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Abstract

Kolmogorov Theorem on the persistence of invariant tori of real analytic Hamiltonian systems is re-
visited. In this paper we are mainly concerned with the lower bound on the constant of the Diophantine
condition required by the theorem. From the existing proofs in the literature, this lower bound turns to
be of O(ε1/4), where ε is the size of the perturbation. In this paper, by means of careful estimates on
Kolmogorov’s method, we show that this lower bound can be weakened to be of O(ε1/2). This condition
coincides with the optimal one of KAM Theorem. Moreover, we also obtain optimal estimates for the dis-
tance between the actions of the perturbed and unperturbed tori. We believe that some ideas contained in
this paper may be used for improving several estimates in the general KAM context.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Kolmogorov Theorem is one of the most celebrated results of the mechanics. This result was
a great step forward in order to obtain a clear picture for the dynamics of a nearly-integrable
Hamiltonian system. Kolmogorov Theorem ensures, under generic hypotheses of non-resonance
and non-degeneracy, the persistence of a Lagrangian invariant torus of a Hamiltonian system
with n degrees of freedom, carrying quasi-periodic motion, under the effect of a small (enough)
perturbation. Thus, there is an invariant Lagrangian torus of the perturbed Hamiltonian system
close to the unperturbed one with the same vector of basic frequencies.
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The formulation of this result admits many generalizations: maps or flows, analytic or smooth
systems, generic or degenerate systems, etc. (see [6] and references therein). However, in this
paper we focus on the original exposition of Kolmogorov in [10] and consider real analytic
Hamiltonian systems, written in action-angle variables and non-degenerate in Kolmogorov’s
sense. See [3,4,8] for proofs of this result following Kolmogorov’s original outline. We also
quote [5] for a proof performed without using “transformation theory,” and [7] for an approach
valid for Hamiltonian systems not written in action-angle variables.

Among the conditions needed to prove this result, we are mainly concerned with the Diophan-
tine (non-resonance) condition on the vector of basic frequencies ω ∈ R

n,∣∣〈k,ω〉∣∣ � γ |k|−τ , ∀k ∈ Z
n \ {0}. (1)

It is well known that if we consider a fixed τ > n − 1, then, for almost every ω ∈ R
n, there is

γ > 0 for which (1) is fulfilled (see [6]). But γ can be very small for some of those ω. From
the existing proofs of Kolmogorov Theorem in the literature, we have that the non-resonance
condition on the unperturbed torus to persist is a lower bound for γ of O(ε1/4), where ε is the
size of the perturbation. Let us explain why this estimate is not satisfactory at all.

In [10] Kolmogorov also stated a “global version” of this result, first proved by Arnol’d in [2]
and later tackled by many other authors, presently known as KAM Theorem (Kolmogorov–
Arnol’d–Moser). We refer to [6] for a nice survey on KAM Theory. The starting point of KAM
Theorem is a nearly-integrable Hamiltonian,

Hε(θ, I ) = h(I) + εf (θ, I ), (2)

that for our purposes we assume given by a real analytic function. Here, h is an integrable Hamil-
tonian written in action-angle variables, (θ, I ) ∈ T

n × V , with T
n = (R/2πZ)n and V ⊂ R

n

open and bounded, with the symplectic structure dθ ∧ dI (see Liouville–Arnol’d Theorem, for
instance in [1]). The Hamilton equations for h are

θ̇ = Ω(I) := ∇I h(I ), İ = 0. (3)

For any I0 ∈ V the Lagrangian torus T
n × {I0} is invariant by the flow of (3), with linear quasi-

periodic dynamics for the variable θ , having Ω(I0) as vector of basic frequencies. We assume that
the frequency map of this integrable system, I ∈ V 	→ Ω(I), is non-degenerate in Kolmogorov’s
sense, i.e., det(DIΩ(I)) �= 0 ∀I ∈ V . Under these hypotheses, KAM Theorem ensures that, for
any ε small enough, there is a (Cantor) set Vε ⊂ T

n × V foliated by Lagrangian tori invariant
by the flow of Hε . More precisely, for any I0 ∈ V such that ω = Ω(I0) verifies (1), with γ

bounded away from zero by O(ε1/2), the n-dimensional invariant torus of (3) labeled by this
frequency is not destroyed by the perturbation, but only slightly deformed. The distance (in
action variables) between the perturbed and unperturbed torus is of O(ε/γ ). We refer to [11,12]
for these quantitative estimates.

The lower bound on γ for which KAM tori persist has an important dynamical meaning, be-
cause in the proof of KAM Theorem it is translated into an upper bound for the Lebesgue measure
of the set defined by the “gaps” between invariant tori (“resonance or stochastic zones”). Thus,
the Lebesgue measure of the complementary set of Vε , (Tn × V ) \ Vε , is bounded by O(ε1/2).
We point out that there are dynamical reasons that imply that this estimate of O(ε1/2) for the
size of these gaps cannot be improved in general (due to the breakdown of resonant tori and the
hyperbolic dynamics thus generated, see for instance [15]).
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As a summary of this exposition, the lower bound on γ required by Kolmogorov Theorem is
greater than the one of KAM Theorem. Consequently, there are invariant tori of h(I) that persist
in KAM Theorem, but to which we cannot apply Kolmogorov Theorem. In principle it is not
unnatural, because the two proofs follow different strategies. The usual methodology for proving
both results is based on the construction of an infinite sequence of canonical transformations,
that are recursively applied to the perturbed system (2). But Kolmogorov’s method looks for
only one invariant torus and Arnol’d’s method looks for all the tori in Vε simultaneously. On the
one hand, in Kolmogorov’s method this sequence is constructed so that the limit Hamiltonian
has the most simple form for which the torus Tn ×{0} is invariant, having quasi-periodic motion
with the selected vector of basic frequencies (Kolmogorov normal form, see (9)). On the other
hand, Arnol’d’s method computes, at any step of the iterative procedure, a canonical transforma-
tion removing as most non-integrable terms as possible from the Hamiltonian obtained after the
previous step (thus obtaining at the limit an “integrable system on a Cantor set”).

Although KAM Theorem looks simultaneously for more objects than Kolmogorov’s one, and
thus we can legitimately think that poor estimates can be expected for it, there are several reasons
leading to a better condition for γ in KAM Theorem than in Kolmogorov Theorem. The most
remarkable one is that any step of Arnol’d’s method only involves one small divisors equation,
but in Kolmogorov’s method we have to solve two (see (15)). Moreover, as the sequence of
transformed Hamiltonian of Arnol’d’s proof converges to an integrable one, there are several
“couplings,” between expressions depending on θ , appearing in Kolmogorov’s method but not in
Arnol’d’s one. As a summary, Arnol’d’s scheme seems more “powerful” in order to remove the
perturbation from the torus if γ is small.

But Kolmogorov’s method presents several advantages making it suitable to be applied when
looking for only one invariant torus: it is more simple to perform, does not require the ini-
tial system to be nearly-integrable (only a small perturbation of a Kolmogorov normal form),
leads to a limit Hamiltonian analytic with respect to the actions and provides bounds with “bet-
ter constants” (for explicit formulas of these constants and a computer assisted application of
Kolmogorov Theorem, see [5]). Hence, for values of γ “not too small,” the condition on ε of
Kolmogorov Theorem is better (for numerical applications) than KAM’s one. Our purpose is to
show that the same happens when γ is small.

In this paper we prove that Kolmogorov’s method is convergent under a condition for γ analo-
gous to the one of KAM Theorem, that is, a lower bound of O(ε1/2). Moreover, we also obtain an
estimate of O(ε/γ ) for the distance (in action variables) between the perturbed and unperturbed
torus. The price we pay is that when proving this theorem we have to be very careful with the
estimates on the iterative scheme, which become more involved and tedious, but, in some sense,
“more natural.”

There are two main points we want to stress from our proof. The most important one is that
when quantifying how far is a given Hamiltonian from being in Kolmogorov normal form, there
are two different terms of the system to be taken into account. At the beginning of the proof,
the size of both terms is of the same order, but during the iterative procedure they follow “dif-
ferent scales” with respect to γ . The usual way to quantify the distance from the Hamiltonian
to Kolmogorov normal form is to consider the maximum between the size of both terms. In this
paper, we take advantage from their natural scale to define a suitable normalized expression to
measure this distance (see (32)). This approach “resembles” the one used in [9] to “optimize”
(here with respect to τ ) the exponent of an exponentially small estimate for the remainder of a
(partial) normal form around a lower dimensional torus.
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The second point refers to the particular (simple) form of the canonical transformations used
in Kolmogorov’s method (see Section 4). By using “closed formulas” for these transformations
several estimates can be improved.

The contents of this paper are organized as follows. In Section 2 we introduce some basic
notations and definitions we use throughout the paper. The precise formulation of Kolmogorov
Theorem is given in Section 3 (Theorem 2). The proof of Theorem 2 goes from Section 4, where
the canonical transformations we use are described, through Section 5, where a general step of
the iterative method is controlled (Lemma 5), till Section 6, where Theorem 2 is properly proved.
Some technical aspects of the paper are postponed until Appendix A.

2. Basic notations and definitions

We consider action-angle variables (θ, I ) ∈ T
n × R

n and the compact notation z = (θ, I ),
where T

n = (R/2πZ)n, with n � 2 fixed from now on. We denote by Idθ , IdI and Id the identity
functions of θ , I and z, respectively. Analogously, ∇θ , ∇I and ∇ are the gradient operators with
respect to θ , I and z, respectively, and Dθ(·), DI (·) and D(·) denote the differential matrices
of (·) with respect to θ , I and z, respectively. The notation D2

I is used for the Hessian matrix
with respect to I . If ω ∈ R

n we define

Lω(·) =
n∑

j=1

ωj∂θj
(·). (4)

Given a Hamilton function H(θ, I ), we consider Hamiltonian systems of the form

θ̇ = ∇IH(θ, I ), İ = −∇θH(θ, I ),

or equivalently, ż = Jn∇H(z), where

Jn =
(

0 Idn

− Idn 0

)

and Idn is the n-dimensional identity matrix.
In the following definitions we consider real analytic functions depending on θ or (θ, I ), 2π -

periodic in θ and taking values in C, C
l or in a space of complex matrices. In the forthcoming,

the name “function” (with no extra information) is reserved for complex-valued functions.
Given f (θ), then f̄ = 〈f 〉θ = (2π)−n

∫
Tn f (θ) dθ means the average of f . If we expand f in

Fourier series,

f (θ) =
∑
k∈Zn

fkei〈k,θ〉, (5)

then f̄ = f0. We also set f̃ (θ) = f (θ) − f̄ .
Given a function F(θ, I ), we consider the following Taylor expansion with respect to I ,

F(θ, I ) = F(θ,0) + 〈∇IF (θ,0), I
〉 + 1 〈

I,D2
I F (θ,0)I

〉 + [F ]3(θ, I ),

2



J. Villanueva / J. Differential Equations 244 (2008) 2251–2276 2255
where 〈u,v〉 = u� · v is the inner product of C
n and � means the transposition of a vector or a

matrix. The notation [F ]3 refers to the terms of O3(I ).
We denote by | · | the supremum norm of a vector, |x| = supj=1,...,n{|xj |} if x ∈ C

n, and we
extend this notation to the associated matrix norm. We use this norm to define the domains

Δ(ρ) = {
θ ∈ C

n:
∣∣Im(θ)

∣∣ � ρ
}
, B(r) = {

I ∈ C
n: |I | � r

}
, D(ρ, r) = Δ(ρ) × B(r).

Let f (θ) and F(θ, I ) be bounded functions defined in Δ(ρ) and D(ρ, r), respectively. We intro-
duce the norms:

‖f ‖ρ = sup
Δ(ρ)

∣∣f (θ)
∣∣, ‖F‖ρ,r = sup

D(ρ,r)

∣∣F(θ, I )
∣∣.

If f takes values in C
l , f = (f1, . . . , fl), we set ‖f ‖ρ = |(‖f1‖ρ, . . . ,‖fl‖ρ)|. If f is a matrix-

valued function, we extend the notation ‖f ‖ρ by computing the | · |-norm of the (constant) matrix
defined by the ‖ · ‖ρ -norms of the entries of f . Analogously, we define ‖F‖ρ,r if F is vector
or matrix-valued. We observe that if the (matrix) product f1 · f2 is defined then ‖f1 · f2‖ρ �
‖f1‖ρ‖f2‖ρ , and the same holds for ‖ · ‖ρ,r . If f and F are analytic in the interior of their
domains, we have (Cauchy estimates)

‖∂θj
f ‖ρ−δ � ‖f ‖ρ

δ
, ‖∂θj

F‖ρ−δ,r � ‖F‖ρ,r

δ
, ‖∂Ij

F‖ρ,r−δ � ‖F‖ρ,r

δ
, (6)

for any j = 1, . . . , n. Moreover, we also have the following bounds for the average of f :

|f̄ | � ‖f ‖ρ, ‖f̃ ‖ρ � 2‖f ‖ρ. (7)

Finally, if we restrict again to complex-valued functions, we have, for any θ, θ ′ ∈ Δ(ρ) and
I, I ′ ∈ B(r) (Mean Value Theorem),

∣∣f (θ) − f (θ ′)
∣∣ � ‖Dθf ‖ρ |θ − θ ′|,∣∣F(θ, I ) − F(θ ′, I ′)
∣∣ � ‖DθF‖ρ,r |θ − θ ′| + ‖DIF‖ρ,r |I − I ′|. (8)

3. Formulation of the result

Let H be a Hamiltonian written in action-angle variables (θ, I ) ∈ T
n × R

n. We suppose that
the Lagrangian torus T

n × {0} is invariant under the flow of H, with θ carrying linear quasi-
periodic motion, with vector of basic frequencies ω ∈ R

n. This implies that H takes the form

H(θ, I ) = λ + 〈ω, I 〉 + 1

2

〈
I,A(θ)I

〉 + [H]3(θ, I ), (9)

with 2π -periodic dependence in θ , λ ∈ R and A� = A. We say that the system (9) is in Kol-
mogorov normal form. We require this normal form to be non-resonant and non-degenerate (in
Kolmogorov’s sense), i.e., we ask ω to verify the Diophantine condition (1) and det(Ā) �= 0.
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Remark 1. By using the Diophantine assumption on ω, the dependence on θ of A(θ) can be re-
moved by means of a canonical change (see [9]). Thus, the non-degeneracy condition det(Ā) �= 0
on H is analogous to Kolmogorov’s one on the integrable system (3), det(D2

I h(I )) �= 0, for I = 0.

Now we state Kolmogorov Theorem.

Theorem 2 (Kolmogorov Theorem). Let H be a Hamiltonian written in action-angle variables,
(θ, I ) ∈ T

n × R
n, n � 2, 2π -periodic in θ , real analytic in the interior of D(ρ0, r0) and bounded

on the closure, for certain ρ0 > 0 and 0 < r0 � 1. We suppose that H is a (small) perturbation
of a non-resonant and non-degenerate Kolmogorov normal form (9),

H(θ, I ) = H(θ, I ) +F(θ, I ). (10)

More concretely, we assume that ω verifies the Diophantine condition (1), for certain 0 < γ � 1
and τ � n − 1, and the following quantitative estimates on H :

‖A‖ρ0 � α,
∣∣(Ā)−1

∣∣ � ᾱ,
∥∥[H]3

∥∥
ρ0,R

� α̃R3, ‖F‖ρ0,r0 � ε,

for any 0 � R � r0, with α, ᾱ, α̃ greater than one and 0 < ε � 1.
Given a fixed 0 < δ0 � min{ρ0/16, r0/32}, we suppose ε small enough so that

3 × 29+2τ n3α4ᾱ2α̃σ 3 ε

γ 2δ2τ+6
0

� 1, (11)

where σ = σ(τ,n,ω) � 1 is provided by Lemma 8. Then, there exists a canonical transformation
Ψ ∗(θ, I ) = (Ξ∗(θ),J ∗(θ, I )), with J ∗ of the form

J ∗(θ, I ) = (
Idn +B∗(θ)

)
I + h∗(θ),

where Ξ∗(θ) − θ , B∗(θ) and h∗(θ) are real analytic in the interior of Δ(ρ∗), with ρ∗ = ρ0 −
11δ0, bounded on the closure and 2π -periodic in θ , such that the Hamiltonian H ∗ = H ◦ Ψ ∗ is
in Kolmogorov normal form,

H ∗(θ, I ) = ā∗ + 〈ω, I 〉 + 1

2

〈
I,A∗(θ)I

〉 + [H ∗]3(θ, I ).

Hence, the torus T
n × {0} is invariant under the flow of H ∗, with linear quasi-periodic mo-

tion for the variable θ , having ω as vector of basic frequencies. Then, θ ∈ T
n 	→ Ψ ∗(θ,0) =

(Ξ∗(θ), h∗(θ)) gives the parameterization of an invariant Lagrangian torus of H , with ω-quasi-
periodic dynamics on θ . Moreover, we have the following estimates

‖Ψ ∗ − Id‖ρ∗,r∗ � δ0, ‖h∗‖ρ∗ � 3 × 28αᾱσ
ε

γ δτ+1
0

,

‖Ξ∗ − Idθ ‖ρ∗ � 9 × 27α2ᾱσ 2 ε

γ 2δ2τ+1
0

, ‖B∗‖ρ∗ � 9 × 29nα2ᾱσ 2 ε

γ 2δ
2(τ+1)
0

,

‖A∗‖ρ∗ � 4α,
∥∥(Ā∗)−1

∥∥
ρ∗ � 4ᾱ,

∥∥[H ∗]3
∥∥

ρ∗,R � 4α̃R3,

for any 0 � R � r∗ = r0/2 − 11δ0.
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Remark 3. As we claimed, condition (11) is fulfilled if γ is bounded away from zero by O(
√

ε).
Moreover, the displacement in action variables of the perturbed torus with respect to the unper-
turbed one is given by h∗(θ), for which we have an estimate of O(ε/γ ). We point out that the
displacement in the angular variables, given by Ξ∗ − Idθ , can be bigger if γ is small.

4. Canonical transformations

Let us start by describing (formally) a general step of Kolmogorov’s (iterative) method. For
this purpose we consider a Hamiltonian of the form

H(θ, I ) = a(θ) + 〈
ω + b(θ), I

〉 + 1

2

〈
I,A(θ)I

〉 + F(θ, I ), (12)

with A� = A and F = [H ]3. We also suppose that ω verifies (1) and that det(Ā) �= 0. For (12) to
be in Kolmogorov normal form (9) we require ã = 0 and b = 0. If we assume ã and b small (but
nonzero), Kolmogorov’s method looks for a canonical transformation, Φ , such that “squares”
the size of these terms. To explain it more precisely, let us assume for the moment that H is the
Hamiltonian (10) on the statement of Theorem 2 (“the initial system”). In this case, we have that ã

and b are of O(ε) and that det(Ā) �= 0, if ε is small. We set H(1) = H ◦ Φ and expand H(1) as
in (12) (see (24)). We want ã(1) and b(1) to become of O(ε2) after this first transformation. If we
iterate this process, the size of these “error terms” after s steps turns to be (“roughly speaking”)
of O(ε2s

). This “super-convergence,” introduced by Siegel [14], is used to overcome the small
divisors of the problem (see (39)).

We use canonical transformations defined as the flow time t = 1 of a suitable Hamiltonian
system, ż = Jn∇G(z), where G(θ, I ) is called the generating function of the transformation (Lie
method). We denote by ΦG

t (z) the flow of this system. If we set t = 1, we simply write ΦG(z).
We point out that if ∇G is 2π -periodic in θ , then ΦG

t − Id is also 2π -periodic in θ . Moreover,
under the assumption of smallness of ∇G, then ΦG

t is close to the identity. This smallness also
implies the convergence of the following expansion,

H ◦ ΦG
t = H + t

1! {H,G} + t2

2!
{{H,G},G} + t3

3!
{{{H,G},G}

,G
} + · · · , (13)

where {·,·} is the Poisson bracket, {f,g} = (∇f )�Jn∇g. Unfortunately, if we use (13) to bound
the transformed Hamiltonian H ◦ ΦG, without taking into account the particular simple form of
the canonical transformations we use, it seems not possible to obtain the estimates of Theorem 2.
What we have done is to compute explicitly the expressions of the different terms of H(1) =
H ◦ ΦG (see (24)) as function of the expansion (12) of H and of the particular form of G. For
this purpose, let us start by discussing ΦG

t more precisely.
By using the Lie method to prove Kolmogorov Theorem, it is natural to use generating func-

tions of the form (see [4])

G(θ, I ) = 〈ξ, θ〉 + c(θ) + 〈
d(θ), I

〉
, (14)

where ξ ∈ R
n and c, d are 2π -periodic in θ , with the normalizations c̄ = 0 and d̄ = 0. To con-

struct G we proceed as follows. We denote by Ĥ the Hamiltonian obtained by setting ã = 0 and
b = 0 in (12). It is clear that Ĥ is in Kolmogorov normal form and close to H . Then, we define G
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by asking H + {Ĥ ,G} to be also in Kolmogorov normal form. We point out that this condition
for G can be motivated, in the aim of the classical Newton method, by considering the linear
approximation of H ◦ ΦG with respect to G (see (13)). We obtain the following small divisors
equations for ξ , c and d (see (4)),

Lωc(θ) = ã(θ), Lωd(θ) + A(θ)
(
ξ + ∇θ c(θ)

) = b(θ). (15)

These equations can be solved (formally) by expanding them in Fourier series (5) and by us-
ing the assumption det(Ā) �= 0. The convergence of c and d is guaranteed by the Diophantine
condition (1) on ω (see Lemma 8). For more details, see the proof of Lemma 5.

The Hamiltonian system ż = Jn∇G(z) takes the form:

θ̇ = ∇IG(θ, I ) = d(θ), İ = −∇θG(θ, I ) = −ξ − ∇θ c(θ) − (
Dθd(θ)

)�
I. (16)

Remark 4. Two remarkable observations about (16) are that the equation for θ is uncoupled and
that the equation for I is linear with respect to I . Both are keystones of our proof.

We write the solutions of (16) as ΦG
t (θ0, I 0) = (Θt (θ0),I t (θ0, I 0)), where (θ0, I 0) mean

the initial conditions at t = 0, with Θt(θ0) − θ0 and I t (θ0, I 0) 2π -periodic in θ0. By assuming
smallness of ∇G, the components of ΦG

t can be expanded as

Θt
(
θ0) = θ0 + f t

(
θ0), (17)

I t
(
θ0, I 0) = (

Idn +Bt
(
θ0))I 0 + gt

(
θ0)

= (
Idn −(

Dθd
(
θ0))�

t + B̂t
(
θ0))I 0 − (

ξ + ∇θ c
(
θ0))t + ĝt

(
θ0). (18)

We skip the superscript t of (17) and (18) if t = 1. By using the integral expressions of (16),

θ(t) = θ0 +
t∫

0

d
(
θ(s)

)
ds, I (t) = I 0 −

t∫
0

(
ξ + ∇θ c

(
θ(s)

) + (
Dθd

(
θ(s)

))�
I (s)

)
ds,

we derive the following equations for f t , Bt , B̂t , gt and ĝt :

f t
(
θ0) =

t∫
0

d
(
Θs

(
θ0))ds, (19)

Bt
(
θ0) = −

t∫
0

(
Dθd

(
Θs

(
θ0)))�(

Idn +Bs
(
θ0))ds, (20)

B̂t
(
θ0) = −

t∫ (
Dθd

(
Θs

(
θ0)) − Dθd

(
θ0))�

ds −
t∫ (

Dθd
(
Θs

(
θ0)))�

Bs
(
θ0)ds, (21)
0 0
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gt
(
θ0) = −

t∫
0

(
ξ + ∇θ c

(
Θs

(
θ0)))ds −

t∫
0

(
Dθd

(
Θs

(
θ0)))�

gs
(
θ0)ds, (22)

ĝt
(
θ0) = −

t∫
0

(∇θ c
(
Θs

(
θ0)) − ∇θ c

(
θ0))ds −

t∫
0

(
Dθd

(
Θs

(
θ0)))�

gs
(
θ0)ds. (23)

Now, we show the action of ΦG on the Hamiltonian (12). As ΦG is canonical this means that,
if we perform the change of coordinates (θ, I ) = ΦG(θ ′, I ′) on the Hamiltonian system defined
by H(θ, I ), we obtain again a Hamiltonian system, with Hamilton function H(1)(θ ′, I ′) = H ◦
ΦG(θ ′, I ′). Let us compute (formally) the expression of H(1). For simplicity we skip the primes
of the new variables. We obtain

H(1)(θ, I ) = a
(
θ + f (θ)

) + 〈
ω + b

(
θ + f (θ)

)
,
(
Idn +B(θ)

)
I + g(θ)

〉
+ 1

2

〈(
Idn +B(θ)

)
I + g(θ),A

(
θ + f (θ)

)((
Idn +B(θ)

)
I + g(θ)

)〉
+ F

(
θ + f (θ),

(
Idn +B(θ)

)
I + g(θ)

)
= a(1)(θ) + 〈

ω + b(1)(θ), I
〉 + 1

2

〈
I,A(1)(θ)I

〉 + F (1)(θ, I ), (24)

with

a(1) = a
(
θ + f (θ)

) + 〈
ω + b

(
θ + f (θ)

)
, g(θ)

〉 + 1

2

〈
g(θ),A

(
θ + f (θ)

)
g(θ)

〉
+ F

(
θ + f (θ), g(θ)

)
,

b(1) = B(θ)�ω + (
Idn +B(θ)

)�(
b
(
θ + f (θ)

) + A
(
θ + f (θ)

)
g(θ) + ∇IF

(
θ + f (θ), g(θ)

))
,

A(1) = (
Idn +B(θ)

)�(
A

(
θ + f (θ)

) + D2
I F

(
θ + f (θ), g(θ)

))(
Idn +B(θ)

)
,

F (1) = [
F

(
θ + f (θ),

(
Idn +B(θ)

)
I + g(θ)

)]
3.

Now, we recall that ξ , c and d verify (15). Then, we have (see the definition of Lω)

〈ω,g〉 = −〈
ω, ξ + ∇θ c(θ)

〉 + 〈
ω, ĝ(θ)

〉 = −〈ω, ξ 〉 − ã(θ) + 〈
ω, ĝ(θ)

〉
,

〈ω, ĝ〉 = −
〈
ω,

1∫
0

(∇θ c
(
Θs(θ)

) − ∇θ c(θ)
)
ds

〉
−

〈
ω,

1∫
0

(
Dθd

(
Θs(θ)

))�
gs(θ) ds

〉

= −
1∫

0

(
ã
(
Θs(θ)

) − ã(θ)
)
ds −

1∫
0

(
b
(
Θs(θ)

) − A
(
Θs(θ)

)(
ξ + ∇θ c

(
Θs(θ)

)))�
gs(θ) ds,

(25)

B�ω = −Dθd(θ)ω + B̂(θ)�ω = −b(θ) + A(θ)
(
ξ + ∇θ c(θ)

) + B̂(θ)�ω,
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B̂�ω = −
1∫

0

(
Dθd

(
Θs(θ)

) − Dθd(θ)
)
ωds −

1∫
0

Bs(θ)�Dθd
(
Θs(θ)

)
ωds

= −
1∫

0

(
b
(
Θs(θ)

) − b(θ)
)
ds +

1∫
0

(
A

(
Θs(θ)

)(
ξ + ∇θ c

(
Θs(θ)

)) − A(θ)
(
ξ + ∇θ c(θ)

))
ds

−
1∫

0

Bs(θ)�
(
b
(
Θs(θ)

) − A
(
Θs(θ)

)(
ξ + ∇θ c

(
Θs(θ)

)))
ds. (26)

Using these expressions we can rewrite H(1) into the following form:

a(1) = ā − 〈ω, ξ 〉 + (
ã
(
θ + f (θ)

) − ã(θ)
) + 〈

ω, ĝ(θ)
〉 + 〈

b
(
θ + f (θ)

)
, g(θ)

〉
+ 1

2

〈
g(θ),A

(
θ + f (θ)

)
g(θ)

〉 + F
(
θ + f (θ), g(θ)

)
, (27)

b(1) = B̂(θ)�ω + (
b
(
θ + f (θ)

) − b(θ)
) + B(θ)�b

(
θ + f (θ)

) + (
A

(
θ + f (θ)

) − A(θ)
)
g(θ)

+ A(θ)ĝ(θ) + B(θ)�A
(
θ + f (θ)

)
g(θ) + (

Idn +B(θ)
)�∇IF

(
θ + f (θ), g(θ)

)
, (28)

A(1) = A(θ) + (
A

(
θ + f (θ)

) − A(θ)
) + B(θ)�A

(
θ + f (θ)

)(
Idn +B(θ)

)
+ A

(
θ + f (θ)

)
B(θ) + (

Idn +B(θ)
)�

D2
I F

(
θ + f (θ), g(θ)

)(
Idn +B(θ)

)
, (29)

F (1) = F(θ, I ) + [
F

(
θ + f (θ),

(
Idn +B(θ)

)
I + g(θ)

) − F(θ, I )
]

3. (30)

5. The Iterative Lemma

In this section we state and prove a result controlling a general step of Kolmogorov’s iterative
process (Lemma 5 can be seen as a quantitative version of Section 4).

Lemma 5 (Iterative Lemma). Let H be a Hamiltonian written in action-angle variables, (θ, I ) ∈
T

n × R
n, n � 2, 2π -periodic in θ , real analytic in the interior of D(ρ, r) and bounded on the

closure, for certain ρ > 0 and 0 < r � 1. We expand H as

H(θ, I ) = a(θ) + 〈
ω + b(θ), I

〉 + 1

2

〈
I,A(θ)I

〉 + F(θ, I ),

where F = [H ]3, and we assume det(Ā) �= 0 and the following bounds:
‖ã‖ρ � μ̃, ‖b‖ρ � μ̄, ‖A‖ρ � m,

∣∣(Ā)−1
∣∣ � m̄, ‖F‖ρ,R � m̃R3, (31)

for any 0 � R � r , with m,m̄, m̃ greater than one. Moreover, we suppose that ω ∈ R
n verifies

the Diophantine condition (1), for certain 0 < γ � 1 and τ � n − 1.
Given a fixed 0 < δ � min{ρ, r}/6, we define

μ = μ̄ + μ̃

τ+1
, (32)
γ δ
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and suppose

13n2m3m̄2m̃σ 2 μ

γ δτ+2
� 1, (33)

where σ = σ(n, τ,ω) � 1 is provided by Lemma 8. Then, there exists a canonical transformation
Φ(θ, I ) = (Θ(θ),I(θ, I )), with I of the form

I(θ, I ) = (
Idn +B(θ)

)
I + g(θ),

such that Θ(θ) − θ , B(θ) and g(θ) are real analytic in the interior of Δ(ρ(1)), where ρ(1) =
ρ − 5δ, bounded on the closure and 2π -periodic in θ , that transforms H into H(1) = H ◦Φ , that
we expand as

H(1)(θ, I ) = a(1)(θ) + 〈
ω + b(1)(θ), I

〉 + 1

2

〈
I,A(1)(θ)I

〉 + F (1)(θ, I ),

being F (1) = [H(1)]3, with bounds in the domain D(ρ(1), r(1)), where r(1) = r − 5δ, given by

μ̃(1) = 50nm3m̄2σ 2μ2, μ̄(1) = 80n2m4m̄2m̃σ 3 μ2

γ δτ+1
, (34)

m(1) = m + 39n2m3m̄m̃σ 2 μ

γ δτ+1
, m̄(1) = m̄ + 78n2m3m̄3m̃σ 2 μ

γ δτ+1
, (35)

m̃(1) = m̃ + 2n5m2m̄m̃σ 2 μ

γ δτ+5
, (36)

where the expressions displayed above play the same rôle for H(1) than the ones without the
superscript (1) for H in (31). Moreover, Φ satisfies the bounds

‖Φ − Id‖ρ(1),r(1) � δ, ‖g‖ρ(1) � 4mm̄σμ, (37)

‖Θ − Idθ ‖ρ(1) � 3m2m̄σ 2 μ

γ δτ
, ‖B‖ρ(1) � 6nm2m̄σ 2 μ

γ δτ+1
. (38)

Proof. We look for Φ = ΦG with G(θ, I ) given by (14), where ξ , c and d are the solutions
of (15) with the normalizations c̄ = 0 and d̄ = 0. The existence and uniqueness of these solutions
is easy to establish. First, if we expand a(θ) and c(θ) in Fourier series (5) and consider the action
of the differential operator Lω (4) on c, it is immediate to derive the (formal) solution

c(θ) =
∑

k∈Zn\{0}

ak

i〈k,ω〉ei〈k,θ〉, (39)

where {ak}k∈Zn are the Fourier coefficients of a(θ). To ensure the convergence of c, we use the
estimates on small divisors of Lemma 8, thus obtaining

‖c‖ρ−δ � σ
‖ã‖ρ

τ
� σ

μ̃

τ
,

γ δ γ δ
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and by applying Cauchy estimates (6),

‖∇θ c‖ρ−2δ � ‖c‖ρ−δ

δ
� σ

μ̃

γ δτ+1
.

Cauchy estimates on the derivatives are extensively used along the paper without any explicit
mention. If we compute the average with respect to θ of the second equation of (15), we obtain

ξ = (Ā)−1(b̄ − A∇θ c), (40)

and hence (see (7)),

|ξ | � ∣∣(Ā)−1
∣∣(‖b‖ρ + ‖A‖ρ‖∇θ c‖ρ−2δ

)
� m̄

(
μ̄ + mσ

μ̃

γ δτ+1

)
� mm̄σμ.

Consequently,

|ξ | + ‖∇θ c‖ρ−2δ � mm̄σμ + σ
μ̃

γ δτ+1
� 2mm̄σμ.

If we take ξ defined by (40) we have 〈b−A(ξ +∇θ c)〉θ = 0. Then, by expanding b−A(ξ +∇θ c)

in Fourier series, we derive the formal expression of d in analogy to c in (39). Next to that, by
using Lemma 8 again, we obtain the following estimate for d :

‖d‖ρ−3δ � σ

γ δτ

(‖b‖ρ + ‖A‖ρ

(|ξ | + ‖∇θ c‖ρ−2δ

))
� σ

γ δτ

(
μ̄ + 2m2m̄σμ

)
� 3m2m̄σ 2 μ

γ δτ
. (41)

From (41) we have

max
{‖Dθd‖ρ−4δ,

∥∥(Dθd)�
∥∥

ρ−4δ

}
� n

‖d‖ρ−3δ

δ
� 3nm2m̄σ 2 μ

γ δτ+1
.

Now we control the action of the canonical transformation ΦG. For this purpose, we consider the
system of ordinary differential equations (16). First we solve the equation θ̇ = d(θ). We observe
that from (41) and condition (33) we have ‖d‖ρ−3δ � δ. Then, by using elemental arguments on
the solutions of an ordinary differential equation (more precisely, the solutions are defined until
they reach the boundary of the domain), we have that Θt(θ) is defined for any θ ∈ Δ(ρ − 5δ)

and 0 � t � 1, and verifies (see (17) and (19))

sup
t∈[0,1]

{∥∥Θt − Idθ

∥∥
ρ−5δ

} = sup
t∈[0,1]

{∥∥f t
∥∥

ρ−5δ

}
� sup

t∈[0,1]
{
t · ‖d‖ρ−3δ

}
� 3m2m̄σ 2 μ

γ δτ
. (42)

We observe that, in particular, the expression (42) is smaller than δ. After we have solved the
equation for θ , we replace θ ≡ Θt(θ) in the equation for I , which becomes a linear differential
equation on I . Thus, for any θ ∈ Δ(ρ − 5δ) and I ∈ C

n, the solution of this equation,

I t (θ, I ) = (
Idn +Bt(θ)

)
I + gt (θ),



J. Villanueva / J. Differential Equations 244 (2008) 2251–2276 2263
is also defined for any 0 � t � 1. By using the integral equation of gt (see (22)) we have

∥∥gt
∥∥

ρ−5δ
� t

(|ξ | + ‖∇θ c‖ρ−2δ

) +
t∫

0

∥∥(Dθd)�
∥∥

ρ−4δ

∥∥gs
∥∥

ρ−5δ
ds

� 2mm̄σμ +
t∫

0

3nm2m̄σ 2 μ

γ δτ+1

∥∥gs
∥∥

ρ−5δ
ds,

for any 0 � t � 1. If we apply Gronwall’s inequality we obtain (see (33))

sup
t∈[0,1]

{∥∥gt
∥∥

ρ−5δ

}
� 2mm̄σμ exp

{
3nm2m̄σ 2 μ

γ δτ+1

}
� 4mm̄σμ. (43)

We repeat the same process for Bt (see (20)). Then, for any 0 � t � 1, we have

∥∥Bt
∥∥

ρ−5δ
�

t∫
0

∥∥(Dθd)�
∥∥

ρ−4δ

(
1 + ∥∥Bs

∥∥
ρ−5δ

)
ds

� 3nm2m̄σ 2 μ

γ δτ+1
+

t∫
0

3nm2m̄σ 2 μ

γ δτ+1

∥∥Bs
∥∥

ρ−5δ
ds.

Using Gronwall again we obtain

sup
t∈[0,1]

{∥∥Bt
∥∥

ρ−5δ

}
� 3nm2m̄σ 2 μ

γ δτ+1
exp

{
3nm2m̄σ 2 μ

γ δτ+1

}
� 6nm2m̄σ 2 μ

γ δτ+1
.

Then, we have

sup
t∈[0,1]

{∥∥I t − IdI

∥∥
ρ−5δ,r−δ

}
� sup

t∈[0,1]
{∥∥Bt

∥∥
ρ−5δ

}
(r − δ) + sup

t∈[0,1]
{∥∥gt

∥∥
ρ−5δ

}

� 6nm2m̄σ 2(r − δ)
μ

γ δτ+1
+ 4mm̄σμ � 8nm2m̄σ 2 μ

γ δτ+1
, (44)

which from (33) is smaller than δ. Bounds (42) and (44) on the components of ΦG
t give the

inequality ‖Φ − Id‖ρ(1),r(1) � δ on the statement, and justify that the compositions involved in
the computation of H(1) (according to formulas of Section 4) are well defined in D(ρ−5δ, r −δ).
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To control H(1) we also have to consider ĝ and B̂ . For ĝ we have (see (23) for t = 1 and (25))

‖ĝ‖ρ−5δ � sup
t∈[0,1]

{∥∥∇θ c
(
Θt(θ)

) − ∇θ c(θ)
∥∥

ρ−5δ

} + ∥∥(Dθd)�
∥∥

ρ−4δ
sup

t∈[0,1]
{∥∥gt

∥∥
ρ−5δ

}

� 3nm2m̄σ 3 μ̃μ

γ 2δ2τ+2
+ 12nm3m̄2σ 3 μ2

γ δτ+1
� 15nm3m̄2σ 3 μ2

γ δτ+1
, (45)

∥∥〈ω, ĝ〉∥∥
ρ−5δ

� sup
t∈[0,1]

{∥∥ã
(
Θt(θ)

) − ã(θ)
∥∥

ρ−5δ

}
+ n

(‖b‖ρ + ‖A‖ρ

(|ξ | + ‖∇θ c‖ρ−2δ

))
sup

t∈[0,1]
{∥∥gt

∥∥
ρ−5δ

}

� 3nm2m̄σ 2 μμ̃

γ δτ+1
+ 4nmm̄σμ

(
μ̄ + 2m2m̄σμ

)
� 12nm3m̄2σ 2μ2, (46)

where we use the Mean Value Theorem (8) and Cauchy estimates to bound

sup
t∈[0,1]

{∥∥ã
(
Θt(θ)

) − ã(θ)
∥∥

ρ−5δ

}
� ‖Dθ ã‖ρ−δ sup

t∈[0,1]
{∥∥f t

∥∥
ρ−5δ

}
� n

‖ã‖ρ

δ
sup

t∈[0,1]
{∥∥f t

∥∥
ρ−5δ

}
,

and, bounding component by component,

sup
t∈[0,1]

{∥∥∇θ c
(
Θt(θ)

) − ∇θ c(θ)
∥∥

ρ−5δ

}
� n

‖c‖ρ−δ

δ2
sup

t∈[0,1]
{∥∥f t

∥∥
ρ−5δ

}
.

Moreover, we also use that |(·)�| � n|(·)|, being (·) an n-dimensional vector or a matrix with n

rows. For further uses we observe that this implies the bound |〈(·)1, (·)2〉| � n|(·)1| · |(·)2|.
To bound B̂�ω we consider (26) for t = 1. Then, we add and subtract A(θ)(ξ +∇θ c(Θ

s(θ)))

inside the second integral, thus obtaining

∥∥B̂�ω
∥∥

ρ−5δ
� sup

t∈[0,1]
{∥∥b

(
Θt(θ)

) − b(θ)
∥∥

ρ−5δ

}
+ sup

t∈[0,1]
{∥∥A

(
Θt(θ)

) − A(θ)
∥∥

ρ−5δ

}(|ξ | + ‖∇θ c‖ρ−2δ

)
+ ‖A‖ρ sup

t∈[0,1]
{∥∥∇θ c

(
Θt(θ)

) − ∇θ c(θ)
∥∥

ρ−5δ

}
+ sup

t∈[0,1]
{∥∥(

Bt
)�∥∥

ρ−5δ

}(‖b‖ρ + ‖A‖ρ

(|ξ | + ‖∇θ c‖ρ−2δ

))

� 3m2m̄σ 2 μ

γ δτ

(
n
μ̄

δ
+ 2n2m2m̄σ

μ

δ
+ nmσ

μ̃

γ δτ+2

)

+ 6n2m2m̄σ 2 μ

γ δτ+1

(
μ̄ + 2m2m̄σμ

)

� 26n2m4m̄2σ 3 μ2

γ δτ+1
. (47)
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Here we use (bounding again component by component)

sup
t∈[0,1]

{∥∥b
(
Θt(θ)

) − b(θ)
∥∥

ρ−5δ

}
� n

‖b‖ρ

δ
sup

t∈[0,1]
{∥∥f t

∥∥
ρ−5δ

}
,

sup
t∈[0,1]

{∥∥A
(
Θt(θ)

) − A(θ)
∥∥

ρ−5δ

}
� n2 ‖A‖ρ

δ
sup

t∈[0,1]
{∥∥f t

∥∥
ρ−5δ

}
.

At this time we have all the ingredients needed to bound the (transformed) Hamiltonian H(1) =
H ◦ ΦG (see (24)) in the domain D(ρ − 5δ, r − 5δ). For a(1) we have (see (27))

∥∥a(1) − ā + 〈ω, ξ 〉∥∥
ρ−5δ

�
∥∥ã

(
Θ(θ)

) − ã(θ)
∥∥

ρ−5δ
+ ∥∥〈

ω, ĝ(θ)
〉∥∥

ρ−5δ
+ n‖b‖ρ‖g‖ρ−5δ

+ n

2
‖A‖ρ‖g‖2

ρ−5δ + ∥∥F
(
θ + f (θ), g(θ)

)∥∥
ρ−5δ

� 3nm2m̄σ 2 μμ̃

γ δτ+1
+ 12nm3m̄2σ 2μ2 + 4nmm̄σμμ̄

+ 8nm3m̄2σ 2μ2 + 64m3m̄3m̃σ 3μ3

� 25nm3m̄2σ 2μ2,

where we use (see hypothesis (31) on F )

∥∥F
(
θ + f (θ), g(θ)

)∥∥
ρ−5δ

� m̃‖g‖3
ρ−5δ (48)

and that 64m̄m̃σμ � n (see (33) and recall that δ � 1/6). To obtain (48) we require ‖g‖ρ−5δ � r ,
which is guaranteed by (33) and (43). From here, we derive the estimate (see (7))

∥∥ã(1)
∥∥

ρ−5δ
� 2

∥∥a(1) − ā + 〈ω, ξ 〉∥∥
ρ−5δ

� 50nm3m̄2σ 2μ2.

Remark 6. If instead of the bound (46) for ‖〈ω, ĝ〉‖ρ−5δ , that follows from formula (25), we use
the direct (but worst) estimate n|ω|‖ĝ‖ρ−5δ , with the bound on ĝ given by (45), then the estimate
of O(μ2) for ‖ã(1)‖ρ−5δ turns to be of O(μ2/(γ δτ+1)).

For b(1) we have (see (28))

∥∥b(1)
∥∥

ρ−5δ
�

∥∥B̂�ω
∥∥

ρ−5δ
+ ∥∥b

(
Θ(θ)

) − b(θ)
∥∥

ρ−5δ
+ ∥∥B�∥∥

ρ−5δ
‖b‖ρ

+ ∥∥A
(
Θ(θ)

) − A(θ)
∥∥

ρ−5δ
‖g‖ρ−5δ + ‖A‖ρ‖ĝ‖ρ−5δ + ∥∥B�∥∥

ρ−5δ
‖A‖ρ‖g‖ρ−5δ

+ (
1 + ∥∥B�∥∥

ρ−5δ

)∥∥∇IF
(
θ + f (θ), g(θ)

)∥∥
ρ−5δ

� 26n2m4m̄2σ 3 μ2

γ δτ+1
+ 3nm2m̄σ 2 μμ̄

γ δτ+1
+ 6n2m2m̄σ 2 μμ̄

γ δτ+1

+ 12n2m4m̄2σ 3 μ2

τ+1
+ 15nm4m̄2σ 3 μ2

τ+1
+ 24n2m4m̄2σ 3 μ2

τ+1
γ δ γ δ γ δ
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+ 36m2m̄2m̃σ 2r
μ2

δ

(
1 + 6n2m2m̄σ 2 μ

γ δτ+1

)

� 80n2m4m̄2m̃σ 3 μ2

γ δτ+1
, (49)

where we use Lemma 9 to bound

∥∥∇IF
(
θ + f (θ), g(θ)

)∥∥
ρ−5δ

� 9

4
m̃

r

δ
‖g‖2

ρ−5δ. (50)

To write (50) we recall that 0 < δ � r/3 and observe that from (33) we have ‖g‖ρ−5δ � r − δ.
Moreover, in (49) we also use 6n2m2m̄σ 2μ/(γ δτ+1) � 1 and 1/δ � 1/(6δτ+1).

Remark 7. Another technical comment refers to the bound on ‖B̂�ω‖ρ−5δ we use to obtain (49).
From formula (26) we have obtained in (47) an estimate for ‖B̂�ω‖ρ−5δ of O(μ2/(γ δτ+1)).
However, we observe that the direct bound n|ω|‖B̂‖ρ−5δ , by taking B̂ from (21), produces
an estimate of O(μ2/(γ 2δ2τ+2)), leading to a bound for ‖b(1)‖ρ−5δ of the same order (worst
than (49)).

Now it is the turn of A(1) (see (29)),

∥∥A(1) − A
∥∥

ρ−5δ

�
∥∥A

(
Θ(θ)

) − A(θ)
∥∥

ρ−5δ
+ ‖A‖ρ

(‖B‖ρ−5δ + ∥∥B�∥∥
ρ−5δ

+ ‖B‖ρ−5δ

∥∥B�∥∥
ρ−5δ

)
+ (

1 + ‖B‖ρ−5δ

)(
1 + ∥∥B�∥∥

ρ−5δ

)∥∥D2
I F

(
θ + f (θ), g(θ)

)∥∥
ρ−5δ

� 3n2m3m̄σ 2 μ

γ δτ+1
+ 6nm3m̄σ 2 μ

γ δτ+1

(
1 + n + 6n2m2m̄σ 2 μ

γ δτ+1

)

+ 12nmm̄m̃r2σ
μ

δ2

(
1 + 6nm2m̄σ 2 μ

γ δτ+1

)(
1 + 6n2m2m̄σ 2 μ

γ δτ+1

)

� 39n2m3m̄m̃σ 2 μ

γ δτ+1
,

where we use Lemma 9 again, combined with the inequality ‖g‖ρ−5δ � r − 2δ, to obtain

∥∥D2
I F

(
θ + f (θ), g(θ)

)∥∥
ρ−5δ

� 3nm̃
r2

δ2
‖g‖ρ−5δ.

Moreover, we also point out that 1/δ2 � 1/δτ+1.
At this point we can control (Ā(1))−1. We start by writing

Ā(1) = Ā + (
A(1) − A

) = Ā
(
Idn +(Ā)−1(A(1) − A

))
.

By using again hypothesis (33), we have

∣∣(Ā)−1(A(1) − A
)∣∣ �

∣∣(Ā)−1
∣∣∥∥A(1) − A

∥∥
ρ−5δ

� 39n2m3m̄2m̃σ 2 μ

τ+1
� 1

.

γ δ 2
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Hence, we obtain (using Neumann’s series to compute the inverse)

∣∣(Ā(1)
)−1∣∣ � |(Ā)−1|

1 − |(Ā)−1|‖A(1) − A‖ρ−5δ

= ∣∣(Ā)−1
∣∣ + |(Ā)−1|2‖A(1) − A‖ρ−5δ

1 − |(Ā)−1|‖A(1) − A‖ρ−5δ

�
∣∣(Ā)−1

∣∣ + 2
∣∣(Ā)−1

∣∣2∥∥A(1) − A
∥∥

ρ−5δ
� m̄ + 78n2m3m̄3m̃σ 2 μ

γ δτ+1
. (51)

To finish the proof of Lemma 5 it only remains to consider F (1) (see (30)). We define

F(θ, I ) = F
(
θ + f (θ),

(
Idn +B(θ)

)
I + g(θ)

) − F(θ, I ),

and we have F (1) = F + [F]3. From part (b) of Lemma 9 we can express [F]3 as

[F]3 =
1∫

0

1

2
(1 − s)2D3

IF(θ, sI )[I, I, I ]ds. (52)

To control [F]3 first we use the Mean Value Theorem (8) to bound F . We have

‖F‖ρ−5δ,r−2δ � ‖DθF‖ρ−δ,r‖f ‖ρ−5δ + ‖DIF‖ρ,r−δ

∥∥B(θ)I + g(θ)
∥∥

ρ−5δ,r−2δ

� n
‖F‖ρ,r

δ

(‖f ‖ρ−5δ + ‖B‖ρ−5δ(r − 2δ) + ‖g‖ρ−5δ

)

� nm̃
r3

δ

(
3m2m̄σ 2 μ

γ δτ
+ 6nm2m̄σ 2(r − 2δ)

μ

γ δτ+1
+ 4mm̄σμ

)

� 12n2m2m̄m̃σ 2 μ

γ δτ+2
.

To obtain this estimate for F we recall that ‖f ‖ρ−5δ � δ and ‖I − IdI ‖ρ−5δ,r−2δ � δ. Thus, we
derive the following bound for the third order derivatives of F ,

∥∥∂3
Ij IkIl

F
∥∥

ρ−5δ,r−5δ
� 12n2m2m̄m̃σ 2 μ

γ δτ+5
, (53)

and hence, for any 0 � R � r − 5δ, we obtain

∥∥F (1) − F
∥∥

ρ−5δ,r−5δ
�

1∫
0

6n5m2m̄m̃σ 2 μ

γ δτ+5
R3(1 − s)2 ds

� 2n5m2m̄m̃σ 2 μ

γ δτ+5
R3, (54)

where we observe that bounding the multi-linear operator D3
IF contributes with a factor n3. �
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6. Proof of Theorem 2

This section is devoted to prove Kolmogorov Theorem itself. This result follows from an
inductive application of Lemma 5.

For this purpose, the first step is to arrange the initial Hamiltonian H = H+F of (10) so that
Lemma 5 can be applied to it. Thus, we set H(0) = H and expand H(0) as in (12),

H(0)(θ, I ) = a(0)(θ) + 〈
ω + b(0)(θ), I

〉 + 1

2

〈
I,A(0)(θ)I

〉 + F (0)(θ, I ),

with

a(0) = H(θ,0), b(0) = ∇IF(θ,0), A(0) = D2
I H(θ,0), F (0) = [H ]3.

Moreover, we observe that ã(0) = F(θ,0) − 〈F(θ,0)〉θ . If we define ρ(0) = ρ0 and r(0) = r0/2,
we obtain the following bounds (we use (6) and (7)),

∥∥ã(0)
∥∥

ρ(0) � 2‖F‖ρ0,r0 � 2ε,

∥∥b(0)
∥∥

ρ(0) � ‖F‖ρ0,r0

r0
� ε

r0
,

∥∥A(0) −A
∥∥

ρ(0) � n

(r0/2)2
‖F‖ρ0,r0 � 4n

ε

r2
0

,

∥∥A(0)
∥∥

ρ(0) � ‖A‖ρ0 + ∥∥A(0) −A
∥∥

ρ(0) � α + 4n
ε

r2
0

� 2α, (55)

where we use that 4nε/r2
0 � 1 � α (see (11)). We also observe that (55) implies the following

bound on the average of A(0) (compare (51)),

∣∣(Ā(0)
)−1∣∣ � |(Ā)−1|

1 − |(Ā)−1|‖A(0) −A‖ρ(0)

� 2ᾱ,

where we use now that 4nᾱε/r2
0 � 1/2. Moreover, if we use part (b) of Lemma 9 we obtain, for

any 0 � R � r(0) (compare (52), (53) and (54)),

∥∥[F]3
∥∥

ρ(0),R
�

1∫
0

1

2
n3 ‖F‖ρ0,r0

(r0/6)3
R3(1 − s)2 ds = 36n3 ε

r3
0

R3.

Hence, using that 36n3ε/r3
0 � 1 � α̃, we have

∥∥F (0)
∥∥

ρ(0),R
�

∥∥[H]3
∥∥

ρ(0),R
+ ∥∥[F]3

∥∥
ρ(0),R

+ �
(

α̃ + 36n3 ε

r3
0

)
R3 � 2α̃R3.

From these bounds on H(0) we introduce the following quantities,
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μ̃(0) = 2ε, μ̄(0) = ε

r0
, m(0) = 2α,

m̄(0) = 2ᾱ, m̃(0) = 2α̃, δ(0) = δ0. (56)

Moreover, we also define (see (32))

μ(0) = μ̄(0) + μ̃(0)

γ (δ(0))τ+1
= ε

r0
+ 2ε

γ δτ+1
0

� 3
ε

γ δτ+1
0

.

Now we proceed by induction. We suppose that we have applied s times Lemma 5, for certain
s � 0, and we verify that we can apply it again. This means that we have computed, recursively,
H(j) = H(j−1) ◦ Φ(j−1), for j = 1, . . . , s, starting with H(0). Here, Φ(j−1) is the canonical
transformation associated to the j -application of the lemma. When applying Lemma 5 to H(0),
we take the quantities ρ, r , δ, μ̄, μ̃, μ, m, m̄ and m̃ on the statement of the lemma as the values
with the superscript (0) introduced in (56). When applying Lemma 5 to H(j), for j � 1, these
quantities are replaced by different ones, now labeled with the superscript (j), where

δ(j) = δ0

2j
, ρ(j) = ρ(j−1) − 5δ(j−1), r(j) = r(j−1) − 5δ(j−1), j � 1,

and μ̄(j), μ̃(j), μ(j), m(j), m̄(j), m̃(j) are defined recursively from the ones of the step j − 1, by
using the bounds on the transformed Hamiltonian given by Lemma 5 (see (34)–(36)). Moreover,
to simplify the discussion of these recursive bounds, we assume

m(j) � 2m(0), m̄(j) � 2m̄(0), m̃(j) � 2m̃(0), j = 1, . . . , s. (57)

To start the induction process, we remark that the condition δ(j) � min{ρ(j), r(j)}/6 of Lemma 5
is automatically fulfilled from the hypothesis δ0 � min{ρ0/16, r0/32}. In order to check this, we
observe that limj→+∞ ρ(j) = ρ0 − 10δ0 = ρ∗ + δ0 and limj→+∞ r(j) = r0/2 − 10δ0 = r∗ + δ0.
Furthermore, condition (33) of Lemma 5 written for H(j) reads as

13n2(m(j)
)3(

m̄(j)
)2

m̃(j)σ 2 μ(j)

γ (δ(j))τ+2
� 1. (58)

By assuming (56) and (57), we have that (58) holds provided that

13 × 212n2α3ᾱ2α̃σ 22j (τ+2) μ(j)

γ δτ+2
0

� 1. (59)

If (57) and (59) are fulfilled, for certain j � 0, then Lemma 5 can be applied to H(j) and we
obtain the following bound for μ(j+1) (see (32) and (34)),

μ(j+1) = μ̄(j+1) + μ̃(j+1)

γ (δ(j+1))τ+1

= 80n2(m(j)
)4(

m̄(j)
)2

m̃(j)σ 3 (μ(j))2

(j) τ+1
+ 50n

(
m(j)

)3(
m̄(j)

)2
σ 2 (μ(j))2

(j+1) τ+1
γ (δ ) γ (δ )
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�
(
5 × 218n2α4ᾱ2α̃σ 3 + 25 × 2τ+12nα3ᾱ2σ 2)2j (τ+1) (μ

(j))2

γ δτ+1
0

� χ̃2j (τ+1) (μ
(j))2

γ δτ+1
0

,

where we define

χ̃ = 345 × 2τ+12nα4ᾱ2α̃σ 3, (60)

and observe that n � τ +1 � 2τ . From the inductive hypotheses we are assuming, this recurrence
can be iterated backwards, thus obtaining for any j = 0, . . . , s,

μ(j) �
(

2τ+1 χ̃

γ δτ+1
0

)2j −1

2−j (τ+1)
(
μ(0)

)2j = γ δτ+1
0

χ̃
2−(j+1)(τ+1)

(
3 × 2τ+1χ̃

ε

γ 2δ
2(τ+1)
0

)2j

.

This expression motivates to introduce

χ = 3 × 2τ+1χ̃
ε

γ 2δ
2(τ+1)
0

, (61)

which from condition (11) is bounded by χ � 1/2 (we recall that δ0 � 1/32). Hence, if we prove
that we can iterate for any j � 0, then limj→+∞ μ(j) = 0.

At this point, condition (59) can be re-written in the following form,

13 × 210−τ n2α3ᾱ2α̃σ 2 2j+1

χ̃δ0
χ2j � 1. (62)

By using the definition of χ̃ (see (60)) and the inequalities j + 1 � 2j and n � 2τ , then (62)
holds if, for instance, (2χ/δ0)

2j � 1. Thus, we observe that (11) implies that 2χ/δ0 � 1.
To finish the induction process we verify the assumptions (57) for j = s + 1. By using the

recursive definition of m(j) (see (35)), we obtain

m(s+1) = m(0) +
s∑

j=0

39n2(m(j)
)3

m̄(j)m̃(j)σ 2 μ(j)

γ (δ(j))τ+1

� m(0) + m(0)
s∑

j=0

39 × 28−τ n2α2ᾱα̃σ 2 χ2j

χ̃

� m(0) + m(0)

s∑
j=0

χj+1 � 2m(0),

where we use again that χ � 1/2. The bound m̄(s+1) � 2m(0) follows from similar computations
(see (35) again). Finally, the bound m̃(s+1) � 2m̃(0) is just slightly different (see (36)),
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m̃(s+1) = m̃(0) +
s∑

j=0

2n5(m(j)
)2

m̄(j)m̃(j)σ 2 μ(j)

γ (δ(j))τ+5

� m̃(0) + m̃(0)
s∑

j=0

23−τ n5α2ᾱσ 224(j+1) χ2j

χ̃δ4
0

�
(

1 + 28−τ n5α2ᾱσ 2 χ

χ̃δ4
0

)
m̃(0)

�
(

1 + 3 × 29+2τ n3α2ᾱσ 2 ε

γ 2δ2τ+6
0

)
m̃(0) � 2m̃(0).

Here, we have bounded 24(j+1)χ2j
by (24χ)j+1 and the ratio of this geometric progression

by 1/2 (see (11)). Then we compute χ/χ̃ from (61) and use again condition (11) to control the
expression inside the brackets (recall that n � 2τ ).

To finish the proof of Theorem 2, it only remains to study the convergence of the composition
of the infinite sequence of canonical transformations {Φ(s)}s�0. We define

Ψ (s) = Φ(0) ◦ · · · ◦ Φ(s), s � 0,

and we want to prove that there exists Ψ ∗ = lims→+∞ Ψ (s). We recall that

Φ(s)(θ, I ) = (
Θ(s)(θ),I(s)(θ, I )

)
, I(s)(θ, I ) = (

Idn +B(s)(θ)
)
I + g(s)(θ).

This implies that we can write Ψ (s) and Ψ ∗ as

Ψ (s)(θ, I ) = (
Ξ(s)(θ),J (s)(θ, I )

)
, J (s)(θ, I ) = (

Idn +B(s)(θ)
)
I + h(s)(θ),

Ψ ∗(θ, I ) = (
Ξ∗(θ),J ∗(θ, I )

)
, J ∗(θ, I ) = (

Idn +B∗(θ)
)
I + h∗(θ).

Thus, what we have to prove is the convergence of Ξ(s), B(s) and h(s) to Ξ∗, B∗ and h∗, respec-
tively. First, we obtain the formula

Ξ(s)(θ) = Θ(0) ◦ Θ(1) ◦ · · · ◦ Θ(s)(θ),

and the following recurrences for B(s) and h(s):

B(s)(θ) = B(s−1)
(
Θ(s)(θ)

) + (
Idn +B(s−1)

(
Θ(s)(θ)

))
B(s)(θ), (63)

h(s)(θ) = h(s−1)
(
Θ(s)(θ)

) + (
Idn +B(s−1)

(
Θ(s)(θ)

))
g(s)(θ), (64)

starting up with B(0) = B(0) and h(0) = g(0).
To prove the convergence of Ξ(s) in Δ(ρ∗) we write it as

Ξ(s)(θ) − θ =
s∑(

Ξ(j)(θ) − Ξ(j−1)(θ)
) + (

Θ(0)(θ) − θ
)
, (65)
j=1
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and discuss the absolute convergence of the sum
∑+∞

j=1 ‖Ξ(j) −Ξ(j−1)‖ρ∗ . For this purpose, we

consider the following expression for Ξ(j−1), if j � 2,

Ξ(j−1)(θ) − θ =
j−2∑
l=0

(
Θ(l) ◦ · · · ◦ Θ(j−1)(θ) − Θ(l+1) ◦ · · · ◦ Θ(j−1)(θ)

) + (
Θ(j−1)(θ) − θ

)
.

From the iterative application of Lemma 5, we have that Θ(l+1) ◦ · · · ◦ Θ(j−1)(θ) ∈ Δ(ρ(l+1)) if
θ ∈ Δ(ρ(j)), for any l = 0, . . . , j − 2. Thus, we obtain (see (38))

∥∥Ξ(j−1) − Idθ

∥∥
ρ(j) �

j−1∑
l=0

∥∥Θ(l) − Idθ

∥∥
ρ(l+1) �

j−1∑
l=0

3
(
m(l)

)2
m̄(l)σ 2 μ(l)

γ (δ(l))τ

�
j−1∑
l=0

3 × 26−τ α2ᾱσ 2δ02−(l+1) χ
2l

χ̃
� 9 × 27α2ᾱσ 2 ε

γ 2δ2τ+1
0

, (66)

where we control 2−(l+1)χ2l
by the geometric progression (χ/2)l+1, of ratio smaller than 1/2.

We observe that if we assume a priori convergence of Ξ(j) to Ξ∗ in Δ(ρ∗), then (66) also holds
for ‖Ξ∗ − Idθ ‖ρ∗ . In particular, as (66) is smaller than δ0/n (see (11)), then ‖Ξ∗ − Idθ ‖ρ∗ � δ0.
Moreover, if we take θ, θ ′ ∈ Δ(ρ(j) − δ0), for j � 1, and use (6) and (8), we obtain

∣∣Ξ(j−1)(θ ′) − Ξ(j−1)(θ)
∣∣ � |θ ′ − θ | + ∣∣(Ξ(j−1)(θ ′) − θ ′) − (

Ξ(j−1)(θ) − θ
)∣∣

�
(

1 + n
‖Ξ(j−1) − Idθ ‖ρ(j)

δ0

)
|θ ′ − θ | � 2|θ ′ − θ |. (67)

Now, we pick up θ ∈ Δ(ρ(j+1) − δ0) and set θ ′ = Θ(j)(θ) in (67). From the bound (37) on Φ(j)

we have ‖Θ(j) − Idθ ‖ρ(j+1) � δ(j) and hence θ, θ ′ ∈ Δ(ρ(j) − δ0). Then, by using now (38) to
bound ‖Θ(j) − Idθ ‖ρ(j+1) and by recalling that ρ(j) − δ0 � ρ∗, we obtain

∥∥Ξ(j) − Ξ(j−1)
∥∥

ρ∗ � 6
(
m(j)

)2
m̄(j)σ 2 μ(j)

γ (δ(j))τ
� 3 × 27−τ α2ᾱσ 2δ02−(j+1) χ

2j

χ̃
� χj+1,

giving the absolute convergence of (65), as wanted.
To study the convergence of B(s) we repeat the same strategy. First, let us suppose a priori

that ‖B(j)‖ρ(j+1) � 1, for any j = 0, . . . , s − 1. By using the recurrent expression (63), we obtain
the following inductive bound (see (38)),

∥∥B(s)
∥∥

ρ(s+1) �
s∑

j=0

2
∥∥B(j)

∥∥
ρ(j+1) �

s∑
j=0

12n
(
m(j)

)2
m̄(j)σ 2 μ(j)

γ (δ(j))τ+1

�
s∑

3 × 27−τ nα2ᾱσ 2 χ2j

χ̃
� 9 × 29nα2ᾱσ 2 ε

γ 2δ
2(τ+1)

, (68)

j=0 0
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where we bound again χ2j
by χj+1. In particular (68) proves, by induction, the a priori assump-

tion ‖B(j)‖ρ(j+1) � 1. Moreover, if we also assume a priori convergence of B(s) to B∗ in Δ(ρ∗),
then (68) also bounds ‖B∗‖ρ∗ .

At this point we rewrite (63) as

B(j)(θ) −B(j−1)(θ) = (
B(j−1)

(
Θ(j)(θ)

) −B(j−1)(θ)
) + (

Idn +B(j−1)
(
Θ(j)(θ)

))
B(j)(θ).

By recalling again that Θ(j)(Δ(ρ(j+1) − δ0)) ⊂ Δ(ρ(j) − δ0), we obtain

∥∥B(j) −B(j−1)
∥∥

ρ(j+1)−δ0
� n

‖B(j−1)‖ρ(j)

δ0

∥∥Θ(j) − Idθ

∥∥
ρ(j+1) + 2

∥∥B(j)
∥∥

ρ(j+1)

� 3n
(
m(j)

)2
m̄(j)σ 2 μ(j)

γ δ0(δ(j))τ
+ 12n

(
m(j)

)2
m̄(j)σ 2 μ(j)

γ (δ(j))τ+1

� 15 × 25−τ nα2ᾱσ 2 χ2j

χ̃
� χj+1. (69)

This bound implies the convergence of
∑+∞

j=1 ‖B(j) − B(j−1)‖ρ∗ and hence, the convergence

of B(s) to B∗ in Δ(ρ∗) (compare (65)).
Now it is the turn of h(s). From the recurrence (64) and the bound (37) on g we have

∥∥h(s)
∥∥

ρ(s+1) �
s∑

j=0

2
∥∥g(j)

∥∥
ρ(j+1) �

s∑
j=0

8m(j)m̄(j)σμ(j)

�
s∑

j=0

27αᾱσγ δτ+1
0 2−(j+1)(τ+1) χ

2j

χ̃
� 3 × 28αᾱσ

ε

γ δτ+1
0

, (70)

where we control the expression 2−(j+1)(τ+1)χ2j
by the geometric progression (χ/2τ+1)j+1, of

ratio smaller than 1/2. We observe that, in particular, ‖h(s)‖ρ(s+1) � 1. If h(s) converges to h∗
in Δ(ρ∗), then (70) also gives a bound for ‖h∗‖ρ∗ .

By using (64) again we have

h(j)(θ) − h(j−1)(θ) = (
h(j−1)

(
Θ(j)(θ)

) − h(j−1)(θ)
) + (

Idn +B(j−1)
(
Θ(j)(θ)

))
g(j)(θ).

By applying to this formula the same arguments used in (69), we obtain

∥∥h(j) − h(j−1)
∥∥

ρ(j+1)−δ0
� n

‖h(j−1)‖ρ(j)

δ0

∥∥Θ(j) − Idθ

∥∥
ρ(j+1) + 2

∥∥g(j)
∥∥

ρ(j+1)

� 3n
(
m(j)

)2
m̄(j)σ 2 μ(j)

γ δ0(δ(j))τ
+ 8m(j)m̄(j)σ 2μ(j)

� 26α2ᾱσ 2 χ2j

χ̃
� χj+1.

Thus, the convergence of h(s) follows from the convergence of the sum
∑+∞

j=1 ‖h(j) −h(j−1)‖ρ∗ .
To finish the proof it only remains to prove that ‖J ∗ − IdI ‖ρ∗,r∗ � δ0, which follows from
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‖J ∗ − IdI ‖ρ∗,r∗ � ‖B∗‖ρ∗r∗ + ‖h∗‖ρ∗

� 9 × 29nα2ᾱσ 2 ε

γ 2δ
2(τ+1)
0

(
r0

2
− 11δ0

)
+ 3 × 28αᾱσ

ε

γ δτ+1
0

� 3 × 210nα2ᾱσ 2 ε

γ 2δ
2(τ+1)
0

.
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Appendix A. Some technical results

In this section we present some basic results used throughout the paper.

Lemma 8 (Rüssmann estimates). (See [13].) Let g(θ), with θ ∈ T
n, n � 2, be a 2π -periodic

function, analytic in the interior of Δ(ρ) and bounded on the closure, and ω ∈ Rn a Diophantine
vector verifying (1), for certain γ > 0 and τ � n − 1. If ḡ = 0, there is a unique 2π -periodic
function f (θ), with the normalization f̄ = 0, solving the equation Lωf = g (see (4)), that is
analytic in the interior of Δ(ρ) and satisfies the bound

‖f ‖ρ−δ � σ(n, τ,ω)
‖g‖ρ

γ δτ
,

for any 0 < δ � ρ, where σ � 1 can be taken as

σ(n, τ,ω) = 3π

2τ+1
6n/2

√
τ�(2τ)

( |ω1| + · · · + |ωn|
|ω|

)τ

,

with �(·) the Gamma function.

Lemma 9. Let F(I) be an analytic function in the interior of B(r) and bounded on the closure.

(a) If |F(I)| � A|I |3, ∀I ∈ B(r), and 0 < δ � r/3, then if j, k ∈ {1, . . . , n},
∣∣∂Ij

F (I )
∣∣ � 9

4
A

r

δ
|I |2, ∣∣∂2

Ij Ik
F (I )

∣∣ � 3A
r2

δ2
|I |,

for any I ∈ B(r − δ) and any I ∈ B(r − 2δ), respectively.
(b) For any I ∈ B(r) we have

[
F(I)

]
3 =

1∫
0

1

2
(1 − s)2D3

I F (sI )[I, I, I ]ds,

where D3
I F (x)[I, I, I ] = ∑

j,k,l∈{1,...,n} ∂3
Ij IkIl

F (x)Ij IkIl .
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Proof. We start by proving (a). If |I | � 2r/3 we have, by using Cauchy estimates (6),

∣∣∂Ij
F (I )

∣∣ � A
(|I | + |I |/2)3

|I |/2
= 27

4
A|I |2.

If 2r/3 � |I | � r − δ we have

∣∣∂Ij
F (I )

∣∣ � A
r3

r − |I | = A
r3

(r − |I |)|I |2 |I |2 � A
r3

δ(r − δ)2
|I |2 � 9

4
A

r

δ
|I |2,

where we use that minx∈[2r/3,r−δ]{(r − x)x2} = δ(r − δ)2 and 0 < δ � r/3. Hence, the desired
estimate on ∂Ij

F is straightforward from both inequalities. The bound on the second order deriv-
atives is obtained from the two next inequalities. If |I | � r/3 we have

∣∣∂2
Ij Ik

F (I )
∣∣ � A

(|I | + 2|I |)3

|I |2 = 27A|I |,

and if r/3 � |I | � r − 2δ then

∣∣∂2
Ij Ik

F (I )
∣∣ � A

r3

((r − |I |)/2)2
= 4A

r3

(r − |I |)2|I | |I | � A
r3

δ2(r − 2δ)
|I | � 3A

r2

δ2
|I |.

Part (b) of the statement is obtained from the following integral expression:

[
F(I)

]
3 = F(I) − F(0) − 〈∇IF (0), I

〉 − 1

2

〈
I,D2

I F (0)I
〉

=
1∫

0

d

ds

(
F(sI) + (1 − s)

〈∇IF (sI ), I
〉 + 1

2
(1 − s)2〈I,D2

I F (sI )I
〉)

ds. �
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