̂ | 6 ρ, |Î | 6 R2}.
To compare with [16] we must redefineR2 asR, in order to have the same units. Then,
the stability exponent in (2.8) coincides with [16].

If the initial torus is an equilibrium point, the variablesθ̂ and Î are the ones that are
missing. Hence,Dr,m(ρ, R) becomes

D0,`(0, R) = {(x, y) ∈ C` × C` : |(x, y)| 6 R}.
Hence, no rescaling is necessary to compare the diffusion time of (2.8) with the one derived
from [7]: the improvement is that the exponent 1/(γ + 1) in [7] becomes here 2/(γ + 1).
We note that this improvement is not only on the diffusion time, but also on the measure
of the destroyed tori (see remark 4.5).

2.2.3. Cantor families of invariant tori. It is clear from section 2.1.3 that computing the
seminormal formal form associated withG around the initial torus, up to finite order, and
skipping the non-integrable remainder, those elliptic directions define a unique(r + m1)-
dimensional family of(r+m1)-dimensional tori around the initialr-dimensional one. When
we approach the initial torus, the intrinsic frequencies of the tori of the family can be selected
such that they tend toω(0).

In this case we will show that when we add the remainder of the seminormal form most
of these tori still persist in the complete systemH , having also reducible normal flow. The
normal eigenvalues of these tori are close to the eigenvaluesλ̂ (that are the ones not related
to G). Of course, due to the different small divisors involved in the problem, we cannot
prove the persistence of all the invariant tori predicted by the normal form.

The hypotheses needed are standard in KAM methods. The first one is a non-resonance
condition, involving the frequencieŝω(0) and the normal onesλ, that depends on the concrete
selection ofG and it is explicitly given in (2.4). The second hypothesis is a nondegeneracy
condition, asking that all the frequencies vary with the actions. Note that, in general, we
have more frequencies (r+m) than actions (r+m1, m1 6 m). This introduces the classical
lack-of-parameters problem when working with a lower-dimensional torus, that needs a
special treatment (for related results, see [8, 5, 19, 4, 12]). The idea that we have used here
is to choose a suitable(r +m1)-dimensional set of parameters, and to ask for the existence
of lower-dimensional tori associated with some of the values of these parameters. Here, the
natural parameter is the vector of intrinsic frequenciesω ∈ Rr+m1 of the invariant tori. To
use this parametrization we need a typical nondegeneracy condition on the frequency map
from I to ω, this is that this map be a (local) diffeomorphism aroundI = 0. This condition
can be explicitly formulated computing the normal form of section 2.1.3 up to degree 4 and
it is given in (4.3). The control of the remainingm−m1 normal frequencies (normal to the
(r +m1)-dimensional family of tori) is more difficult, since there are no free parameters to
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control them. Note that those frequencies are functions of the intrinsic ones. Then, the idea
is to eliminate all the frequencies for which the Diophantine conditions needed to construct
invariant tori are not satisfied. This will lead us to eliminate values ofω to: (a) control
the intrinsic frequenciesω and (b) control the normal ones as a function of the intrinsic
ones. To control the measure of the set of intrinsic frequencies for which the associated
normal ones are close to resonance, we use the same kind of method as in [12]: we ask for
an extra set of nondegeneracy conditions for the dependence of these normal frequencies
with respect to the intrinsic ones. Those conditions are given in (4.7). They have already
been considered in [15, 8]. The existence of lower-dimensional tori under more degenerate
conditions has been considered in [19, 4].

With the formulation given above, the result is that the measure of the complementary
of the preserved tori is exponentially small: we introduce

U(A) = {ω ∈ Rr+m1 : |ω − ω(0)| 6 A} A > 0 (2.9)

and let us defineA(A) as the set of frequencies ofU(A) for which we have reducible
invariant tori. Then, ifA is small enough, we have

mes(U(A) \A(A))
mes(U(A)) 6 constant exp

(
−constant

(
1

A

) 1
γ+1

)
where mes(·) denotes the Lebesgue measure ofRr+m1, γ is the exponent of the Diophantine
condition (2.4), and the constants that appear in this bound are positive and independent
from A. This result is formulated in theorem 4.2. Nevertheless, as we have noted in
section 2.1.3, some of the frequencies ofA(A) give rise to complex tori. If one wants to
ensure that the obtained tori are real tori, one can look at the formulation of theorem 4.3.

Let us describe how those result are proved. For this purpose, we start from the
seminormal form provided by theorem 3.8, and we assume that the reader is familiar with
the standard KAM techniques (see [3] and references therein).

Initially, we have the seminormal form tori parametrized by the vector of ‘actions’
I ∈ Rr+m1 (see (2.7)). By using the nondegeneracy condition of (4.3), we can replace this
parameter by the(r +m1)-dimensional vector of frequencies (see lemma 4.1 for details).

The main issue is to kill, for a given frequency, the part of the remainder that obstructs
the existence of the corresponding invariant torus in the complete Hamiltonian. This will
be done by a standard iterative Newton method. As usual, we need to have some control
on the combinations of intrinsic frequencies and normal eigenvalues that appear as divisors
during the process, to keep them satisfying a suitable Diophantine condition (such as (2.4)).
This control can be done using the nondegeneracy conditions of (4.7). As we will start these
iterations from an integrable Hamiltonian (at least in the directionG) with an exponentially
small perturbation, we can take theµ in (2.4) of the same order. This produces convergence
except for a set of ‘bad frequencies’ with an exponentially small measure.

Now, we use Poincaré variables (see (4.10) and (4.11)) to introduce extram1 angular
variables to describe the invariant(r+m1)-dimensional tori of the seminormal form. When
we introduce those variables, there is also another source for degeneracy that, essentially,
is due to the fact that the family of(r +m1)-dimensional tori comes from anr-dimensional
one. It causes the Poincaré variables to become singular when some of theĨj are zero. This
is the same problem that appears when we transform to action-angle variables around an
elliptic equilibrium point of a one degree of freedom Hamiltonian system. A neighbourhood
of the origin has to be excluded since the change of variables is singular there. We remark
that this degeneracy corresponds, in the seminormal form (2.6), to the families of invariant
tori of dimensions betweenr andr+m1−1 (assumingm1 > 1). If we ask for real invariant



Normal behaviour of lower-dimensional tori 791

tori, this degeneracy also corresponds to the transition manifold from real to complex tori.
We remark that we have an exact knowledge of the manifold of degenerate frequencies for
the seminormal form, but the exponentially small remainder ensures that we only know the
set of degenerate frequencies up to an exponentially small error. This is the main reason that
forces us to refine the seminormal form as we approach the initial torus. The same remarks
apply when we look for real tori: we know the boundary of the set of frequencies that
are needed to give a real torus in the complete Hamiltonian, with an exponentially small
error. To remove the degeneracy, we will take out a neighbourhood of the frequencies
corresponding to the transition manifold. As the terms of the remainder are exponentially
small with R, this neighbourhood can be selected with exponentially small measure with
respect toR.

Finally, we note that the application of the results mentioned above shows that, around
the initial torus, there exists (Cantorian) families of tori of dimensions betweenr andr+me
(we recallme is the number of elliptic directions of the initial torus), under generic conditions
of nonresonance and nondegeneracy.

3. Normal form and effective stability

This section contains the technical details of the seminormal form process with rigorous
bounds on the remainder, as well as bounds on the diffusion time around an elliptic torus.

3.1. Notation

First, let us introduce some notation. We will consider analytic functionsh(θ̂, x, Î , y)

defined onDr,m(ρ, R), for someρ > 0 andR > 0, and 2π -periodic with respect tôθ . We
denote the Taylor series ofh as

h =
∑

(l,s)∈N2m×Nr
hl,s(θ̂ )z

l Î s . (3.1)

Moreover, the coefficientshl,s will be expanded in a Fourier series,

hl,s(θ̂ ) =
∑
k∈Zm

hl,s,k exp(ik>θ̂ ). (3.2)

We will denote byh̄l,s = hl,s,0 the average ofhl,s(θ̂ ), and defineh̃l,s(θ̂ ) = hl,s(θ̂ ) − h̄l,s .
Then, we use the expressions (3.1) and (3.2) to introduce the following norms:

|hl,s |ρ =
∑
k∈Zm
|hl,s,k| exp(|k|1ρ) (3.3)

|h|ρ,R =
∑

(l,s)∈N2m×Nr
|hl,s |ρR|l|1+2|s|1. (3.4)

Some basic properties of these norms are given in section 5. Here we only note that, if
the sums defining the norms are convergent, they are bounds for the supremum norms of
hl,s(θ̂ ) (on the complex strip of widthρ > 0) and ofh (onDr,m(ρ, R)).

Let us recall the definition of the Poisson bracket of two functions depending on
(θ̂ , x, Î , y):

{f, g} = ∂f

∂θ̂

(
∂g

∂Î

)>
− ∂f
∂Î

(
∂g

∂θ̂

)>
+ ∂f
∂z
Jm

(
∂g

∂z

)>
.
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We use a similar definition whenf and g depend on(θ̂ , X, Î , Y ). Note that, with our
definition of degree (see (2.2)), iff andg are homogeneous polynomials and{f, g} 6= 0,
one has

deg({f, g}) = deg(f )+ deg(g)− 2. (3.5)

To introduce more notation, let us defineN = {(l, s) ∈ N2m×Nr : |l|1+2|s|1 > 3}, and
let S be a subset ofN . We will say thath ∈M(S) if hl,s = 0 when(l, s) /∈ S. We will
also use the following decomposition: givenh ∈M(N ), we writeh = S(h)+ (N \S)(h),
whereS(h) ∈M(S) and(N \ S)(h) ∈M(N \ S).

Let us split l> = (l>x , l
>
y ), with lx, ly ∈ Nm. Now, given h ∈ M(S), we say that

h ∈ M(S) whenhl,s = 0 for all (l, s) ∈ S such thatlx 6= ly , andhl,s = h̄l,s if lx = ly .
We say thath ∈ M̃(S) if h̄l,s = 0 for all (l, s) ∈ S such thatlx = ly . Note that, for any
h ∈M(S), we haveh = S(h)+ S̃(h), with S(h) ∈M(S) and S̃(h) ∈ M̃(S). We remark
that the functions inM(S) only depend onÎ and on the productsxjyj , j = 1, . . . , m.

3.2. Bounding the remainder of the normal form

We introduceS ⊂ N in the following form: we recall that the firstm1 components ofλ
are eigenvalues associated withG, and then, we putS = S1 ∪ S2, with

S1 = {(l, s) ∈ N : |lm1+1| + · · · + |lm| + |lm+m1+1| + · · · + |l2m| 6 1}
S2 = {(l, s) ∈ N : |lm1+1| + · · · + |lm| + |lm+m1+1| + · · · + |l2m| = 2}. (3.6)

This splitting ofS will be used during the proof of lemma 3.1 to identify in a precise form
the contribution toM(S) from the Poisson brackets involving monomials ofM(S) (see
bounds (3.21) and (3.22)). This is essential to obtain the estimates of lemma 3.5.

We take the HamiltonianH(θ̂, x, Î , y) of (2.3), we write it in the variablesZ (introduced
at the end of section 2.1.2) and we decompose it in the following form:

H(θ̂,X, Î , Y ) = ω̂(0)>Î + 1
2Z
>B∗Z +N(X, Î , Y )+ S(θ̂, X, Î , Y )+ T (θ̂, X, Î , Y ) (3.7)

with N ∈ M(S), S ∈ M̃(S) and T ∈ M(N \ S). We also defineS1 ≡ S1(S) and
S2 ≡ S2(S). With this formulation, we say thatN is in normal form with respect toS, that
S contains the terms ofH that are not in normal form with respect toS, and thatT contains
the terms of the Taylor expansion ofH not associated withS. We will show that, assuming
the Diophantine conditions of (2.4), we can putH in normal form with respect toS, with a
canonical transformation defined around the initialr-dimensional torus,Z = 0 and Î = 0,
leaving a small remainder. This remainder will be exponentially small with respect toR on
the setDr,m(ρ1, R), provided thatR be small enough, for certainρ1 > 0 independent from
R. This is done with a finite iterative scheme, with general step described in the following
lemma.

Lemma 3.1. We consider the HamiltonianH given in (3.7). We assume that it is defined on
Dr,m(ρ, R), with 0< ρ < 1 and0< R < 1, and that there existsµ0 > 0 andγ > r+m1−1
such that

|ik>ω̂(0) + l>λ| > µ0

(|k|1+ |lx − ly |1)γ ∀(l, s) ∈ S ∀k ∈ Z
r with |lx − ly |1+ |k|1 6= 0,

and, givenδ > 0, let us introduceρj = ρ − jδ and Rj = R exp(−jδ). Then, we can
construct an analytic functionG(θ̂,X, Î , Y ) ∈ M̃(S), such that for any0 < δ 6 ρ/8 we
have the following properties:

(i) G is defined onDr,m(ρ1, R1), and if we decomposeG = G1+G2, whereG1 = S̃1(G)

andG2 = S̃2(G), the bounds for|G|ρ1,R1, |G1|ρ1,R1 and |G2|ρ1,R1 are given in (3.14).
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(ii) Let us denote by9G
t the flow at timet of the Hamiltonian systemG. Then, if

1
|S|ρ,R
δγ+2R2

6 1 (3.8)

where1 depends only onγ andµ0, we have

9G
1 , 9

G
−1 : Dr,m(ρ4, R4) −→ Dr,m(ρ3, R3).

(iii) If we take (θ̂ , X, Î , Y ) ∈ Dr,m(ρ4, R4), and we put (θ̂∗, X∗, Î ∗, Y ∗) =
9G

1 (θ̂ , X, Î , Y ), then we have|θ̂∗ − θ̂ | 6 δ, |Z∗ − Z| 6 Rδ exp(−1/2)/2, |Î ∗ − Î | 6
R2δ exp(−1). The same bounds also hold for9G

−1.
(iv) DefiningH(1) = H ◦9G

1 , and using the same decomposition as in (3.7), we have

H(1) = ω̂(0)>Î + 1
2Z
>B∗Z +N(1) + S(1) + T (1) (3.9)

with the bounds (3.19)–(3.23).

Remark 3.2. In the Diophantine condition of the statement of the lemma, we remark that
if we write λ> = (λ>,−λ>), then, for anyl ∈ N2m, we havel>λ = (lx − ly)>λ. Hence,
this condition is equivalent to the one formulated in (2.4), and one can takeµ0 as the
minimum ofµ and min{|l̂>λ̂|}, where this last expression is taken on thel̂ ∈ Z2(m−m1) with
0< |l̂|1 6 2 andl̂x − l̂y 6= 0. Moreover, we remark that if we takeγ > r +m1− 1, the set
of vectorsω̂(0) andλ for which any Diophantine condition of this kind is not satisfied, has
zero measure.

Remark 3.3. The canonical transformation generated byG has been chosen to remove
the termS in the decomposition (3.7), formulating the homological equation in terms of
the monomials of degree 2 of the Hamiltonian. This is, in fact, a classical (and linearly
convergent) normal form scheme.

Remark 3.4. The bounds onH(1) given by lemma 3.1 are not very concrete. This is because
we will use this lemma in iterative form, but the estimates used in the first steps will be
different from the ones used in a general step of the iterative process. A description of a
general step is given in lemma 3.5.

Proof. We look for a generating functionG ∈ M̃(S), such that

S + {ω̂(0)>Î + 1
2Z
>B∗Z,G} = 0.

From the definition of the Poisson bracket, we have

S +
(
−∂G
∂θ̂
ω̂(0) + Z>B∗Jm

(
∂G

∂Z

)>)
= 0.

ExpandingG andS, we obtain

Gl,s,k = Sl,s,k

ik>ω̂(0) + (lx − ly)>λ (3.10)

for the subscripts(l, s, k) corresponding to monomials iñM(S) (otherwiseGl,s,k is defined
as 0). Then, from the definition ofG, we have

H ∗ ≡ H ◦9G
1 − (ω̂(0)>Î + 1

2Z
>B∗Z +N + T + {N + T ,G})

=
∫ 1

0

d

dt
(tH + (1− t)(ω̂(0)>Î + 1

2Z
>B∗Z +N + T + {N + T ,G})) ◦9G

t dt

=
∫ 1

0
{tH + (1− t)(ω̂(0)>Î + 1

2Z
>B∗Z +N + T + {N + T ,G}),G} ◦9G

t dt
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+
∫ 1

0
(H − ω̂(0)>Î − 1

2Z
>B∗Z −N − T − {N + T ,G}) ◦9G

t dt

=
∫ 1

0
{tS + (1− t){N + T ,G},G} ◦9G

t dt. (3.11)

Hence, we haveN(1) = N + S({N + T ,G} + H ∗), S(1)1 = S̃1({N,G1} + H ∗), S(1)2 =
S̃2({N,G} + {T ,G1} + H ∗) and T (1) = T + (N \ S)({N + T ,G} + H ∗). To give the
expressions ofS(1)1 andS(1)2 , we remark that{T ,G1} ∈M(N \ S1), {T ,G2} ∈M(N \ S)
and {N,G2} ∈M(N \ S1). Those facts are a consequence of the definition ofS1, S2, the
structure ofN ∈M(S), and the properties of the Poisson bracket.

We now proceed to describe the effect of the transformation9G
1 and to bound the

transformed HamiltonianH ◦9G
1 . For this purpose, we take a fixed value ofδ, 0< δ 6 ρ/8.

Then, for any(l, s) ∈ S, k ∈ Zr , with |lx − ly |1+ |k|1 6= 0, we have from (3.10)∣∣∣∣∣ Sl,s,kZ
l exp(ik>θ̂ )

ik>ω̂(0) + (lx − ly)>λ

∣∣∣∣∣
ρ1,R1

6 (|k|1+ |lx − ly |1)γ
µ0

exp(−δ|k|1− δ|l|1)|Sl,s,k|R|l|1 exp(|k|1ρ)

6 sup
α>1
{αγ exp(−δα)} |Sl,s,k|

µ0
R|l|1 exp(|k|1ρ). (3.12)

Now, using that for anyγ > 0 andδ > 0,

sup
α>1
{αγ exp(−δα)} 6

(
γ

δ exp(1)

)γ
(3.13)

we deduce from (3.12),

|G|ρ1,R1 6
(

γ

δ exp(1)

)γ |S|ρ,R
µ0

. (3.14)

Moreover, the same bounds hold forG1 = S1(G) and G2 = S2(G), if one adds the
subscripts 1 or 2 toG andS in (3.14). Hence, using lemma 5.2, we have∣∣∣∣∂G
∂Î

∣∣∣∣
ρ2,R2

6 |G|ρ1,R1

R2 exp(−2δ)(1− exp(−2δ))
6 |G|ρ1,R1

R2δ exp(−2δ)
(3.15)∣∣∣∣∂G∂Z

∣∣∣∣
ρ2,R2

6 |G|ρ1,R1

R exp(−δ)(1− exp(−δ)) 6
2|G|ρ1,R1

Rδ exp(−δ) (3.16)∣∣∣∣∂G
∂θ̂

∣∣∣∣
ρ2,R2

6 |G|ρ1,R1

δ exp(1)

where in (3.15) and (3.16) we have used that, if 0< α 6 1, then
α

2
6 1− exp(−α). (3.17)

Now, to check the bounds∣∣∣∣∂G
∂Î

∣∣∣∣
ρ2,R2

6 δ
∣∣∣∣∂G∂Z

∣∣∣∣
ρ2,R2

6 Rδ exp(−1/2)

2

∣∣∣∣∂G
∂θ̂

∣∣∣∣
ρ2,R2

6 R2δ exp(−1)

we use (3.8) with the following1:

1(γ,µ0) =
(

γ

exp(1)

)γ 4 exp(1)

µ0
.
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If we use the notation9G
t − Id = (2̂G

t ,XGt , ÎGt ,YGt ) (see lemma 5.7), then we obtain,

|ÎGt |ρ2,R2 6 R2δ exp(−1) |2̂G
t |ρ2,R2 6 δ

|ZGt |ρ2,R2 6 Rδ exp(−1/2)/2
(3.18)

for any −1 6 t 6 1, beingZGt = (XGt ,YGt ). From the bounds (3.18), and using the
inequality (3.17), we can also deduce that the transformations9G

1 and 9G
−1 act as we

describe in the statement of this lemma. Moreover, (3.18) and lemma 5.5 allows us to
bound (3.11) as

|H ∗|ρ4,R4 6 |{S,G}|ρ2,R2 + |{{T ,G},G}|ρ3,R3 + |{{N,G},G}|ρ3,R3. (3.19)

Finally, the same arguments can be used to bound the terms ofH(1) in (3.9) by

|N(1) −N |ρ4,R4 6 |{N,G}|ρ2,R2 + |{T ,G}|ρ2,R2 + |H ∗|ρ4,R4 (3.20)

|S(1)1 |ρ4,R4 6 |{N,G1}|ρ2,R2 + |H ∗|ρ4,R4 (3.21)

|S(1)2 |ρ4,R4 6 |{N,G}|ρ2,R2 + |S̃2({T ,G1})|ρ2,R2 + |H ∗|ρ4,R4 (3.22)

|T (1) − T |ρ4,R4 6 |{N,G}|ρ2,R2 + |{T ,G}|ρ2,R2 + |H ∗|ρ4,R4. (3.23)

�
Before giving more concrete estimates on the bounds of lemma 3.1, we assume thatH

is in normal form up to certain orderp, to be determined later (the reduction ofH to this
finite normal form will be described in the proof of theorem 3.8). Then, taking advantage
of this fact, the bounds of lemma 3.1 produce better estimates on the different steps of the
normal-form process (this is done in lemma 3.5). This allows us to produce a very accurate
bound on the final remainder. We want to stress that these bounds are not so good if the
initial Hamiltonian is not in normal form up to degreep.

Let us introduce now the following notation: we break the Hamiltonian (3.7) as

N = N4+N∗ T = T3+ T ∗ (3.24)

whereN4 contains the monomials ofN of degree 4 andT3 contains the monomials of
degree 3 ofT . Then, we assume that, forR small enough, we have the bounds

|S1|ρ,R 6 ŜRp+1 |S2|ρ,R 6 ŜRp |S|ρ,R 6 ŜRp
|N4|ρ,R 6 N̂4R

4 |N∗|ρ,R 6 N̂∗R6 |T3|ρ,R 6 T̂3R
3 |T ∗|ρ,R 6 T̂ ∗R4

(3.25)

being Ŝ, N̂4, N̂∗, T̂3 and T̂ ∗ positive constants. Here,p ∈ N, p > 6, is the order of the
previous normal form and will be chosen later.

Lemma 3.5. Let us consider the HamiltonianH of (3.7), with the same hypotheses as in
lemma 3.1. We use the notations (3.24), and we assume (3.25). We also assume thatŜ 6 Ŝ∗,
N̂∗ 6 N̂∗∗ and T̂ ∗ 6 T̂ ∗∗, for someŜ∗, N̂∗∗ and T̂ ∗∗. LetG be the generating function
obtained in lemma 3.1, and letδ, 0< δ 6 ρ/8, be such that

1
ŜRp−2

δγ+2
6 1

(1 is given by lemma 3.1).
Then, there exists a constant5, depending only onr, m, γ , µ0, N̂4, N̂∗∗, Ŝ∗, T̂3 and

T̂ ∗∗, such that the following bounds hold for the transformed HamiltonianH ◦9G
1 ,

|N(1) −N |ρ4,R4 6 5Ŝ
(
Rp+1

δγ+2
+ R2p−1

δ2(γ+2)

)
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|S(1)1 |ρ4,R4 6 5ŜRp+1

(
R2

δγ+1
+ R4

δγ+2
+ R

p−3

δγ+2
+ Rp−2

δ2(γ+2)

)
|S(1)2 |ρ4,R4 6 5ŜRp

(
R2

δγ+1
+ R3

δγ+2
+ Rp−1

δ2(γ+2)

)
|T (1) − T |ρ4,R4 6 5Ŝ

(
Rp+1

δγ+2
+ R2p−1

δ2(γ+2)

)
.

Remark 3.6. (A very important one.) Ifp is big enough andδ > R, the dominant term
in the bounds ofS(1)1 andS(1)2 is given by the factorR2/δγ+1. This will be the factor of
decreasing of those terms during the normal form process and it allows us to takeδ of order
R2/(γ+1), that will produce the exponent 2/(γ + 1) in (3.26). As we have 2/(γ + 1) < 1,
we can deduce that an adequate selection forp is p = 8. This allows us to keep bounds
like (3.25) during all the iterative processes.

If we start with a ‘raw’ Hamiltonian (without any previous step of normal form) the
decreasing factor obtained is of orderR/δγ+1, that forces us to selectδ of orderR1/(γ+1).
This produces a worse exponent 1/(γ + 1) in (3.26). For instance, let us assume that
the normal form has been done around an elliptic equilibrium point. Here the important
observation is that the bounds obtained when killing degree 3 are much worse than the
bounds obtained for the other degrees (this has been observed numerically in [21]). Hence,
to apply the same bounds to all the degrees results in poor estimates.

Remark 3.7. The exponent 2/(γ + 1) in remark 3.6 can be improved in some very
degenerate cases. For instance, let us consider a totally elliptic torus, and we takeG = R2m.
Let q be the lowest degree of the monomials ofN corresponding to the (formal) normal
form of H around the torus (of course,q > 4). Then,δ can be taken of orderR(q−2)/(γ+1),
that produces the exponent(q − 2)/(γ + 1) in (3.26).

Proof. During this proof we will use different constants5j , j > 0, that will depend only
on the same parameters as the final constant5 of the statement of the lemma. First, from
the bound (3.14) of lemma 3.1, we have that

|G1|ρ1,R1 6 50
ŜRp+1

δγ
|G2|ρ1,R1 6 50

ŜRp

δγ
|G|ρ1,R1 6 50

ŜRp

δγ

where, as in lemma 3.1,ρj = ρ − jδ andRj = R exp(−jδ). Then, to obtain the bounds
for the different terms of the transformed Hamiltonian, we only need to bound the Poisson
brackets that appear in (3.19)–(3.23).

To obtain precise estimates, we will look carefully into the critical bounds of the different
partial derivatives involved, that is, the ones associated toN4 and T3. So, we estimate,
separately, the contribution ofN4, N∗, T3 and T ∗, taking into account thatN does not
depend onθ̂ , N4 is a polynomial of degree 4, andT3 only contains terms of degree 3.
Moreover, to bound̃S2({T ,G1}) we note that (from the definition ofS1 and S2) it only
contains terms corresponding to∂

∂Ẑ
, and not to ∂

∂θ̂
or ∂

∂Î
. Thus, using the bounds on the

Poisson bracket provided by lemma 5.3 (see remark 5.4 for the case in which one of the
terms has finite degree), we have

|S̃2({T ,G1})|ρ2,R2 6 51ŜR
p

(
R2

δγ+1
+ R3

δγ+2

)
|{T ,G}|ρ2,R2 6 52Ŝ

Rp+1

δγ+2

|{N,G1}|ρ2,R2 6 53ŜR
p+1

(
R2

δγ+1
+ R4

δγ+2

)
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|{N,G}|ρ2,R2 6 54ŜR
p

(
R2

δγ+1
+ R4

δγ+2

)
|{S,G}|ρ2,R2 6 55Ŝ

R2p−2

δγ+2

|{{T ,G},G}|ρ3,R3 6 56Ŝ
R2p−1

δ2(γ+2)

|{{N,G},G}|ρ3,R3 6 57Ŝ

(
R2p

δ2γ+3
+ R2p+2

δ2(γ+2)

)
and finally

|H ∗|ρ4,R4 6 58Ŝ

(
R2p−2

δγ+2
+ R2p−1

δ2(γ+2)

)
.

From that, with a suitable definition of5 as a function of50–58, the bounds of the
statement of the lemma are clear, if we recall that we have takenp > 6. �

Now, we are in conditions that formulate a quantitative result about ‘partial reduction to
seminormal form’ of the initial Hamiltonian. For this purpose, we consider the Hamiltonian
H of (2.3), written as in (3.7) in terms of theZ variables. We assume thatH is defined
on Dr,m(ρ0, R0), for some 0< ρ0 < 1 and 0< R0 < 1, with the following bounds:
|N |ρ0,R 6 N̂R4, |S|ρ0,R 6 ŜR3 and |T |ρ0,R 6 T̂ R3, for any 0< R 6 R0, beingN̂ , Ŝ and
T̂ , positive constants (independent fromR). Then, we prove the following result.

Theorem 3.8.We consider the HamiltonianH of (3.7), with the hypotheses previously
described. We suppose that there existsµ0 > 0 andγ > r +m1− 1 such that

|ik>ω̂(0) + l>λ| > µ0

(|k|1+ |lx − ly |1)γ ∀(l, s) ∈ S ∀k ∈ Z
r with |lx − ly |1+ |k|1 6= 0.

Then, for anyR > 0 small enough (this condition onR depends only onr, m, γ , µ0, ρ0, R0,
N̂ , Ŝ and T̂ ), there exists an analytical canonical transformation9R such that

(i) 9R − Id and (9R)−1− Id are 2π -periodic onθ̂ .
(ii) 9R : Dr,m(3ρ0/4, R exp(−ρ0/4)) −→ Dr,m(ρ0, R)

and (9R)−1 : Dr,m(11ρ0/16, R exp(−5ρ0/16)) −→ Dr,m(ρ0, R).
(iii) If we take (θ̂ , X, Î , Y ) ∈ Dr,m(3ρ0/4, R exp(−ρ0/4)) and we define

(θ̂∗, X∗, Î ∗, Y ∗) = 9R(θ̂, X, Î , Y ), then|θ̂∗ − θ̂ | 6 ρ0/16, |Z∗ − Z| 6 Rρ0 exp(−1/2)/32,
|Î ∗ − Î | 6 R2ρ0 exp(−1)/16. Moreover, the same bounds hold for(9R)−1 if (θ̂ , X, Î , Y ) ∈
Dr,m(11ρ0/16, R exp(−5ρ0/16)).

(iv) DefiningHR = H ◦9R, and using the same decomposition as in (3.7),

HR = ω̂(0)>Î + 1
2Z
>B∗Z +NR + SR + T R

we have:|NR−N4|3ρ0/4,R exp(−ρ0/4) 6 constantR6, |T R−T3|3ρ0/4,R exp(−ρ0/4) 6 constantR4,
whereN4 andT3 were introduced in (3.24), and can be computed with a normal form with
respect toS up to degree4, and

|SR|3ρ0/4,R exp(−ρ0/4) 6 constant exp

(
−constant

(
1

R

) 2
γ+1

)
R8 (3.26)

where the constants that appear in the bounds ofNR, T R andSR are positive and independent
fromR. Moreover, for anyR for which the result holds,HR is in normal form with respect
to S, at least up to degree8.

Remark 3.9. The dependence of9R on R is not continuous but piecewise analytic.
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Remark 3.10. From the bounds provided by lemma 3.5 for the iterative normal form
procedure described in lemma 3.1, this exponentially small bound seems to be the best
that one can obtain by using this linearly convergent scheme.

Proof. The proof is done simultaneously for any 0< R 6 R0. The bounds whereR is
not written explicitly are independent fromR. All these bounds and the different conditions
on the smallness ofR will depend only on the fixed parameters of the statement. The main
idea of this proof is to use lemma 3.1 recursively, and to iterate the bounds provided by
lemma 3.5 forp = 8 (see remark 3.6). Hence, to use this lemma, we need to put the initial
Hamiltonian in normal form with respect toS, up to degree at least 8. For this purpose, we
construct recursively the generating functionsG(0), G(1), . . . , G(5), provided by lemma 3.1.
PuttingH(0) = H , we define

H(n+1) ≡ H(n) ◦9G(n)

1 = H(n) + {H(n),G(n)} + 1

2!
{{H(n),G(n)},G(n)} + · · · (3.27)

for n = 0, . . . ,5. Let us consider first the expression (3.27) as a formal transformation.
From the property (3.5) for the Poisson bracket, and from the way in which the different
G(j) are selected in lemma 3.1 (see remark 3.3), we can ensure that the non-resonant terms
associated withS that remain inH(6) are of degree at least 9. To show that this construction
is not only formal, we are going to prove the well defined character of the transformations
9G(n)

1 , n = 0, . . . ,5, and to boundH(n), n = 1, . . . ,6. For this purpose, we expandH(n) as
in (3.7), but adding the superscript(n) to N , S andT . We defineδ0 = ρ0/192, to introduce
ρ(0) = ρ0, R(0) = R, andρ(n) = ρ(n−1) − 4δ0, R(n) = R(n−1) exp(−4δ0), n = 1, . . . ,6.
Then, we are going to show that takingδ ≡ δ0 in lemma 3.1, we have forn = 0, . . . ,6,
that, if R is small enough,

|N(n)|ρ(n),R(n) 6 N̂ (n)(R(n))4 |S(n)|ρ(n),R(n) 6 Ŝ(n)(R(n))n+3

|T (n)|ρ(n),R(n) 6 T̂ (n)(R(n))3.
(3.28)

This is proved by (finite) induction: assuming that (3.28) holds for somen (0 6 n 6 5)
and using that, ifR is sufficiently small,

1
Ŝ(n)(R(n))n+1

δ
γ+2
0

6 1 (3.29)

(1 is provided by lemma 3.1), we have

9G(n)

1 , 9G(n)

−1 : Dr,m(ρ(n+1), R(n+1)) −→ Dr,m(ρ(n) − 3δ0, R
(n) exp(−3δ0)). (3.30)

Then, the fact that the successive steps increase at least by one the degree of the normal form
with respect toS, makes evident the estimates of (3.28) forn+1. For more details one can
rewrite, with minor changes, the proof of lemma 3.5, using (3.28) instead of (3.25). Here, the
differentR-independent constantŝN(n), T̂ (n) and Ŝ(n), defined recursively forn = 0, . . . ,6,
depend only on the same parameters involved in the formulation of theorem 3.8. We remark
that condition (3.29) forn = 0, . . . ,5, imposes only a finite number of restrictions onR.
Let R∗0 the biggest value ofR for which they hold.

The next step is to continue with the iterative normal-form process, but using lemma 3.5
(with p = 8) to boundH(n), 66 n 6 L+ 1 (L will be defined below). This will be done
in an inductive way, showing that bounds like (3.25) hold for eachH(n), n > 6. Hence,
we add in (3.25) the superscript(n) to S, S1, S2, N∗ andT ∗, and we replacêS, N̂∗ and
T̂ ∗ by Ŝ(n), N̂ (n)∗ and T̂ (n)∗. All these bounds have been taken onDr,m(ρ(n), R(n)), for
someρ(n), R(n) that will be defined below. Initially, forn = 6, we can take for instance
N̂
(6)
4 = N̂ (6) and N̂ (6)∗ = N̂ (6)/(R∗0)

2. The definition of the other super-(6) constants
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can be done similarly. Before continuing the iterative procedure, we remark that, as the
following steps only affect high-order terms,N4 and T3 remain invariant during all the
normal-form procedure. Then, remark 3.6 suggests the definitionδ ≡ δ(R) = (AR)2/(γ+1),
whereA > 1 will be determined later (independently fromR). From this value ofδ we
define, recursively,ρ(n+1) = ρ(n)−4δ, R(n+1) = R(n) exp(−4δ), for n > 6. To preserve the
positiveness ofρ(n), we restrictn 6 L(R), whereL(R) is the greatest integer for which we
have 4(L− 5)δ 6 ρ0/8. This implies the following restriction onL:

L 6 5+ ρ0

32

(
1

AR

) 2
γ+1

. (3.31)

Hence, we takeL as the integer part of (3.31). This impliesR exp(−ρ0/4) 6 R(n) 6 R

if 6 6 n 6 L+ 1. To apply lemma 3.5, we assume that for the current HamiltonianH(n),
6 6 n 6 L, we haveŜ(n) 6 Ŝ(6), N̂ (n)∗ 6 N̂∗∗ and T̂ (n)∗ 6 T̂ ∗∗, for someN̂∗∗ and T̂ ∗∗ to
be exacted later (those bounds are necessary to define5 in lemma 3.5, independent from
n). If for the current value ofn we have

1
Ŝ(n)(R(n))6

δγ+2
6 1 (3.32)

then, the canonical transformation9G(n)

1 given by lemma 3.1 acts as stated in (3.30),
replacingδ0 by δ. Therefore, using lemma 3.5, and recalling that 2/(γ + 1) < 1, A > 1
andR(n) < R < 1, one obtains the following bounds for the transformed Hamiltonian:

|N(n+1) −N(n)|ρ(n+1),R(n+1) 6 5Ŝ(n)
(
(R(n))9

δA2R2
+ (R

(n))15

δ2A4R4

)
6 25Ŝ(n)

A2
(R(n))6

|S(n+1)
1 |ρ(n+1),R(n+1) 6 5Ŝ(n)(R(n))9

(
(R(n))2

A2R2
+ (R

(n))4

δA2R2
+ (R

(n))5

δA2R2
+ (R(n))6

δ2A4R4

)
6 45Ŝ(n)

A2
(R(n))9

|S(n+1)
2 |ρ(n+1),R(n+1) 6 5Ŝ(n)(R(n))8

(
(R(n))2

A2R2
+ (R

(n))3

δA2R2
+ (R(n))7

δ2A4R4

)
6 35Ŝ(n)

A2
(R(n))8

|T (n+1) − T (n)|ρ(n+1),R(n+1) 6 5Ŝ(n)
(
(R(n))9

δA2R2
+ (R

(n))15

δ2A4R4

)
6 25Ŝ(n)

A2
(R(n))4.

We takeA = max
{

1,
√

85 exp(1)
}

, and then, recalling thatR(n+1) = R(n) exp(−4δ), we

can define inductively (n > 6),

Ŝ(n+1) = (exp(4δ))9

exp(1)
Ŝ(n)

N̂ (n+1)∗ = (exp(4δ))9
(
N̂ (n)∗ + 1

exp(1)
Ŝ(n)

)
T̂ (n+1)∗ = (exp(4δ))9

(
T̂ (n)∗ + 1

exp(1)
Ŝ(n)

)
.
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AssumingR small enough such thatδ 6 1
72, we obtain

Ŝ(n) = Ŝ(6) exp((6− n)(1− 36δ)) 6 Ŝ(6) exp((6− n)/2)

N̂ (n)∗ 6 exp(36δ(n− 6))

(
N̂ (6)∗ + Ŝ(6) 1

(exp(1)− 1)

)
T̂ (n)∗ 6 exp(36δ(n− 6))

(
T̂ (6)∗ + Ŝ(6) 1

(exp(1)− 1)

)
.

(3.33)

As we are only interested in those bounds forn 6 L+1, from the restriction onL in (3.31)
we can easily introducen-independent boundŝN∗∗ and T̂ ∗∗ for N̂ (n)∗ and T̂ (n)∗. Now,
assuming that all the steps are well defined, if one putsn ≡ L(R)+ 1 in (3.33), we obtain
an exponentially small bound for̂S(L+1). To justify that we can reach this value, we note
that (3.32) holds for all the previousn, if we restrictR with 1Ŝ(6)R3 6 1.

Then, to prove theorem 3.8, we only have to introduce9R = 9G(0)

1 ◦ · · · ◦ 9G(L)

1 ,
and hence,(9R)−1 = 9G(L)

−1 ◦ · · · ◦ 9G(0)

−1 . If those transformations act as it has been
said in the statement of theorem 3.8, the proof is finished. First, and from the domains
of the definition of the different canonical transformations9G(n)

1 (see (3.30), replacingδ0

by δ if n > 6), we deduce that9R is defined on the domain given in the statement of
theorem 3.8. Moreover, from the bounds for the different components of9G(n)

1 −Id given by
lemma 3.1, and remarking that 6δ0+(L−5)δ 6 ρ0/16, the final bounds for9R−Id follow
immediately. We consider now(9R)−1. In this case, and using the same arguments on
9G(n)

−1 , one can check that if we defineρn = 11ρ0/16+nδ0, Rn = R exp(−5ρ0/16+ nδ0) for
n = 0, . . . ,6, andρn = 11ρ0/16+6δ0+ (n−6)δ, Rn = R exp(−5ρ0/16+ 6δ0+ (n− 6)δ)
for n = 6, . . . , L+ 1, then we have

9G(n)

−1 : Dr,m(ρn, Rn) −→ Dr,m(ρn+1, Rn+1)

for 06 n 6 L. The proof of this fact can be done by combining the bounds on9G(n)

−1 − Id
with the inequality (3.17). Moreover, this allows us to estimate(9R)−1− Id as it has been
done with the case of9R. �

3.3. Effective stability

An immediate consequence of theorem 3.8 is that we can bound the diffusion speed around
a linearly stable torus of a Hamiltonian system. In this case, we takeG = R2m, and hence,
S = N . Then, we apply theorem 3.8, without taking into account the termT of the
decomposition (3.7). In fact, in this case one can rewrite the proofs of lemmas 3.1 and
3.5, and theorem 3.8, in a simpler form (although the actual formulation also holds in this
particular case), to obtain exponentially small bounds for the remainderSR.

Theorem 3.11.We consider the real analytic Hamiltonian (2.3) defined onDr,m(ρ0, R0) for
some0 < ρ0 < 1 andR0 > 0. We also assume that all the eigenvalues ofJmB are of the
elliptic type, and that there existsµ0 > 0 andγ > `− 1 such that

|ik>ω̂(0) + l>λ| > µ0

(|k|1+ |lx − ly |1)γ ∀l ∈ N
2m ∀k ∈ Zr with |lx − ly |1+ |k|1 6= 0.

Let R ∈ (0, R0), and let us take real initial conditions att = 0 contained inDr,m(0, R).
Then, we can defineα > 2 such that, ifR is small enough, the corresponding trajectories
belong toDr,m(0, αR) for any time06 t 6 T (R), with

T (R) = constant exp

(
constant

(
1

R

) 2
γ+1

)
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being the constants in the definition ofT (R) independent fromR.

Remark 3.12. In the proof, and only for technical reasons,α depends onρ0. Nevertheless,
we can takeα as close as we want to 2 (by taking an initialρ0 small enough, see the proof
for details), but this implies a reduction on the set of allowedR, and on the constants of
the stability time.

The reason that forces us to takeα > 2 is the norm used for the normal variables. If
one takes the Euclidean norm instead of the supremum norm, the conditionα > 2 can be
replaced byα > 1.

Proof. In order to simplify the proof, we assume that the initial real variables(x, y) of
(2.3) correspond to the ones that putB in canonical real form, that is,

z>Bz =
m∑
j=1

αj (x
2
j + y2

j )

with λj = iαj , j = 1, . . . , m. Moreover, we assume thatR0 < 1. We introduce(X, Y ) to
denote the complexified variables

xj = Xj + iYj√
2

yj = iXj + Yj√
2

, j = 1, . . . , m (3.34)

that put the matrixJmB in the diagonal formJmB∗. Then, we can write the Hamiltonian
in these variables as

H = ω̂(0)>Î + 1
2Z
>B∗Z +N(X, Î , Y )+ S(θ̂, X, Î , Y )

whereN can be rewritten as a function ofI , I> = (Î>, Ĩ>), with Ĩj = iXjYj = (x2
j +y2

j )/2,

andS verifiesN (S) = 0. This corresponds to the decomposition (3.7) if one putsS = N .
H is defined onDr,m(ρ0, R0/

√
2), with bounds of the following form:|N |ρ0,R 6 N̂R4 and

|S|ρ0,R 6 ŜR3, for any 0< R 6 R0/
√

2. Now, we apply theorem 3.8 and we obtain,
for any R small enough, a canonical change9R such that in the new coordinate system
(θ̂ , X, Î , Y ) = 9R(θ̂R,XR, ÎR, YR), we have

HR ≡ H ◦9R = ω̂(0)>Î R + 1
2(Z

R)>B∗ZR +NR(XR, ÎR, YR)+ SR(θ̂R,XR, ÎR, YR)
beingNR a function of (IR)> = ((Î R)>, (Ĩ R)>), with Ĩ Rj = iXRj Y

R
j . HR is defined on

Dr,m(3ρ0/4, R exp(−ρ0/4)), with

|SR|3ρ0/4,R exp(−ρ0/4) 6 constant exp

(
−constant

(
1

R

) 2
γ+1

)
R8 ≡ M(R).

The canonical equations for(XR, ÎR, YR) are

ẊRj =
∂HR

∂YRj
Ẏ Rj = −

∂HR

∂XRj
j = 1, . . . , m

İRj =
∂HR

∂θ̂Rj

= ∂SR

∂θ̂Rj

j = 1, . . . , r.

(3.35)

From this, one obtains (using thatNR is in fact only a function ofI , and recalling̀ = r+m),

İ Rj = i
∂HR

∂YRj
YRj − i

∂HR

∂XRj
XRj = i

∂SR

∂YRj
YRj − i

∂SR

∂XRj
XRj j = r + 1, . . . , `.
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We putIRj (θ̂R,XR, ÎR, YR) for the expressions on the right-hand side ofİ Rj , j = 1, . . . , `.
We use lemma 5.2 to bound these expressions. Then, forj = 1, . . . , r one has

|IRj |0,R exp(−ρ0/2) 6
4M(R)

3ρ0 exp(1)
. (3.36)

If we combine lemma 5.2 with the inequality (3.17), one obtains forj = r + 1, . . . , ` that,

|IRj |0,R exp(−ρ0/2) 6
2M(R) exp(−ρ0/2)

exp(−ρ0/4)(1− exp(−ρ0/4))
6 16M(R) exp(−ρ0/4)

ρ0
. (3.37)

To continue the proof, we put(xR, yR) for the variables that come from the ‘realification’
of (XR, YR), that is,XRj = (xRj − iyRj )/

√
2, YRj = (yRj − ixRj )/

√
2. In fact, as9R preserves

the symmetries ofH (due to the complexification of a real Hamiltonian, see section 2.1.2),
we have that the Hamiltonian in the variables(xR, yR) is real analytic. To work with those
different representations of the variables, we give the following remarks: (i) the set of real
variables(xj , yj ) such that|xj |, |yj | 6 A is contained in the set of complex(Xj , Yj ) such
that |Xj |, |Yj | 6 A, (ii) the set of complex(Xj , Yj ) such that|Xj |, |Yj | 6 A, is contained
in the complex set for(xj , yj ) such that|xj |, |yj | 6

√
2A (this property has been used to

say thatH is defined inDr,m(ρ0, R0/
√

2)), (iii) the set of real(xj , yj ) such thatIj 6 A2,
is contained in the set of real(xj , yj ) such that|xj |, |yj | 6

√
2A. Those remarks are used

when working with these different kinds of variables, and one wants to control the size of
the corresponding domains, when we change the variable representation.

Now, we take real values for(θ̂R, xR, Î R, yR) as initial conditions att = 0. To prove
the lower bound for the stability time, we consider a fixed 0< β < 1, and we restrict to
initial conditions such that, when expressed in terms of(θ̂R,XR, ÎR, YR), they belong to
Dr,m(0, Rβ exp(−ρ0/2)/

√
2). Then, we have that the corresponding initial actionsIR are

bounded by|IRj (0)| 6 R2β2 exp(−ρ0)/2, j = 1, . . . , `. Using this, we deduce from the
bounds (3.36) and (3.37) that, for the trajectories of the Hamiltonian equations (3.35), we
have|IRj (t)| 6 R2 exp(−ρ0)/2 for 06 t 6 T (R), where we can take

T (R) = R2ρ0 exp(−3ρ0/4)(1− β2)

32M(R)
.

This bound comes from (3.37), which is the worst case. This is the expression for the
stability time of the statement of theorem 3.11. To use the bounds (3.36) and (3.37)
for IRj , we need that these trajectories expressed in terms of(θ̂R,XR, ÎR, YR) belong to
Dr,m(0, R exp(−ρ0/2)) up to time T (R). As we have|IRj (t)| 6 R2 exp(−ρ0)/2, this
follows from remarks (iii) and (i). From that we deduce, using the bounds for(9R)−1− Id
provided by theorem 3.8 and remark (ii), that the corresponding real trajectories in terms
of (θ̂ , x, Î , y) are contained inDr,m(0, R1), beingR1 defined by

R1 = max

{√
2

(
R exp

(
−ρ0

2

)
+ Rρ0 exp(−1/2)

32

)
,

√
R2 exp(−ρ0)+ R

2ρ0 exp(−1)

16

}
.

Then, if we give for (θ̂ , x, Î , y) a real set of points such that, expressed in terms of
(θ̂ , X, Î , Y ), they belong to the domain(9R)−1(Dr,m(0, Rβ exp(−ρ0/2)/

√
2)), then, the

trajectories ofH with initial conditions in this set remain inDr,m(0, R1) for a time span
T (R). With similar arguments as the ones used to defineR1 (using now remark (ii)), one
can check that this domain can be taken asDr,m(0, R2), beingR2 defined by

R2 = min

{
Rβ exp(−ρ0/2)√

2
− Rρ0 exp(−1/2)

32
,

√
R2β2 exp(−ρ0)

2
− R

2ρ0 exp(−1)

16

}
.
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If one considers the flow9H
t defined fromDr,m(0, R2) ∩ R2` to Dr,m(0, R1) ∩ R2`, for

0 6 t 6 T (R), then, puttingR ≡ R2 in the statement, and taking anR-independent value
of β close enough to 1 such thatR2 > 0, we can defineα = R1/R2. �

4. Estimates on the families of lower-dimensional tori

Let us consider the real analytic reduced HamiltonianH of (2.3) and a fixed linear subspace
G of elliptic directions of JmB. In theorem 3.8 we have proved that, under standard
Diophantine conditions, one can putH in normal form with respect to the setS (see
(3.6) for the definition), with an exponentially small remainder. If we write this seminormal
form in terms of the complexified variablesZ, and without changing the name of the
Hamiltonian, we have

H = ω(0)>I + 1
2Ẑ
>B̂∗Ẑ + F(I )+ 1

2Ẑ
>Q(I )Ẑ + T (θ̂ , X, Î , Y )+R(θ̂ , X, Î , Y ). (4.1)

To explain the notation used, let us recall that the different resonant terms depend only on
Î and on the productsXjYj , j = 1, . . . , m, but, from the structure ofS, not all the possible
combinations of those monomials take place inM(S). Then, we introduceI> = (Î>, Ĩ>),
with Ĩj = iXjYj , j = 1, . . . , m1, and with this definition (4.1) can be described as follows:
the symmetric matrixB̂∗ is defined fromB∗ skipping the 2m1 eigenvalues associated toG,
Jm−m1B̂∗ = diag(λ̂). F andQ correspond to the normal form with respect toS, with the
expansion ofF starting at second order with respect toI , and withQ(0) = 0. It is not
difficult to check that by choosing the variablesZ̃ in a suitable form (as has been done in
the proof of theorem 3.11),F is real analytic. Moreover,Q is a symmetric matrix such
that Jm−m1Q is diagonal,T ∈M(N \ S) (so T ≡ O3(Ẑ)) andR ∈ M̃(S).

We assume that this normal form has been done for a given (and small enough)R, as
in the formulation of theorem 3.8. We only consider theR-dependence when we give the
bounds of the different terms of (4.1). To obtain these bounds, let us defineρ1 = 3ρ0/4,
where we recall thatρ0 is the width of the strip of analiticity, with respect tôθ , for the
initial Hamiltonian. Then, theorem 3.8 implies that, for anyR small enough, we have

|F |0,R 6 F̂R4 |F3|0,R 6 F̂3R
6

|Q|0,R 6 Q̂R2 |Q2|0,R 6 Q̂2R
4

|T |ρ1,R 6 T̂ R3 |R|ρ1,R 6 constant exp

(
−constant

(
1

R

) 2
γ+1

)
R8

(4.2)

To derive these bounds onDr,m(0, R), we have considered the functions that depend on
Ĩ as functions ofZ̃. Here, we have splitF = F2 + F3 andQ = Q1 + Q2. F2 and the
components ofQ1 are polynomials onI of degrees 2 and 1 respectively.F3 andQ2 contain
the remaining terms. We note that the definition ofF2 andQ1 does not depend on the order
of the seminormal form.

This seminormal form has been formally explained in section 2.1.3, and we will use the
notation related to (2.7) to represent the normal-form tori.

The main purpose of this section is to study the persistence of those tori when we add
the remainderR. We note that, as|R| is exponentially small withR, we can expect that
the tori of (2.7) will survive, except the ones corresponding to a set of parameters (I (0))
of exponentially small measure with respect toR. We will show that this assertion holds,
assuming certain standard nondegeneracy conditions on this family of tori, that have been
explained in section 2.2.3 (conditions that, as we will see, can be checked by computing a



804 À Jorba and J Villanueva

normal form up to degree 4, that is, fromF2 andQ1). As it is a more natural parameter,
the results will be formulated in terms of frequencies instead of actions.

4.1. Nondegeneracy conditions

Before the rigorous formulation of the results, let us give in explicit form the nondegeneracy
conditions that we will use in the proof. They are of two kinds: on the intrinsic frequencies
of the motion along the torus and on the normal frequencies.

4.1.1. Nondegeneracy of the intrinsic frequencies.The first one is a standard
nondegeneracy condition on the dependence of the frequencies with respect to the actions:
we require

detC 6= 0 C = ∂2F2

∂I 2
(0). (4.3)

This allows us to parametrize the tori of the family by their vector of intrinsic frequencies
(instead ofI (0)). Of course, we have to be close enough to the initialr-dimensional torus.
This assertion is justified by the following lemma.

Lemma 4.1. Let us assume thatdetC 6= 0. Then, ifR is small enough, there exists a real
analytic vector valued functionI(ω), defined on the set{

ω ∈ Cr+m1 : |ω − ω(0)| 6 1
8(|C−1|)−1R2

}
(4.4)

such that

∂F
∂I
(I(ω)) = ω − ω(0)

with I(ω(0)) = 0. Moreover, we have|I(ω)| 6 R2/4 for anyω in the set (4.4), and ifω(1),
ω(2) belong in (4.4), then

|I(ω(1))− I(ω(2))| 6 2|C−1||ω(1) − ω(2)|.
Proof. We haveF(I ) = 1

2I
>CI + F3. Then, we take a fixedω in the set (4.4), and we

want to solve the equation:

I(ω) = C−1

(
ω − ω(0) − ∂F3

∂I
(I(ω))

)
. (4.5)

Putting the superscripts(k + 1) and (k) to I(ω) in (4.5), we can consider this expression
as an iterative procedure, usingI(0)(ω) = 0 as the seed. If we assume|I(k)(ω)| 6 R2/4,
then, using Cauchy inequalities, we have forR small enough,

|I(k+1)(ω)| 6 |C−1|
(

1

8
(|C−1|)−1R2+ F̂3R

6

3
4R

2

)
6 1

4
R2

where we have used the bounds of (4.2) forF3, remarking that|F3|0,R is a bound for the
supremum norm ofF3(I ) if |I | 6 R2. Moreover, to ensure convergence, we remark that
using the mean value theorem one has,

|I(k+1)(ω)− I(k)(ω)| 6 (r +m1)
F̂3R

6(
3
8

)2
R4
|I(k)(ω)− I(k−1)(ω)| 6 1

2
|I(k)(ω)− I(k−1)(ω)|
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if R is small enough. Clearly, the limit function is analytic with respect toω, and from the
real analytic character ofF , I is in fact real analytic. Takingω(1), ω(2) in the set (4.4), one
has

I(ω(1))− I(ω(2)) = C−1(ω(1) − ω(2))+ C−1

(
∂F3

∂I
(I(ω(2)))− ∂F3

∂I
(I(ω(1)))

)
and with the same arguments previously used, we obtain forR small enough

|I(ω(1))− I(ω(2))| 6 2|C−1||ω(1) − ω(2)|.
�

4.1.2. Nondegeneracy of the normal frequencies.The other nondegeneracy condition
considered refers to the normal eigenvalues. Ignoring the remainderR, for every invariant
tori parametrized byI (0) in (2.7), the corresponding normal eigenvalues are the ones of
the diagonal matrixJm−m1(B̂∗ + Q(I (0))). Using the parametrizationI ≡ I(ω) provided
by lemma 4.1, we can consider those eigenvalues as functions ofω instead of functions of
I (0),

Jm−m1(B̂∗ +Q(I(ω))) ≡ diag(λ̂(0)(ω)). (4.6)

Then, we ask for the condition

Im

(
∂

∂ω
(l>λ̂(0))(ω(0))

)
/∈ Zr+m1 l ∈ Z2(m−m1) 0< |l|1 6 2 lX̂ 6= lŶ (4.7)

where we have used the notationl> = (l>
X̂
, l>
Ŷ
). To check this condition, we only need to

know the first-order approximation toQ, since from (4.6) one has

λ̂
(0)
j (ω) = λ̂j +

(
∂

∂I
Q1,j,j+m−m1(0)

)
C−1(ω − ω(0))+O2(ω − ω(0)) (4.8)

j = 1, . . . , m − m1, and thatλ̂(0)j+m−m1
= −λ̂(0)j . Note that (4.7) implies that the derivative

with respect toω of the divisors that will appear during the process (see (4.22)) is different
from zero. With those assumptions and notations, we can formulate the following results.

4.2. Theorems

Theorem 4.2.We consider the real analytic HamiltonianH of (2.3), defined onDr,m(ρ0, R0)

(for some0< ρ0 < 1 andR0 > 0), and such that the firstm1 components (06 m1 6 m) of
the vectorλ of eigenvalues ofJmB are of an elliptic type. LetS ⊂ N be the set introduced
in (3.6). We also assume that there existsµ0 > 0 andγ > r +m1− 1 such that

|ik>ω̂(0) + l>λ| > µ0

(|k|1+ |lx − ly |1)γ ∀(l, s) ∈ S ∀k ∈ Z
r with |lx − ly |1+ |k|1 6= 0

(this allows us to putH in seminormal form with respect toS up to finite degree). Let us
suppose that this seminormal form up to degree4 is nondegenerate, in the sense that the
two nondegeneracy conditions given in (4.3) and (4.7) hold. Then, there exists a Cantor
subsetA ⊂ Rr+m1 such that, for anyω ∈ A, the Hamiltonian systemH has an invariant
(r+m1)-dimensional (complex) torus withω as a vector of basic frequencies, with reducible
normal flow. Moreover, ifA(A) = U(A) ∩A (whereU(A) is the set defined in (2.9)), then,

mes(U(A) \A(A)) 6 constant exp

(
−constant

(
1

A

) 1
γ+1

)
where the constants in this bound are independent fromA.
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The key to prove theorem 4.2 is the parametrizationI(ω) of the invariant tori of the
normal form given by lemma 4.1. To construct this function, we takeR of order

√
A in

theorem 3.8, and we obtain a Hamiltonian in normal form with respect toS (as the one
of (4.1)), with exponentially small bounds forR as a function ofA, of the same order of
the measure of destroyed tori in theorem 4.2. Using lemma 4.1 on the functionF of (4.1),
we can construct for any frequencyA close toω(0) the corresponding action,I ≡ I(ω),
that gives in (2.7) the invariant torus of the seminormal form having this concrete vector
of intrinsic frequencies. Nevertheless, as the actionI can have some of thẽIj < 0, the
corresponding torus in (2.7) can be complex. This is not an obstruction to construct an
invariant (and complex) torus for the complete Hamiltonian (4.1), but the final torus and its
reduced variational normal flow can be inC. If we want to have real tori in (2.7), we need
to takeω ∈W(A),

W(A) =
{
ω ∈ U(A) : ω = ω(0) + ∂F

∂I
(I ), with Ĩj > 0, j = 1, . . . , m1

}
. (4.9)

Note that the degenerate (transition) tori have frequencies whose corresponding actions
satisfy Ĩj = 0, for somej . Then, we are forced to remove actions in a tiny slice around
the hyperplanes̃Ij = 0, that implies to take out inW(A) the corresponding frequencies.
Unfortunately,F changes withA as A → 0 by increasing the order up to which this
seminormal form is done. This is necessary because the successive approximations toF
given by theorem 3.8 do not converge in general, and hence, as we want to eliminate only
an exponentially small set of frequencies, we need to know this map with an exponentially
small precision.

In this context, we have the following result about the existence of real invariant tori.

Theorem 4.3.With the same hypotheses as in theorem 4.2, there exists a Cantor subset
A ⊂ Rr+m1 such that, for anyω ∈ A, the Hamiltonian systemH has an invariant(r +m1)-
dimensional real torus with a vector of basic frequencies given byω. Moreover, the normal
flow of this torus can be reduced to constant coefficients by means of a real change of
variables.
A can be characterized in the following form: for anyR > 0 small enough, there exists

a convergent (partial) seminormal form with respect toS (it takes the form (4.1)) defined on
Dr,m(ρ1, R) (beingρ1 independent fromR), and such that if we putA(R2) = W(R2) ∩ A
(see (4.9) for the definition ofW(A)), then, we have

mes(W(R2) \A(R2)) 6 constant exp

(
−constant

(
1

R

) 2
γ+1

)
being the constants in this bound independent fromR.

Remark 4.4. Let us explain how the transition set (in the frequency space) from real to
complex tori can be constructed independently from the seminormal form. For any tori
of dimensions, r 6 s < r + m1, obtained applying theorem 4.3 to an invariant subspace
G1 ⊂ G, with dimG1 < 2m1, we consider the(r + m1)-dimensional vector of frequencies
obtained joining the intrinsic frequencies of the tori, with the the normal frequencies that
generalize the ones associated withG not added as new intrinsic frequencies. We note
that those normal frequencies are well defined from the reducible character of the normal
variational flow of the constructed tori. Then, as a union of those vectors, we obtain a
Cantor set that acts as a transition set, with an exponentially small error (asR → 0), to
separate the real and complex tori.
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Remark 4.5. In the case of maximal dimensional tori, this result can also be compared with
[16] and [7]. We remark that as we work withm1 6 m, the estimates on the measure of
invariant tori in theorem 4.3 are given in the frequency space and not in the phase space,
where the total measure filled by those tori is zero whenm1 < m. In the case of maximal
dimensional tori, it is not difficult to check (for example, if one uses a formulation of the
proof in terms of the actionsI instead of the frequenciesω, see section 4.3 for more details)
that the measure of the complementary of the set that the real tori fill inDr,m(0, R)∩R2` is
of order constant exp(−constant(1/R)2/(γ+1)). This result coincides with [16], if we look
for maximal-dimensional invariant tori around a given maximal-dimensional one (we note
that we need to do the same rescaling as in section 2.2.1 in order to compare the results),
but it improves the estimates on the measure of invariant tori around an elliptic fixed point
of [7].

In what follows, we will only prove theorem 4.3. The proof of theorem 4.2 is very
similar, and it is done by splitting the setU(A) as the union of the sets of frequencies
defined like (4.9), but taking into account all the possible combinations of conditionsĨj > 0
and Ĩj 6 0, j = 1, . . . , m1.

4.3. Proof of theorem 4.3

Before starting with the details, let us mention a technical problem that will appear during
the proof. At each step of the iterative KAM process, we will have to deal with the classical
small divisors problem. This will lead us to eliminate a dense set of resonant frequencies,
to avoid convergence problems. Hence, after the first step of the process the frequency
set has an empty interior. To bound the measure of the eliminated set of frequencies, we
need some kind of regularity. So, we have used Lipschitz conditions because they are well
defined on sets even if they have an empty interior. The control of this kind of dependence
on Cantor sets is analogous to the control of differentiable dependence on open sets. There
are alternative methods to solve this problem, for instance the so-called ‘ultraviolet cut-off’
(see [1] for the first example). This is based on dropping the harmonicsfk such that|k| is
bigger than some quantityO(2n) (n is the step). Hence, at each step, we deal with only a
finite number of resonances. This allows us to work at every step on open sets.

To work with the Lipschitz dependence, we introduce some notations and definitions.
Given f (ϕ) a function defined forϕ ∈ E , E ⊂ Rn for somen, and with values inC, Cn1

or Mn1,n2(C), we define the Lipschitz constant off on E as

LE {f } = sup
ϕ1,ϕ2∈E
ϕ1 6=ϕ2

|f (ϕ2)− f (ϕ1)|
|ϕ2− ϕ1| .

If LE {f } < +∞, we say thatf is Lipschitz onE , with respect to the norm| · |. We also
define‖f ‖E = supϕ∈E |f (ϕ)|. The same definitions can be extended to analytic functions
depending on the parameterϕ. Hence, iff (θ, ϕ) or f (θ, x, I, y, ϕ) are, for everyϕ ∈ E ,
analytic, 2π -periodic onθ , and defined on{θ ∈ Cr : |Imθ | 6 ρ} orDr,m(ρ, R), respectively,
we can introduceLE,ρ{f }, ‖f ‖E,ρ , or LE,ρ,R{f } and‖f ‖E,ρ,R, taking the supremum on the
norms| · |ρ or | · |ρ,R, respectively. Some basic results related to those kind of dependences
are given in section 5.

4.3.1. Preliminaries. First, we take a fixed value ofR, small enough, and we use
theorem 3.8 to put the initial HamiltonianH in (semi)normal form with respect to the
setS, except a remainderR of exponentially small size with respect toR. Hence, we can
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work with the HamiltonianH of (4.1) as if it were the initial one. As the order of this
normal form depends onR, we have to write explicitly thisR-dependence in all the bounds.

We take the analytic functionF of (4.1) and we construct the parametrizationI(ω)
provided by lemma 4.1, which is well defined ifR is small enough. Then, as we want to
work with (r +m1)-dimensional tori, we introduce newm1 angular variables̃θ conjugated
to the actionsĨ previously added to describe this family of invariant tori. That is, for any
frequencyω ∈ Rr+m1 close toω(0), we replace the real (semi)normal form variables(x̃j , ỹj ),
j = 1, . . . , m1, by the new canonical variables(θ̃j , Ĩj ) defined as

x̃j =
√

2(Ĩj + Ĩj (ω)) sin(θ̃j ) ỹj =
√

2(Ĩj + Ĩj (ω)) cos(θ̃j ) (4.10)

or, in terms of the complexified variables(X̃j , Ỹj ) (see (3.34)),

X̃j = −i
√
Ĩj + Ĩj (ω) exp(iθ̃j ) Ỹj =

√
Ĩj + Ĩj (ω) exp(−iθ̃j ). (4.11)

We remark that thosẽI are not exactly the same ones used to parametrize the tori (2.7),
because they differ in a translation byĨ(ω). This is done to put theω-invariant torus, with
respect to the seminormal form, iñI = 0. Hence, we extend this translation to the whole
set of actionsI by performing the transformation

Îj → Îj + Îj (ω) j = 1, . . . , r. (4.12)

Moreover, we denote byθ> = (θ̂>, θ̃>) the vector of all the angular variables. Then, we
have constructed, for eachω, a new canonical system of coordinates (withr +m1 angular
variables) that put the corresponding seminormal form torus inI = 0. If we insert those
new variables in the Hamiltonian (4.1), we obtain aω-depending family of Hamiltonians
H(0)
ω , that we simply denote byH(0) ≡ H(0)(θ, X̂, I, Ŷ , ω),

H(0) = ω(0)>I + 1
2Ẑ
>B̂∗Ẑ + F(I + I(ω))+ 1

2Ẑ
>Q(I + I(ω))Ẑ + T ∗ +R∗

whereT ∗ andR∗ are T andR expressed in terms of̃θ and Ĩ , and composed with the
translation (4.12). We castH(0) into the following form:

H(0) = φ(0)(ω)+ ω>I + 1
2Ẑ
>B̂(0)∗(ω)Ẑ + 1

2I
>C(0)(ω)I +H(0)

∗ + Ĥ (0) (4.13)

whereφ(0) = F(I(ω)), B̂(0)∗ = B̂∗ +Q(I(ω)), C(0) = ∂2F
∂I 2 (I(ω)), Ĥ (0) = R∗ and

H(0)
∗ = F(I + I(ω))− F(I(ω))−

∂F
∂I
(I(ω))I − 1

2I
> ∂

2F
∂I 2

(I(ω))I

+ 1
2Ẑ
>(Q(I + I(ω))−Q(I(ω)))Ẑ + T ∗

where we have used the properties ofI(ω) (see lemma 4.1). We remark that, if one
considersH(0)

ω for a fixedω, and one skips the term̂H(0) in (4.13), then,I = 0 andẐ = 0
correspond to an invariant(r + m1)-dimensional torus with vector of basic frequenciesω,
with reducible normal variational flow given by the (complex) diagonal matrixJm−m1B̂(0)∗.
Moreover, in this case the variablesI and Ẑ are uncoupled up to first order.

Nevertheless, the coordinates of (4.11) become singular forI = 0 when we take
frequenciesω with someĨj ≡ Ĩj (ω) = 0. Thus, we have to eliminate a neighbourhood of
the set of those critical frequencies to ensure that the change is well defined.

Let M(R)R8 be the expression (withM exponentially small inR) bounding|R|ρ1,R in
(4.2). We consider a fixed value ofR, small enough, such thatM(R) < 1, and we take a
fixed number 0< α < 1, to be exacted later. Then, as we are only interested in real tori,
we use definition (4.9) to introduce the following set:

E (0)(R) =W( 1
8(|C−1|)−1R2) \ (I−1(V(16(M(R))2α)))
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being V(A) = {I ∈ Rr+m1 : |Ĩj | 6 A, for any j = 1, . . . , m1}. That is, we
eliminate fromW( 1

8(|C−1|)−1R2) the frequencies corresponding to actionsĨ close to any
of the hyperplanesĨj = 0. As from lemma 4.1 we have|I(ω)| 6 R2/4 for any
ω ∈ W( 1

8(|C−1|)−1R2), the measure of̃V(R) ≡ V(16M2α) ∩ I(W( 1
8(|C−1|)−1R2)) is of

order (M(R))2α. Then, to control the measure that this set fills inW( 1
8(|C−1|)−1R2), we

put W̃(R) = I−1(V(16M2α)) ∩W( 1
8(|C−1|)−1R2), and then we have

mes(W̃(R)) =
∫
W̃(R)

dω =
∫
Ṽ(R)
| detDI−1(I )| dI (4.14)

where, from the definition ofI in lemma 4.1,I−1(I ) = ω(0) + ∂F
∂I
(I ). Then, the bounds

on F in (4.2) suffices to justify that mes(W̃(R)) is also of order(M(R))2α.
Now, we are going to see thatH(0) is defined on a small neighbourhood ofI = 0 and

Ẑ = 0, with positive (and bounded from below) distance to the critical set of frequencies.
To do that, and as we will work with functions of(θ, X̂, I, Ŷ ), we will take the different
norms on domains of the formDr+m1,m−m1(. , .). More concretely, we will see that, for
anyω ∈ E (0)(R), H(0) is well defined onDr+m1,m−m1(ρ

(0), R(0)), beingρ(0) = ρ0/2 (this is
smaller than the width of analyticity for thêθ variables in the seminormal form given by
theorem 3.8) andR(0) = 2Mα. Let us check that.

First, we remark that asF only depends onI , we deduce from (4.2) that|F |0,R 6 F̂R4.
Then, assumingR2/2+ 4M2α 6 R2, and using lemmas 5.5 and 5.6, we obtain

‖F(I(ω)+ I )‖E (0),0,R(0) 6 F̂R4

LE (0),0,R(0){F(I(ω)+ I )} 6 (r +m1)
F̂R4

1
4R

2
2|C−1|

(4.15)

where we have used thatLE (0){I} 6 2|C−1| (see lemma 4.1). Similar bounds can be derived
for F3, Q andQ1.

To boundT ∗ andR∗, we need to show that the transformation (4.11) is well defined.
Using lemma 5.8 (we recall that, from the definition ofE (0), one hasĨj (ω) > 16M2α for
anyω ∈ E (0)), and using thatρ0 6 1, it is not difficult to check that if we consider(X̃j , Ỹj )
in (4.11) as a function of(θ, X̂, I, Ŷ ) andω, we have forj = 1, . . . , m1:

max{‖X̂j‖E (0),ρ(0),R(0) , ‖Ŷj‖E (0),ρ(0),R(0)} 6 1
2R
(

2−
√

3/4
)

exp(1/2) 6 15
16R

and

max{LE (0),ρ(0),R(0){X̂j },LE (0),ρ(0),R(0){Ŷj }} 6
2|C−1| exp(1/2)

8Mα
√

3/4
6 |C

−1|
2Mα

.

AssumingR small enough such that 4M2α + R2/4 6 (15/16)2R2 (this is used to control
the transformation (4.12)) one has, using lemmas 5.5 and 5.6 on the bounds (4.2), that

‖T ∗‖E (0),ρ(0),R(0) 6 T̂ R3 ‖R∗‖E (0),ρ(0),R(0) 6 MR8 (4.16)

and

LE (0),ρ(0),R(0){T ∗} 6 r
T̂ R3(

1− ( 15
16

)2)
R2

2|C−1| + 2m1
T̂ R22Mα

1
16R

|C−1|
2Mα

(4.17)

LE (0),ρ(0),R(0){R∗} 6 r
MR8(

1− ( 15
16

)2)
R2

2|C−1| + 2m1
MR8

1
16R

|C−1|
2Mα

(4.18)
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where, to boundT ∗, we have used that it isO3(Ẑ).
Now, we can bound the different terms ofH(0) in (4.13). First, one has‖φ(0)‖E (0) 6

F̂R4. We do not care about its Lipschitz constant because this term can be eliminated
without changing the canonical equations (so, we only need to worry about its bounded
character). To boundC(0) we remark thatC(0) = C + ∂2F3

∂I 2 (I) with detC 6= 0. Using
the bounds onF3 (that can be obtained in a similar form as the ones onF in (4.15))
one has that detC(0) 6= 0 on E (0), if R is small enough. In quantitative form, it means
that ‖(C̄(0))−1‖E (0) 6 m̄(0), for certainR-independent constant̄m(0). Moreover, we also
have‖C(0)‖E (0),ρ(0) 6 m̂(0), LE (0),ρ(0){C(0)} 6 m̃(0). We have used the norm‖ · ‖E (0),ρ(0) for the
constant matrixC(0) because, in the successive steps of the inductive procedure, the matrices
replacingC(0) will depend onθ . To control the normal eigenvalues, we remark that from
the expression (4.8), we can writeλ̂(0)j , j = 1, . . . ,2(m−m1), in the following form:

λ̂
(0)
j (ω) = λ̂j + iv>j (ω − ω(0))+ λ̆(0)j (ω) (4.19)

wherevj ∈ Cr+m1 and λ̆(0)j ≡ O2(ω − ω(0)). From the non-degeneracy hypothesis of (4.7),
we have that Re(vj ) /∈ Zr+m1 and, if we putvj,l = vj − vl , then Re(vj,l) /∈ Zr+m1, for j 6= l.
Moreover, using the expression (4.8) and the fact that the eigenvalues ofJm−m1B̂∗ are all
different, it is also easy to check the existence ofR-independent constants 0< α

(0)
1 < α

(0)
2 ,

β
(0)
1 > 0, such that 0< α

(0)
1 6 |λ̂(0)j (ω) − λ̂(0)l (ω)|, α(0)1 /2 6 |λ̂(0)j (ω)| 6 α

(0)
2 /2, for

any ω ∈ E (0), j 6= l, andLE (0){λ̂(0)j } 6 β
(0)
1 . We do not give here explicit bounds on

the λ̆(0)j , as those functions do not appear in the iterative process, but we remark that

one has thatLE (0){λ̆(0)j } is of orderR. This will be used in section 4.3.4. Moreover, if
one uses bounds like (4.15) forF andQ, and the ones of (4.16) and (4.17) forT ∗, it
is not difficult to check that for certain positiveR-independent constantŝν(0) and ν̃(0),
one has‖H(0)

∗ ‖E (0),ρ(0),R(0) 6 ν̂(0) andLE (0),ρ(0),R(0){H(0)
∗ } 6 ν̃(0). Finally, using the bounds

of (4.16) and (4.18) forR∗, one can bound the size of the perturbative termĤ (0) by
‖Ĥ (0)‖E (0),ρ(0),R(0) 6 M andLE (0),ρ(0),R(0){Ĥ (0)} 6 M1−α. Some of these bounds are far from
optimal, but they suffice for our purposes.

4.3.2. The iterative scheme.Now, we can describe the iterative procedure used to construct
invariant(r+m1)-dimensional tori. This process is given by a sequence of canonical changes
of variables, constructed as the time-one flow of a suitable generating functionSω. The
changes are constructed to kill the terms that obstruct the existence of an invariant reduced
torus with a vector of basic frequencies given byω. As usual (to overcome the effect of
the small divisors), the changes are chosen to produce a quadratically convergent scheme,
instead of the linear one of lemma 3.1.

First, we describe a generic step of this iterative process. For this purpose, we expand
the HamiltonianH(0) of (4.13) in the following form

H(0) = a(θ)+ b(θ)>Ẑ + c(θ)>I + 1
2Ẑ
>B(θ)Ẑ + I>E(θ)Ẑ + 1

2I
>C(θ)I +�(θ, X̂, I, Ŷ )

(4.20)

where we do not write explicitly theω-dependence and where we have skipped the
superscript(0) in the different parts of the Hamiltonian. From this expansion, we introduce
the following notations: [H(0)](Ẑ,Ẑ) = B, [H(0)](I,Ẑ) = E and 〈H(0)〉 = H(0) − �. From

the bounds on the terms of the decomposition (4.13), we have thatã, b, c − ω, B − B̂(0)∗,
C − C(0) andE are allO(Ĥ (0)). Note that if we are able to remove the termsã, b and
c − ω, we will obtain an invariant torus with intrinsic frequencyω. Nevertheless, as we
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want to have simple equations at every step of the iterative scheme (this is, linear equations
with constant coefficients), we are forced to kill something more. Then, we ask the final
torus to have reducible normal flow given by a diagonal matrix. This is, we want that the
new matrixB verifiesB = Jm−m1(B) where, for a(2s)-dimensional matrixA(θ) depending
2π -periodically onθ , we defineJs(A) = −Jsdp(JsĀ). Here, dp(A) denotes the diagonal
matrix obtained taking the diagonal entries ofA. Moreover, we have to eliminateE to
uncouple the ‘neutral’ and the normal directions of the torus up to first order. Thus, for
each step of the iterative process, we use a canonical change of variables, given by a
generating function of the form

S(θ, X̂, I, Ŷ ) = ξ>θ + d(θ)+ e(θ)>Ẑ + f (θ)>I + 1
2Ẑ
>G(θ)Ẑ + I>F(θ)Ẑ

whereξ ∈ Cr+m1, d̄ = 0, f̄ = 0 andG is a symmetric matrix, withJm−m1(G) = 0. The
transformed Hamiltonian isH(1) = H(0) ◦ 9S

1 . We expandH(1) in the same way asH(0)

in (4.20), keeping the same name for the new variables, but adding the superscript(1) to
a, b, c, B, C, E and�. Then, we ask̃a(1) = 0, b(1) = 0, c(1) − ω = 0, E(1) = 0 and
B(1) = Jm−m1(B

(1)). We will show that this can be achieved up to first order in the size of
Ĥ (0). For this purpose, we write those conditions in terms of the initial Hamiltonian and
the generating function, and then, we obtain the following equations:

(eq1) ã − ∂d
∂θ
ω = 0

(eq2) b − ∂e

∂θ
ω + B̂(0)∗Jm−m1e = 0

(eq3) c − ω − ∂f
∂θ
ω − C(0)

(
ξ +

(
∂d

∂θ

)>)
= 0

(eq4) B
∗ − Jm−m1(B

∗)− ∂G
∂θ
ω + B̂(0)∗Jm−m1G−GJm−m1B̂(0)∗ = 0

(eq5) E
∗ − ∂F

∂θ
ω − FJm−m1B̂(0)∗ = 0

being

B∗ = B −
[
∂H

(0)
∗
∂I

(
ξ +

(
∂d

∂θ

)>)
− ∂H

(0)
∗

∂Ẑ
Jm−m1e

]
(Ẑ,Ẑ)

E∗ = E − C(0)
(
∂e

∂θ

)>
−
[
∂H

(0)
∗
∂I

(
ξ +

(
∂d

∂θ

)>)
− ∂H

(0)
∗

∂Ẑ
Jm−m1e

]
(I,Ẑ)

.

To solve those homological equations, we expand them in a Fourier series and we equate the
corresponding coefficients, obtaining the formal solutions. The next step is to derive bounds
on those solutions. As we will use these bounds in iterative form, we want to make clear
which bounds change from one step to another, and which ones can be taken independently
from the step. For this purpose, we take fixed positive constantsm̄, m̂, m̃, α2, β1, ν̂, ν̃
defined as twice the corresponding inital valuesm̄(0), m̂(0), m̃(0), α(0)2 , β(0)1 , ν̂(0), ν̃(0) and a
fixedα1, 0< α1 < α

(0)
1 . In what follows,N̂ will denote an expression depending only onm̄,

m̂, α1, α2, ν̂, the different dimensionsr, m, m1, plusγ andρ0. N̂ will be redefined during
the description of the iterative scheme to meet a finite number of conditions. The idea is
to perform the bounds on the iterative scheme putting the superscript(0) on the terms that
change at every iteration. Hence, we write the bounds onĤ (0) as‖Ĥ (0)‖E (0),ρ(0),R(0) 6 M(0)
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andLE (0),ρ(0),R(0){Ĥ (0)} 6 L(0), with M(0)(R) ≡ M(R) andL(0)(R) ≡ (M(R))1−α. Hence,
using lemma 5.2,

‖a − φ(0)‖E (0),ρ(0) 6 M(0) ‖E‖E (0),ρ(0) 6
2(m−m1)M

(0)

(R(0))3

‖c − ω‖E (0),ρ(0) 6
M(0)

(R(0))2
‖B − B̂(0)∗‖E (0),ρ(0) 6

(2(m−m1)+ 1)M(0)

(R(0))2

‖b‖E (0),ρ(0) 6
M(0)

R(0)
‖C − C(0)‖E (0),ρ(0) 6

(2(r +m1)+ 1)M(0)

(R(0))4

‖�‖E (0),ρ(0),R(0) 6 ν̂(0) +M(0).

(4.21)

Moreover, we can use lemma 5.9 to deduce that the same bounds hold for their Lipschitz
constants onE (0), replacingM(0) by L(0), and ν̂(0) by ν̃(0). Then, to prove the convergence
of the expansion ofS, we need some kind of control on the different small divisors involved.
For this purpose, we restrict the parameterω to the subsetE (1)(R) ⊂ E (0)(R) for which the
following Diophantine estimates hold: we say thatω ∈ E (1) if ω ∈ E (0), and

|ik>ω + l>λ̂(0)(ω)| > µ(0)(R)

|k|γ1
k ∈ Zr+m1 \ {0} l ∈ N2(m−m1) 0< |l|1 6 2

(4.22)

for certainµ(0)(R) > 0. We expect the measure ofE (0) \E (1) to be of orderµ(0) and, hence,
as we want to have exponentially small bounds for this measure, we takeµ(0) ≡ (M(0))α.
Then, we proceed to bound the solutions of the different homological equations. For this
purpose, we use lemma 5.1. More precisely, we defineδ(0) = (M(0))α, and we takeδ(0) as
a value forδ to use the different estimates provided by this lemma. In order to simplify
the proofs, we assumeρ(0) − Nδ(0) > ρ0/4, whereN ∈ N will be a fixed integer that will
be determined after the description of the iterative scheme. Moreover, we also assume that
(M(0))α 6 R(0) 6 1. Then, one can solve(eq1)–(eq5) as follows.

(eq1) For d, we have

d(θ) =
∑

k∈Zr+m1\{0}

ak

ik>ω
exp(ik>θ)

that implies,

‖d‖E (1),ρ(0)−δ(0) 6
(

γ

δ(0) exp(1)

)γ ‖ã‖E (1),ρ(0)
µ(0)

6 N̂(M(0))1−α−αγ .

(eq2) For anyj , 16 j 6 2(m−m1), we have

ej (θ) =
∑

k∈Zr+m1

bj,k

ik>ω + λ̂(0)j
exp(ik>θ)

and hence,

‖e‖E (1),ρ(0)−δ(0) 6
(

2

α1
+
(

γ

δ(0) exp(1)

)γ 1

µ(0)

)
‖b‖E (1),ρ(0) 6 N̂(M(0))1−2α−αγ .

(eq3) Taking an average with respect toθ , we obtain

ξ = (C̄(0))−1

(
c̄ − ω − C(0)

(
∂d

∂θ

)>)
.
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Thus,

‖ξ‖E (1) = ‖(C̄(0))−1C̄(0)ξ‖E (1) 6 ‖(C̄(0))−1‖E (1)‖C̄(0)ξ‖E (1)

6 m̄
(
‖c̄ − ω‖E (1),0+

∥∥∥∥∥C(0)
(
∂d

∂θ

)>∥∥∥∥∥
E (1),0

)

6 m̄
(
‖c − ω‖E (1),ρ(0) + m̂

‖d‖E (1),ρ(0)−δ(0)
(ρ(0) − δ(0)) exp(1)

)
6 N̂(M(0))1−α−αγ .

To solve the equation forf , we define

c∗ = c̃ − C̃(0)ξ − C(0)
(
∂d

∂θ

)>
+ C(0)

(
∂d

∂θ

)>
and then, for any 16 j 6 r +m1, we have

fj (θ) =
∑

k∈Zr+m1\{0}

c∗j,k
ik>ω

exp(ik>θ).

To boundf , first we have that

‖c∗‖E (1),ρ(0)−2δ(0) 6 ‖c̃‖E (1),ρ(0) + ‖C(0)‖E (1),ρ(0)
(
‖ξ‖E (1) +

‖d‖E (1),ρ(0)−δ(0)
δ(0) exp(1)

)
6 N̂(M(0))1−2α−αγ

and from here

‖f ‖E (1),ρ(0)−3δ(0) 6
(

γ

δ(0) exp(1)

)γ ‖c∗‖E (1),ρ(0)−2δ(0)

µ(0)
6 N̂(M(0))1−3α−2αγ .

(eq4) We defineB∗∗ = B∗−Jm−m1(B
∗), and then, ifG = (Gj,l), 16 j, l 6 2(m−m1),

we have

Gj,l(θ) =
∑

k∈Zr+m1

B∗∗j,l,k
ik>ω + λ̂(0)j + λ̂(0)l

exp(ik>θ).

In this sum we have to avoid the indices(j, l, k) for which |j − l| = m−m1 andk = 0. In
these cases we have trivial zero divisors, but also the coefficientB∗∗j,l,0 is 0. Moreover, we
remark that the matrixG is symmetric. Then, to boundG, we have to boundB∗∗. First,
we have

‖B∗ − B̂(0)∗‖E (1),ρ(0)−2δ(0) 6 ‖B − B̂(0)∗‖E (1),ρ(0)−2δ(0)

+(2(m−m1)+ 1)(r +m1)
‖H(0)
∗ ‖E (1),ρ(0),R(0)
(R(0))4

(
‖ξ‖E (1) +

‖d‖E (1),ρ(0)−δ(0)
δ(0) exp(1)

)
+24(m−m1)

2‖H(0)
∗ ‖E (1),ρ(0),R(0)
(R(0))3

‖e‖E (1),ρ(0)−δ(0) 6 N̂(M(0))1−6α−αγ

and from the definition ofB∗∗ and the norm used, the same bound holds forB∗∗. Then,

‖G‖E (1),ρ(0)−3δ(0) 6
(

1

α1
+
(

γ

δ(0) exp(1)

)γ 1

µ(0)

)
2(m−m1)

∥∥B∗∗∥∥E (1),ρ(0)−2δ(0)

6 N̂(M(0))1−7α−2αγ .

(eq5) The different components ofF are given by

Fj,l(θ) =
∑

k∈Zr+m1

E∗j,l,k
ik>ω + λ̂(0)l

exp(ik>θ)
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for j = 1, . . . , r +m1 and l = 1, . . . ,2(m−m1). Thus,

‖E∗‖E (1),ρ(0)−2δ(0) 6 ‖E‖E (1),ρ(0) + 2(m−m1)‖C(0)‖E (1),ρ(0)
‖e‖E (1),ρ(0)−δ(0)
δ(0) exp(1)

+4(m−m1)(r +m1)
‖H(0)
∗ ‖E (1),ρ(0),R(0)
(R(0))5

(
‖ξ‖E (1) +

‖d‖E (1),ρ(0)−δ(0)
δ(0) exp(1)

)
+8(m−m1)

2‖H(0)
∗ ‖E (1),ρ(0),R(0)
(R(0))4

‖e‖E (1),ρ(0)−δ(0) 6 N̂(M(0))1−7α−αγ

and, hence,

‖F‖E (1),ρ(0)−3δ(0) 6
(

2

α1
+
(

γ

δ(0) exp(1)

)γ 1

µ(0)

)
2(m−m1)

∥∥E∗∥∥E (1),ρ(0)−2δ(0)

6 N̂(M(0))1−8α−2αγ .

We use these estimates to bound the transformed HamiltonianH(1). For this purpose,
we defineH(0)∗ ≡ {H(0), S} = H(0)∗

1 +H(0)∗
2 , with

H
(0)∗
1 =

{
ω>I + 1

2Ẑ
>B̂(0)∗Ẑ + 1

2I
>C(0)I +H(0)

∗ , S
}

andH(0)∗
2 = {Ĥ (0), S}. Note that we are splitting the contributions that areO1(Ĥ

(0)) and
O2(Ĥ

(0)). Then, by construction ofS, one has

H(0) +H(0)∗
1 = φ(1) + ω>I + 1

2Ẑ
>B̂(1)∗Ẑ + 1

2I
>C(1)(θ)I +H(1)

∗

with B̂(1)∗ = Jm−m1(B̂(1)∗) and 〈H(1)
∗ 〉 = 0. Hence,H(1) takes the same form asH(0) in

(4.13) if we define

Ĥ (1) = H(0) ◦9S
1 −H(0) −H(0)∗

1 =
∫ 1

0
(H

(0)∗
2 + (1− t){H(0)∗

1 , S}) ◦9S
t dt. (4.23)

To bound the different terms ofH(1), we use lemma 5.3 to bound the Poisson brackets
involved in the previous expressions:

‖H(0)∗
1 ‖E (1),ρ(0)−4δ(0),R(0) exp(−δ(0)) 6 N̂(M(0))1−12α−2αγ

‖{H(0)∗
1 , S}‖E (1),ρ(0)−5δ(0),R(0) exp(−2δ(0)) 6 N̂(M(0))2−24α−4αγ (4.24)

‖H(0)∗
2 ‖E (1),ρ(0)−4δ(0),R(0) exp(−δ(0)) 6 N̂(M(0))2−12α−2αγ . (4.25)

Hence, to boundĤ (1) one only needs to control the effect of9S
t . To this end, we remark

that from the bounds on the solutions of(eq1)–(eq5), one has

‖∇S‖E (1),ρ(0)−4δ(0),R(0) 6 N̂(M(0))1−9α−2αγ (4.26)

where∇S is taken with respect to(θ, X̂, I, Ŷ ). If we assume that

‖∇S‖E (1),ρ(0)−4δ(0),R(0) 6 (R(0))2δ(0) exp(−1)/2 (4.27)

then,9S
t is well defined fromDr+m1,m−m1(ρ

(0)−5δ(0), R(0) exp(−δ(0))) toDr+m1,m−m1(ρ
(0)−

4δ(0), R(0)), for any−1 6 t 6 1, and for anyω ∈ E (1) (this follows from lemma 5.7 and
(3.17)). More precisely, we have that

‖9S
t − Id‖E (1),ρ(0)−5δ(0),R(0) exp(−δ(0)) 6 ‖∇S‖E (1),ρ(0)−4δ(0),R(0) (4.28)

for any −1 6 t 6 1. From (4.26) we have that (4.27) holds if̂N(M(0))1−12α−2αγ 6 1,
condition that will follow immediately from the inductive restrictions. Applying the bounds
(4.24), (4.25) and (4.28) to (4.23) and using lemma 5.5, we deduce

‖Ĥ (1)‖E (1),ρ(0)−6δ(0),R(0) exp(−3δ(0)) 6 N̂(M(0))2−24α−4αγ . (4.29)
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Moreover, the bound onH(0)∗
1 produces

‖φ(1) − φ(0)‖E (1) 6 N̂(M(0))1−12α−2αγ

‖B̂(1)∗ − B̂(0)∗‖E (1) 6 N̂(M(0))1−14α−2αγ

‖C(1) − C(0)‖E (1),ρ(0)−4δ(0) 6 N̂(M(0))1−16α−2αγ

‖H(1)
∗ −H(0)

∗ ‖E (1),ρ(0)−4δ(0),R(0) exp(−δ(0)) 6 N̂(M(0))1−12α−2αγ .

(4.30)

We takeN > 6, and we defineρ(1) = ρ(0) − Nδ(0), andR(1) = R(0) exp(−(N − 3)δ(0)).
Then, it is not difficult to rewrite the bounds onH(1) as the ones onH(0) in (4.21), but now
on Dr+m1,m−m1(ρ

(1), R(1)). To iterate this scheme, we only need to check that the bounds
assumed onH(0) to defineN̂ still hold onH(1). This is done in the next section.

4.3.3. Convergence of the iterative scheme.Looking at the bounds of the previous section,
we takeα > 0 small enough such that, fors = 2(1− 16α − 2αγ ), we haves > 1. Then,
assumingN̂ > 1, we defineM(1) = (N̂M(0))s (note that this is a bound for the norm ofĤ (1)

in (4.29)). If the hypotheses needed to iterate hold, we obtain recursivelyM(n) = (N̂M(0))s
n

,
and hence, forR small enough, we have limn→∞M(n) = 0. Let us defineE∗(R) as the
set of parametersω for which all the steps are well defined. We assume that, for any
ω ∈ E∗(R), the composition of canonical transformations9∗ = 9S(0)

1 ◦ 9S(1)

1 ◦ . . . (where
S(n) is the generating function used at then-step of the iterative procedure) is convergent.
Then, the limit HamiltonianH ∗ = H(0) ◦9∗ takes the form:

H ∗ = φ∗(ω)+ ω>I + 1
2Ẑ
>B̂∗∗(ω)Ẑ + 1

2I
>C∗(θ, ω)I +H ∗∗ (θ, X̂, I, Ŷ , ω)

with 〈H ∗∗ 〉 = 0. This is, we obtain for anyω ∈ E∗ a Hamiltonian with an(r + m1)-
dimensional reducible torus, with linear quasiperiodic flow given byω.

Let us prove that the inductive bounds hold. First, we check that we can define,
recursively, constants̄m(n), m̂(n), α(n)1 , α(n)2 and ν̂(n), replacing the initial super-(0) ones,
such that they are also bounded bym̄, m̂, α1, α2 and ν̂, respectively. To prove that, we
note that the expressions in the right-hand side of (4.30) can be bounded by(N̂M(0))s/2 (we
remark that the same bound holds for (4.26)). Hence, iterating this bound, we only need to
use that the sum∑

n>0

(N̂M(0))
sn+1

2 (4.31)

is convergent forR small enough (and in fact, that it goes to zero whenR does), to justify
thesen-independent bounds. The same arguments can be used to prove that‖φ∗‖E∗ < +∞.
Here, we only check the bound̄m(n) 6 m̄, because it is the only one that does not follow
directly: note that one can define

m̄(1) = m̄(0)

1− m̄(0)(N̂M(0))s/2

and then, takingR small enough, we havēm(1) 6 m̄. Hence, iterating this definition and
assumingm̄(j) 6 m̄, j = 0, . . . , n− 1, we have

m̄(n) 6 m̄(0)
n−1∏
j=0

1

1− m̄(N̂M(0))s
n+1/2

.

Under this inductive hypothesis, one can boundm̄(n) by an infinite product that it is
convergent because (4.31) does. From here, the boundm̄(n) 6 m̄ follows immediately
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for R small enough. Finally, with the inductive definitionsρ(n+1) = ρ(n) − Nδ(n) and
R(n+1) = R(n) exp(−(N − 3)δ(n)), n > 0, we need to check thatρ(n) > ρ0/4 and
R(n) > M(n). We remark that, as we takeδ(n) = (M(n))α, we have,∑

n>0

δ(n) 6 (M(0))α +
∑
n>1

(N̂M(0))s
nα 6 2(M(0))α (4.32)

at least forR small enough. Then, asN will be a fixed number, the bound onρ(n) is clear,
taking R small enough. Moreover, we also haveR(n) > R(0) exp(−ρ0/4) > R(0)/2 =
M(0) > M(n). To justify this last inequality, we only need to takeR small enough such that
M(1) 6 M(0). Under this assumption, the sequence{M(n)}n>0 is clearly decreasing.

Finally, to prove the well defined character of the limit Hamiltonian, it only remains
to check the convergence of9∗. To do that we write, for simplicity,9(n) = 9S(n)

1 and
we define9̆(n) = 9(0) ◦ · · · ◦ 9(n), for n > 0. We also putρ ′n = ρ(n) − ρ0/8 and
R′n = R(n) exp(−ρ0/8), n > 1. Then, using in inductive form the bounds (4.26), (4.27) and
(4.28), it is not difficult to check that from lemma 5.6 we have

‖9̆(n+1) − 9̆(n)‖E∗,ρ ′n+2,R
′
n+2
6 (1+ 1̂(N̂M(0))

s
2−2α)‖9(1) ◦ · · · ◦9(n+1)

−9(1) ◦ · · · ◦9(n)‖E∗,ρ ′n+2,R
′
n+2

where 1̂ only depends onr, m, m1, ρ0 and N̂ . Iterating this bound and takingα small
enough, one obtains (forR small enough)

‖9̆(n+1) − 9̆(n)‖E∗,ρ ′n+2,R
′
n+2
6

n∏
j=0

(1+ 1̂(N̂M(0))
sj+1

2 −2α)(N̂M(0))
sn+2

2 6 2(N̂M(0))
sn+2

2

where we have used again the convergent character of the sum (4.31). From this bound, it
is clear that ifp > q > 0, then

‖9̆(p) − 9̆(q)‖E∗,ρ0/8,R(0) exp(−3ρ0/8) 6
∑
j>q

2(N̂M(0))
sn+2

2

bound that goes to zero asp, q → +∞. This allows us to check that the
limit canonical transformation9∗ goes from Dr+m1,m−m1(ρ0/8, R(0) exp(−3ρ0/8)) to
Dr+m1,m−m1(ρ

(0), R(0)).

4.3.4. Bounds on the measure.Then, we have shown the existence of real invariant
reducible tori for a set of parametersω ∈ E∗. It only remains to bound the measure
of E∗ or, equivalently, the measure of the complementary set. To do that, we start recalling
how E∗ is constructed. Iterating the definition ofE (1) from E (0), we defineE (n+1) from E (n)
in the same way as it has been done in (4.22), replacingµ(0) ≡ (M(0))α by µ(n) ≡ (M(n))α.
Then, we haveE∗ = ∩n>1E (n). This is,E∗ is constructed by taking out, in recursive form,
the set of parametersω for which the Diophantine conditions (4.22), formulated on the
eigenvalues of the previous step and depending on the size of the remaining perturbative
terms, do not hold. Then, the set of removed parameters can be obtained as a union of sets
for which one of those conditions is not satisfied at some step of the iterative process.

To estimate the size of the removed sets, we will use a Lipschitz condition with respect
to ω for the different eigenvalueŝλ(n)j of B(n)∗, for n > 0. To this end, we will prove that
this kind of regularity holds for the successive transformed Hamiltonians. As this condition
holds for the initial one, we have to check, by induction, that the canonical transformations
used preserve this kind of dependence. The key point is to bound the Lipschitz constants
of the different solutions of(eq1)–(eq5). To do it, we recall that we have bounds like the
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ones of (4.21) for the Lipschitz constants of the different terms of the decomposition (4.13)
of H(0). Then, we only have to prove that those bounds for the Lipschitz constants, can be
iterated in the same way as the bounds on the norms. To see that, we can use the different
results given in item (a) of lemma 5.9 to bound the Lipschitz constants of the solutions of
(eq1)–(eq5). We remark that, for the denominators that appear solving these equations, we
have

LE (0){ik>ω + l>λ̂(0)} 6 |k|1+ β(0)1 |l|1.
Then, combining lemma 5.9 with standard inequalities to bound the Lipschitz constants of
sums and products, it is not difficult to check that one can iterate bounds of the following
form:

LE (1),ρ(1),R(1){Ĥ (1)} 6 Ñ(M(0))2s1

LE (1),ρ(1),R(1){B̂(1)∗ − B̂(0)∗} 6 Ñ(M(0))s1

LE (1),ρ(1),R(1){C(1) − C(0)} 6 Ñ(M(0))s1

LE (1),ρ(1),R(1){H(1)
∗ −H(0)

∗ } 6 Ñ(M(0))s1

that are analogous to the ones of (4.29) and (4.30).Ñ > 1 depends on the same parameters
as N̂ , plus m̃, ν̃ andβ1. Moreover, takingα small enough, we have 2s1 > 1. Here, the
selection ofN (used to defineρ(1) andR(1)) is done depending on the number of times
that we need to use Cauchy estimates to bound the different norms and Lipschitz constants.
Iterating those expressions, it is not difficult to check (by induction) that we can define
inductively m̃(n), ν̃(n) and β(n)1 for which the assumedn-independent bounds hold. The
deduction of those Lipschitz bounds is tedious but it only involves simple inequalities. Full
details in a very similar context can be found in [11] or [12].

Let us particularize those bounds on the eigenvalues ofB(n)∗. If we expandλ̂(n)j ,
j = 1, . . . ,2(m − m1), n > 0, as in (4.19), replacing only the superscript(0) by (n), we
have thatLE (n){λ̆(n)j } 6 N̆R, beingN̆ a positive constant independent fromR, j andn. To
justify this assertion, we note that it holds forn = 0, and that the contributions that come
from the next steps are exponentially small withR.

Those bounds on the Lipschitz constants ofλ
(n)
j plus the nondegeneracy conditions

(4.19) are the key to control the measure ofE (n) \ E (n+1). To this end, we consider the
decomposition

E (n) \ E (n+1) =
⋃

l∈Z2(m−m1)

0<|l|162
lX̂ 6=lŶ

⋃
k∈Zr+m1\{0}

R(n)l,k

with

R(n)l,k (R) =
{
ω ∈ E (n)(R) : |ik>ω + l>λ̂(n)(ω)| < µ(n)(R)

|k|γ1

}
.

To estimate the measure ofR(n)l,k , we takeω(1) andω(2) in this set and then, we have

|ik>(ω(1) − ω(2))+ l>(λ̂(n)(ω(1))− λ̂(n)(ω(2)))| < 2µ(n)

|k|γ1
.

Let us start with the case|l|1 = 1. Then,l>λ̂(n) = λ̂(n)j for somej = 1, . . . ,2(m − m1).
Hence, the previous expression can be rewritten as

|i(k + vj )>(ω(1) − ω(2))+ λ̆(n)j (ω(1))− λ̆(n)j (ω(2))| < 2µ(n)

|k|γ1
.
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Assuming thatω(1) − ω(2) is parallel tok + Re(vj ), we have

|ω(1) − ω(2)|2 = |(k + Re(vj ))>(ω(1) − ω(2))|
|k + Re(vj )|2 6 |(k + vj )

>(ω(1) − ω(2))|
|k + Re(vj )|2

6 1

|k + Re(vj )|2

(
|λ̆(n)j (ω(1))− λ̆(n)j (ω(2))| + 2µ(n)

|k|γ1

)
6 1

|k + Re(vj )|2

(
N̆R|ω(1) − ω(2)| + 2µ(n)

|k|γ1

)
.

being | · |2 the Euclidean norm of a real vector. Using that Re(vj ) 6= 0 (see (4.19)), we
obtain that there exists a positive constant51, independent fromj , k andn, such that

|ω(1) − ω(2)|2 6 51
µ(n)

|k|γ+1
1

for R small enough. In fact, this bound can be extended to the case|l|1 = 2, lx 6= ly , using
that Re(vj1,j2) 6= 0 if j1 6= j2. This is a bound for the width of a section ofR(n)l,k by a line

in the directionk + Re(vj ). Then, the measure ofR(n)l,k can be bounded by

mes(Rl,k) 6 51
µ(n)

|k|γ+1
1

(√
r +m1

1

4
(|C−1|)−1R2

)r+m1−1

where 2
√
r +m1

1
8(|C−1|)−1R2 is a bound for the diameter ofE (0)(R). Then, we have

mes(E (n) \ E (n+1)) 6 52R
2(r+m1−1)µ(n)

∑
k∈Zr+m1\{0}

1

|k|γ+1
1

where 52 does not depend onn and R. Using that #{k ∈ Zr+m1 : |k|1 = j} 6
2(r +m1)j

r+m1−1 and thatγ > r +m1− 1 we obtain

mes(E (n) \ E (n+1)) 6 52R
2(r+m1−1)µ(n)

∑
j>1

2(r +m1)j
r+m1−2−γ 6 53R

2(r+m1−1)µ(n)

being53 also independent fromn andR. As µ(n) = (M(n))α, we deduce, using (4.32), that
for R 6 1 small enough,

mes(E (0) \ E∗) 6 53R
2(r+m1−1)

(
(M(0))α +

∑
n>1

(N̂M(0))s
nα

)
6 253(M

(0))α.

Taking into account the bound on the measure ofW( 1
8(|C−1|)−1R2) \ E (0) (we have shown,

from (4.14), that it is of order(M(0))2α), one obtains the exponentially small bounds on the
measure of destroyed tori. To finish the proof, we defineA as∪0<R6R∗E∗(R), whereR∗ is
the maximum value ofR for which the iterative scheme converges.

5. Basic lemmas

In this section, we give some basics results used to bound the norms (3.3) and (3.4) and the
related Lipschitz constants, as well as the expressions and transformations involved in the
different proofs. Similar lemmas appear in [12].

Lemma 5.1. Let f (θ) andg(θ) be analytic functions ofr complex arguments defined on a
strip of widthρ > 0, 2π -periodic onθ , and taking values inC. Let us denote byfk the
Fourier coefficients off , f =∑k∈Zr fk exp(ik>θ). Then we have:
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(i) |fk| 6 |f |ρ exp(−|k|1ρ).
(ii) |fg|ρ 6 |f |ρ |g|ρ .
(iii) For every 0< δ < ρ,∣∣∣∣ ∂f∂θj

∣∣∣∣
ρ−δ
6 |f |ρ
δ exp(1)

j = 1, . . . , r.

(iv) Let {dk}k∈Zr\{0} ⊂ C, with |dk| > µ/|k|γ1 , for someµ > 0 andγ > 0. If we assume
that f̄ = 0, then, for any0< δ < ρ, we have that the functiong defined as

g(θ) =
∑

k∈Zr\{0}

fk

dk
exp(ik>θ),

satisfies the bound

|g|ρ−δ 6
(

γ

δ exp(1)

)γ |f |ρ
µ
.

All these bounds can be extended to the case in whichf and g take values inCn1 or
Mn1,n2(C).

Proof. Items (i) and (ii) are easily verified. Proofs of (iii) and (iv) follow immediately
using (3.13). �
Lemma 5.2. Let f (θ, x, I, y) and g(θ, x, I, y) be analytic functions onDr,m(ρ, R), and
2π -periodic onθ . Then,

(i) If f =∑(l,s)∈N2m×Nr fl,s(θ)z
l Î s , we have|fl,s |ρ 6 |f |ρ,R/R|l|1+2|s|1.

(ii) |fg|ρ,R 6 |f |ρ,R|g|ρ,R.
(iii) For every 0< δ < ρ and0< χ < 1, we have forj = 1, . . . , r andk = 1, . . . ,2m:∣∣∣∣ ∂f∂θj
∣∣∣∣
ρ−δ,R

6 |f |ρ,R
δ exp(1)

∣∣∣∣ ∂f∂Ij
∣∣∣∣
ρ,Rχ

6 |f |ρ,R
(1− χ2)R2

∣∣∣∣ ∂f∂zk
∣∣∣∣
ρ,Rχ

6 |f |ρ,R
(1− χ)R .

As in lemma 5.1, all the bounds hold iff andg take values inCn1 or Mn1,n2(C).

Proof. The proof of (i) and (ii) is straightforward. (iii) is proved using item (iii) of
lemma 5.1 and applying Cauchy estimates to the function

∑
(l,s)∈N2m×Nr |fl,s |ρzl Î s . �

Lemma 5.3. Let us considerf (θ, x, I, y) andg(θ, x, I, y) complex-valued functions, such
that f and∇g are analytic functions defined onDr,m(ρ, R), 2π -periodic onθ . Then, for
every0< δ < ρ and 0< χ < 1, we have:

|{f, g}|ρ−δ,Rχ 6 r|f |ρ,R
δ exp(1)

∣∣∣∣∂g∂I
∣∣∣∣
ρ−δ,Rχ

+ r|f |ρ,R
R2(1− χ2)

∣∣∣∣∂g∂θ
∣∣∣∣
ρ−δ,Rχ

+ 2m|f |ρ,R
R(1− χ)

∣∣∣∣∂g∂z
∣∣∣∣
ρ−δ,Rχ

.

Remark 5.4. If f has a finite Taylor expansion with respect to(I, z), the expressions in
the bound of|{f, g}|ρ−δ,Rχ that come from the Cauchy estimates on the derivatives off

with respect toI or z, can be replaced by bounds on the degree of the different Taylor
expansions. Moreover, iff does not depend onθ , the first term on the bound can be
eliminated. Similar comments can be extended to∇g. This remark has been used in the
proof of lemma 3.5.

Proof. It follows from lemma 5.2. �
Lemma 5.5. Let us take0 < ρ0 < ρ and 0 < R0 < R, and let us consider analytic
functions2, I with values inCr ′ , andX , Y with values inCm′ , all defined for(θ, x, I, y) ∈
Dr,m(ρ0, R0), and 2π -periodic onθ . We assume that|2|ρ0,R0 6 ρ − ρ0, |I|ρ0,R0 6 R2,
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and thatmax{|X |ρ0,R0, |Y|ρ0,R0} 6 R. Let f (θ∗, x∗, I ∗, y∗) be a given (2π -periodic onθ∗)
analytic function, defined onDr ′,m′(ρ, R). If we introduce:

F(θ, x, I, y) = f (θ +2,X , I,Y)
then,|F |ρ0,R0 6 |f |ρ,R.

Proof. It can be directly checked by expandingf in a Taylor series as in lemma 5.2, and
using item (ii) of lemmas 5.1 and 5.2. �

Lemma 5.6. Let us consider2(j), I(j), X (j) and Y (j), j = 1, 2, in the same conditions
of the ones of lemma 5.5, but with the following bounds:|2(j)|ρ0,R0 6 ρ − ρ0 − δ,
|I(j)|ρ0,R0 6 R2 − σ , and max{|X (j)|ρ0,R0, |Y (j)|ρ0,R0} 6 R − χ , with 0 < δ < ρ − ρ0,
0< σ < R2 and 0< χ < R. Then, if one takes the functionf of lemma 5.5 to define

F (j)(θ, x, I, y) = f (θ +2(j),X (j), I(j),Y (j)) j = 1, 2

one has|F (1) − F (2)|ρ0,R0 6 K|f |ρ,R, where if we putZ> = (X>,Y>), then

K ≡ |2
(1) −2(2)|ρ0,R0

δ exp(1)
+ r ′ |I

(1) − I(2)|ρ0,R0

σ
+ 1

χ

2m′∑
j=1

|Z (1)j − Z (2)j |ρ0,R0.

Proof. It follows from the same ideas used to prove lemma 5.5. �

Lemma 5.7. Let S(θ, x, I, y) be a function defined onDr,m(ρ, R), with ρ > 0 andR > 0,
being∇S analytic onDr,m(ρ, R) and 2π -periodic onθ . If we assume that∣∣∣∣∂S∂θ

∣∣∣∣
ρ,R

6 R2(1− χ2)

∣∣∣∣∂S∂I
∣∣∣∣
ρ,R

6 δ
∣∣∣∣∂S∂z

∣∣∣∣
ρ,R

6 R(1− χ)

for certain 0< χ < 1 and 0< δ < ρ, then one has
(a) 9S

t : Dr,m(ρ − δ, Rχ) −→ Dr,m(ρ, R), for every−16 t 6 1, where9S
t is the flow

time t of the Hamiltonian system given byS.
(b) If one writes9S

t − Id = (2S
t ,X St , ISt ,YSt ), then, for every−1 6 t 6 1, we have

that2S
t , YSt andZSt = (X St ,YSt ) are analytic functions onDr,m(ρ− δ, Rχ), 2π -periodic on

θ . Moreover, the following bounds hold:

|2S
t |ρ−δ,Rχ 6

∣∣∣∣∂S∂I
∣∣∣∣
ρ,R

|ISt |ρ−δ,Rχ 6
∣∣∣∣∂S∂θ

∣∣∣∣
ρ,R

|ZSt |ρ−δ,Rχ 6
∣∣∣∣∂S∂z

∣∣∣∣
ρ,R

.

Proof. A similar result can be found in [6], where it is proved working with the supremum
norm. The ideas are basically the same, but here we use lemma 5.5 to bound the composition
of functions. �

Lemma 5.8. Let I (0), I (1) ∈ R, with L2 6 I (0), I (1) for someL > 0, and let us consider the
functionsfI(j) (I ) =

√
I (j) + I , j = 0, 1. Then, for every0< M < L, one has

|fI(0) |0,M 6
√
I (0)

(
2−

√
1−M2/L2

)
|fI(0) − fI(1) |0,M 6

|I (0) − I (1)|
2L
√

1−M2/L2
,

where the different norms are taken onD1,0(0,M).
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Proof. As fI(j) (I ) =
∑

k>0

(1/2
k

)
(I (j))−k+1/2I k, one has

|fI(0) |0,M 6
√
I (0)

∑
k>0

∣∣∣∣(1/2

k

)∣∣∣∣ (M2

L2

)k

=
√
I (0)

(
1−

∑
k>1

(
1/2

k

)
(−1)k

(
M2

L2

)k )
=
√
I (0)

(
2−

√
1−M2/L2

)
.

Moreover, asfI(0) (I )− fI(1) (I ) =
∑

k>0

(1/2
k

)
((I (0))−k+1/2− (I (1))−k+1/2)I k, one obtains

|fI(0) − fI(1) |0,M 6
∑
k>0

∣∣∣∣(1/2

k

)∣∣∣∣ ∣∣∣∣12 − k
∣∣∣∣ (L2)−k−1/2(M2)k|I (0) − I (1)|

= 1

L

∑
k>1

k

(
1/2

k

)
(−1)k−1

(
M2

L2

)k−1

|I (0) − I (1)|

= −1

L

d

ds

(√
1− s

)∣∣∣∣
s=M2

L2

|I (0) − I (1)|.

�
In the following lemma we describe how to control the Lipschitz dependences related

to the norms introduced in (3.3) and (3.4). For this purpose, we consider a fixed subset
E ⊂ Rn (for somen) and functions defined onE .

Lemma 5.9. We assume thatf (θ, ϕ) andg(θ, x, I, y, ϕ) are, for anyϕ, analytic with respect
to (θ, x, I, y) and 2π -periodic on ther complex argumentsθ . We assume that for every
ϕ ∈ E , f is defined on a strip of widthρ andg is defined onDr,m(ρ, R), respectively. Then,
one has the following results:

(a) (i) If f =∑k∈Zr fk(ϕ) exp(ik>θ), thenLE {fk} 6 LE,ρ{f } exp(−|k|1ρ).
(ii) For every 0< δ < ρ,

LE,ρ−δ
{
∂f

∂θj

}
6 LE,ρ{f }
δ exp(1)

j = 1, . . . , r.

(iii) Let {dk(ϕ)}k∈Zr\{0} be a set of complex-valued functions defined forϕ ∈ E . We
assume that the following bounds hold:

|dk(ϕ)| > µ

|k|γ1
LE {dk} 6 A+ B|k|1

for someµ > 0, γ > 0, A > 0 andB > 0. We assumef̄ = 0 for everyϕ ∈ E , and we
consider the functiong(θ, ϕ) defined fromf and {dk(ϕ)} as in the item (iv) of lemma 5.1.
Then, for any0< δ < ρ, we have:

LE,ρ−δ{g}6
(

γ

δ exp(1)

)γ LE,ρ{f }
µ

+
(

2γ + 1

δ exp(1)

)2γ+1 ‖f ‖E,ρ
µ2

B +
(

2γ

δ exp(1)

)2γ ‖f ‖E,ρ
µ2

A.

(b) (i) If g =∑(l,s)∈N2m×Nr gl,s(θ, ϕ)z
lI s , thenLE,ρ{gl,s} 6 LE,ρ,R{g}/R|l|1+2|s|1.

(ii) For every 0< δ < ρ and 0< χ < 1, we have forj = 1, . . . , r andk = 1, . . . ,2m:

LE,ρ−δ
{
∂g

∂θj

}
6 LE,ρ,R{g}
δ exp(1)

LE,ρ,Rχ
{
∂g

∂Ij

}
6 LE,ρ,R{g}
(1− χ2)R2

LE,ρ,Rχ
{
∂g

∂zk

}
6 LE,ρ,R{g}
(1− χ)R .
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Proof. It can be immediately verified, using the same ideas as in lemmas 5.1 and 5.2, plus
standard inequalities for the Lipschitz dependence. �
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