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Abstract

In a recent work, we presented an averaging-extrapolation approach for the numerical computa-
tion of frequencies and amplitudes of a discrete-time quasi-periodic signal. This approach assumes
analyticity of the signal and a Diophantine frequency vector. Given an approximation to one of the
frequencies and a sufficiently large number of iterates of the signal, the main outcome of the method
is a refined approximation to the frequency. The crucial aspect of this method consists in building an
appropriate complex signal which, by the geometrical implications of its construction, is referred to
as an unfolded signal. The projection of the unfolded signal on the unit circle defines a quasi-periodic
signal of the circle whose rotation frequency is the target frequency. This allows to refine the target
frequency by adapting a previously developed method for computing, with great accuracy, Diophan-
tine rotation numbers of analytic circle maps. Both the unfolding and refinement processes require
computing appropriate weighted averages of the iterates and performing Richardson’s extrapolation.
In the present work, we reformulate this averaging-extrapolation approach to frequency refinement.
This leads to a simpler method that completely avoids the unfolding process but that is capable of
producing accurate values for frequencies and amplitudes at a reasonable computational cost, which
is mostly independent of the number of basic frequencies of the signal.
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1 Introduction

When modelling applied problems of science and technology through dynamical systems, several nat-
urally arising questions are concerned with the long-time behaviour of the solutions of the system. In
many contexts, quasi-periodic solutions are crucial when studying this long-time behaviour, both for
continuous-time and discrete-time systems. This assertion is mainly relevant in Hamiltonian systems
and in symplectic maps, although quasi-periodic solutions are also natural objects of interest in many
other contexts (e.g., in dissipative ordinary differential equations). From the perspective of applications,
quasi-periodic solutions play a central role, e.g., in celestial mechanics, astrodynamics, molecular dy-
namics, and plasma-beam physics. The interested reader is referred to [1, 2, 5] and references therein
for a wider picture of quasi-periodicity in dynamical systems.

A quasi-periodic solution of a dynamical system densely fills a torus invariant by the motion. In this
work, we are concerned with quasi-periodic invariant tori with normal stable behaviour or, at least, with
a region of effective stability around them. By effective stability we mean stability from the practical
viewpoint. E.g., it is known that maximal dimensional tori and normally elliptic lower-dimensional tori
of Hamiltonian systems are very sticky, so that nearby solutions remain close to them for a very long
time (see, e.g., [9]). Therefore, we will assume that the time evolution of the considered quasi-periodic
motions can be numerically followed, with high accuracy, over very long time spans. This assumption
is basic to justify the effectiveness of averaging-extrapolation methods for frequency analysis.

As a starting point, we assume that a finite sequence of iterates of a discrete-time quasi-periodic signal
is known (see definition 2.1). This sample of the signal may come from the iteration of an appropriate
initial condition by a discrete-time dynamical system or from a continuous-time quasi-periodic signal
evaluated at equally spaced times. The introduction to [15] discusses various ways of generating quasi-
periodic signals which meet the requirements of our approach. The process that numerically computes
frequencies and amplitudes of a quasi-periodic signal from this finite sample is called quasi-periodic
frequency analysis. Knowing the amplitudes provides a Fourier parameterization of the torus containing
the signal. The dynamics for the angles that parameterize the torus is the rigid rotation induced by the
translation by a vector of basic frequencies of the signal. Unless some prior information on the location
of the frequencies is available, the usual way to generate a first approximation to the frequencies is
through the discrete Fourier transform (DFT). Specifically, frequencies are approximated by the peaks
of the DFT of a sample of points of the signal (see equation (15)). The peak height allows to approximate
the amplitude associated with the frequency. The magnitude of the frequency error of this approximation
is of O(1/N), where N is the length of the sample.

The most celebrated method for performing the frequency refinement of the peaks of the DFT was
introduced in [10] (see also [11, 12]). Specifically, the quasi-periodic signal is multiplied by suitable
window functions (usually a power of the Hanning filter) that considerably improve the resolution of
the main peaks of the DFT of the new signal. Once the main frequencies and amplitudes have been
determined, their contribution is removed from the original signal. This enhances the resolution of the
other frequencies. Further improvements to the DFT techniques include the use of collocation methods
(see [6, 7]). By a collocation method we mean trying to fit a finite sample of the signal by a generic quasi-
periodic signal defined by a truncated Fourier expansion. This nonlinear system of equations is solved,
for both frequencies and amplitudes, by the Newton method. The initial guess of Newton’s iteration is
that provided by the DFT. We refer the interested reader to the introduction of [15] for further comments
and additional references to quasi-periodic frequency analysis.
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Another method for the quasi-periodic frequency refinement was introduced in [15]. This method
is based on the recursive computation of appropriate weighted sums (that involve the initial iterates or
new sequences defined from them), an averaging procedure to normalize these sums and Richardson’s
extrapolation. We refer to the selected number of recursions performed to define the final recursive sums
as the averaging order. Below, we review the main features of [15] together with those of [13, 14, 16, 19],
since this collection of papers share a common background. These works tackle the numerical compu-
tation of various aspects related to quasi-periodicity in dynamic systems. Among the issues considered,
we would like to mention rotation numbers of circle maps [19], frequencies and amplitudes of quasi-
periodic signals [15], derivatives of rotation numbers and frequencies with respect to parameters [13],
initial conditions of invariant curves of planar maps [14], and initial conditions of Lagrangian invariant
tori of Hamiltonian systems and symplectic maps [16]. To accomplish these aims, quasi-periodic signals
are dealt with in terms of their frequencies, without simultaneously computing the Fourier representation
of any related object (e.g., conjugations to a rigid rotation, invariant curves or invariant tori). Frequen-
cies and their derivatives are computed, in general with remarkable accuracy, by averaging-extrapolation
methods applied to a sample of points of the signal (and to the derivatives of the sample when the deriva-
tives of the frequencies come into play). The main requirements of this averaging-extrapolation approach
are the analyticity of the signals (although sufficiently large differentiability is enough) and Diophantine
vectors of basic frequencies (see definition 2.1 and comments below).

Regarding the frequency refinement, let us suppose kown an approximation ω̄ ∈ R to a particular
frequency ω0 ∈ R of a discrete-time quasi-periodic signal {xm}m∈Z (sometimes a rough approxima-
tion may suffice). Then, the method of [15] provides a refined approximation to ω0. Computations are
performed with independence of the contribution to {xm}m∈Z of the other frequencies and without si-
multaneously computing the Fourier coefficient associated to ω0. The method is designed for complex
valued signals, but it works as well for real valued ones. The first step to carry out the refinement is
to build a new analytic discrete-time quasi-periodic signal of the complex plane that, by its geometrical
implications, is referred to as an unfolded signal. The aims of the construction of the unfolded signal
{xum}m∈Z are that it should have the same frequencies as {xm}m∈Z, that it should resembles as closely as
possible a signal generated by a rigid rotation of the complex plane, and that its rotation frequency around
the origin should be the target frequency ω0. From the geometric perspective, this process is particularly
clear in the case of a single independent frequency, since then {xm}m∈Z evolves on a planar curve. This
curve is deformed by the unfolding so that it resembles a circle as closely as possible (see [14]). Compu-
tationally speaking, the definition of xum is performed by means of an averaging-extrapolation process.
Actually, each iterate of the unfolded signal turns out to be a weighted combination of a prefixed number
L of consecutive phase-shifted iterates of {xm}m∈Z, with the phase-shift depending on ω̄, m and L (see
equation (10)). As a result of the unfolding, the modulus of the Fourier coefficient associated with the
target frequency is amplified with respect to the coefficients associated with the rest of frequencies. This
method works even if the initial curve folds over itself or even if it has some self-intersections (pro-
vided that the dynamics on it is quasi-periodic). If the approximate frequency ω̄ is close enough to ω0,
the unfolding process allows to generate a new planar curve (with the same frequency) such that, once
expressed in polar coordinates, the distance to the origin is a graph of the angle. Therefore, actually
making the unfolded signal a graph over the angle is not mandatory in order to be able to use it to refine
ω0. In [14] we provide some graphical illustrations of this deformation process.

In practice, a properly unfolded signal {xum}m∈Z can be computed if ω̄ is reasonably close to a
significant frequency ω0 of {xm}m∈Z and L is sufficiently large. By “significant frequency” we mean



4 A new method for frequency refinement

that the corresponding amplitude “really contributes” to the Fourier representation of the signal. We note
that {xum}m∈Z may be non-quasi-periodic for a set of values of ω̄ of zero Lebesgue measure. This fact has
no observable effect on practical applications, as the size of the non-quasi-periodic part is exponentially
small (see appendix A for more details). Then, by projecting a properly unfolded signal {xum}m∈Z onto
a circle, we generate an analytic quasi-periodic signal {xcm}m∈Z of the circle. The rotation frequency of
{xcm}m∈Z is ω0 (i.e., ω0/2π is the rotation number). Actually, the mere definition of the rotation number
of a circle map works for computing ω0 from {xcm}m∈Z, but with a convergence rate of O(1/N), where
N is the lenght of the sample. This slow convergence is improved using the averaging-extrapolation
methodology of [19] for the numerical computation of Diophantine rotation numbers of analytic circle
maps. It turns out that the approach of [19] also works to compute the rotation frequency of a quasi-
periodic signal of the circle, gives rise to a convergence rate of O(1/Np+1) (p is the selected averaging
order). We would like to point out that there are other noteworthy methods that could also be used
to improve this convergence speed (see [3, 4, 17, 18]). Indeed, it would be an interesting research
topic to discuss how these methods fare when used to perform the unfolding procedure of [15] or if we
reformulate the refinement process presented in this paper in terms of them (see algorithm 2.5).

Once a sufficiently accurate approximation of ω0 has been obtained, averaging-extrapolation methods
are also capable of computing the associated Fourier coefficient (see equation (12)). Derivatives of the
frequencies (with respect to any parameter) can be computed as well from the derivatives of the points
of the sample (see [13]). This refinement process can be repeated until we have computed, one by
one, a set of basic frequencies of the signal. Initial approximations to the frequencies may be given by
the context (e.g., in [16] this methodology has been adapted to the computation of initial conditions of
Lagrangian tori with a prefixed frequency vector) or by any frequency analysis method based on DFT. It
is worth noting that [15] also provides a “refined” version of the DFT which in the numerical examples
of section 4 is used to remove some spurious oscillations around the main peaks of the DFT of a sample
of the signal (see algorithm 2.7).

The methodology of [15] has shown good performance in many examples. This is mainly true if a
large sample of the signal, computed with sufficiently high numerical accuracy, is known. Perhaps the
main drawbacks concern the unfolding process, which must be carried out separately for each frequency
to be refined. Selecting averaging order two for the unfolding works quite well in general, but the usual
situation is that we do not have any a priori information on what an appropriate value for L would
be. Many times, after finding out that the unfolding fails for the selected L, we are forced to restart
the unfolding process with a largest L. Therefore, to try to avoid this problem, we sometimes end up
generating each unfolded iterate in terms of a significantly larger value of L than is actually required.
Although the computational cost of xum is not strongly affected by the value of L (due to the strong
correlations between xum and xum+1), it can be a matter of concern ifN is not very large. Also, after finding
out that the unfolding fails, even for very large values of L, we sometimes realize that the approximation
ω̄ to ω0 is not good enough for the unfolding to work.

In this document, we revisit [15] and introduce a new averaging-extrapolation approach to the quasi-
periodic frequency refinement that completely avoids the unfolding process. Let {xm}N+1

m=1 be a known
sample of {xm}m∈Z. In algorithm 2.5 we show that eiω0 ≈ xu2/x

u
1 , where each complex expression xu1

and xu2 is defined by the same process that generates a single iteration of an unfolded signal. Both, xu1 and
xu2 , are computed using the approximation ω̄, a given averaging order p, and L = N consecutive iterates
of the sample. Specifically, we use the sample {xm}Nm=1 to compute xu1 and the sample {xm+1}Nm=1 to
compute xu2 . However, unlike what is suggested for a mere unfolding process, here we do not restrict the
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averaging order to p = 2. In fact, the natural approach would be to consider higher averaging orders. If
ω̄(1) is the new approximation to ω0 provided by the quotient xu2/x

u
1 , then we expect the error |ω̄(1)−ω0|

to be of the same order of magnitude than the error for the new approximation to ω0 obtained after
performing the full methodology of [15]. The practical implementation of the presented method is quite
simple and its computational cost fairly moderate. Hence, it is natural to apply it iteratively to ω̄ until
we reach the maximum possible accuracy for ω0 that we can get from the available sample {xm}N+1

m=1.
Once this iteration is completed, the last computed value of xu1 directly provides an approximation to the
Fourier coefficient associated with ω0.

2 The method
Below, we summarize the main aspects of the presented methodology. We start by introducing basic
notations, definitions and hypotheses. The algorithmic details of the method are formalized in algo-
rithms 2.5, 2.7 and 2.8, but the most technical issues are postponed until appendix A. Some numerical
examples are discussed in sections 3 and 4.

Definition 2.1. A bi-infinite sequence {xm}m∈Z is a real valued discrete-time quasi-periodic signal if
xm = γ(mω), where ω ∈ Rr is a frequency vector of the signal, for some r, and γ : Tr → R is a
function defined on the standard r-dimensional torus Tr = (R/2πZ)r. If we expand γ in Fourier series,

γ(θ) =
∑
k∈Zr

γ̂ke
i〈k,θ〉, γ̂k =

1

(2π)r

∫
Tr

γ(θ) e−i〈k,θ〉dθ,

where 〈·, ·〉 denotes the inner product of Rr, then we have the relation

xm = γ(mω) =
∑
k∈Zr

γ̂k eim〈k,ω〉, ∀m ∈ Z.

The zero Fourier harmonic γ̂0 is referred to as the average of the signal.

Definition 2.1 naturally extends to vector valued signals and matrix valued signals, as well as to the
case of complex entries. The complete set of frequencies of {xm}m∈Z is {〈k, ω〉+2πl : k ∈ Zr, l ∈ Z},
although frequencies that differ by multiples of 2π are equivalent. The components of the vector ω are
said to be (rationally) independent if 〈k, ω〉+2πl 6= 0, ∀k ∈ Zr\{0} and ∀l ∈ Z. Dependent frequencies
mean that the expression xm = γ(mω) can be substituted by an equivalent one depending on a smaller
number of frequencies. If the components of ω are independent, then they constitute a set of basic
frequencies of the signal. If ω, ω̄ ∈ Rr are two different vectors of basic frequencies of {xm}m∈Z, then
we have that ω̄ = Mω + 2πl, whereM ∈ Mr,r(Z) is an unimodular matrix and l ∈ Zr. Since we are
concerned with Diophantine vectors of frequencies, we assume that there are constants C > 0 and τ ≥ r
such that

|ei〈k,ω〉 − 1| ≥ C|k|−τ1 , ∀k ∈ Zr \ {0}, (1)

where |k|1 = |k1| + · · · + |kr|. This strong nonresonance condition is equivalent to |〈k, ω〉 + 2πl| ≥
C ′|k|−τ1 , ∀k ∈ Zr \ {0} and ∀l ∈ Z, for some C ′ > 0.

Although the methods of the paper are also valid for finitely differentiable signals, for the sake of
simplicity we restrict the presentation to the analytic case. For further comments on the performance
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of averaging-extrapolation methods for the frequency refinement under finite differentiability, we refer
the reader to [13, 14, 15, 16, 19]. Essentially, the maximum extrapolation order is then constrained by
the differentiability order of γ and the exponent τ of (1). Analyticity of {xm}m∈Z means that there are
constants ρ > 0 and M > 0 such that

|γ̂k| ≤Me−ρ|k|1 , ∀k ∈ Zr. (2)

The lower bound (1) for the small divisors associated with ω, together with the upper bound (2) for the
Fourier coefficients of γ, are basic to justify the validity of our approach for any extrapolation order.

Next, we introduce the extrapolation operator that synthesizes the complete averaging-extrapolation
process of the paper.

Definition 2.2. Given positive integers p and 1 ≤ N1 < N2 < · · · < Np = N , we introduce the operator
Θp
{Nj} = Θp

{Nj}pj=1
, to which we refer to as an extrapolation operator of order p. This operator acts on

any finite sequence {xm}Nm=1 of length N (real valued, complex valued, vector valued) and is defined by
the expression:

Θp
{Nj}({xm}

N
m=1) =

p∑
l=1

cpl S̃
p
Nl
,

where averaged sums S̃pn = S̃pn({xm}Nm=1) and extrapolation coefficients cpl = cpl ({Nj}pj=1) are outlined
below.
• The recursive sums Sln = Sln({xm}Nm=1), for n = 1, . . . , N , and l = 0, . . . , p, are introduced through

the recurrences defined by the following pseudo-code:

for n = 1, . . . , N : S0
n = xn ; end n-loop ;

for l = 0, . . . , p− 1 : Sl+1
1 = Sl1 ;

for n = 2, . . . , N : Sl+1
n = Sl+1

n−1 + Sln ; end n-loop ;

end l-loop ;
• The averaged sums are S̃pn = p!Spn/n

p (we only need them when n = Nl, for some l = 1, · · · , p).
• The extrapolation coefficients are defined by the following formula:

cpl =
∏

s=1,...,p
s 6=l

Nl

Nl −Ns

, l = 1, . . . , p. (3)

To extrapolate using Θp
{Nj}, it is naural to select integers {Nj}pj=1 that behave geometrically with j.

Explicitly, we mean that there is 0 < µ < 1 such that

Np = N, Nj = [µNj+1] , ∀j = p− 1, · · · , 1, (4)

where [x] is the function defined as the nearest integer of x ∈ R. The simplest case is when µ = 1/2 and
N = 2pM , for some M . Then, the extrapolation coefficients are independent of M and given by:

cpl = (−1)p−l
2(l−1)l/2

δ(l − 1)δ(p− l)
, δ(0) = 1, δ(s) = (2s − 1)(2s−1 − 1) · · · (21 − 1). (5)
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Remark 2.3. For further discussions, from now on we assume that {xm}N+1
m=1 is a known sample of a real

analytic quasi-periodic signal {xm}m∈Z, with a Diophantine frequency vector ω ∈ Rr (see definition 2.1,
equation (1) and equation (2)). We also suppose that, for a prefixed averaging order p, the selected
integers {Nj}pj=1 behave geometrically for some µ, with Np = N (see equation (4)). We denote as
ω0 = 〈k0, ω〉 a particular frequency of the signal, for some k0 ∈ Zr, and we denote as ω̄ ≈ ω0 a known
approximation to ω0, so that ε = |ω̄ − ω0| verifies ε� 1.

We expect Θp
{Nj}({xm}

N
m=1) to provide an accurate approximation to the average of {xm}m∈Z. Ex-

plicitly, the following asymptotic behaviour is fulfilled as N → +∞ (see appendix A for details):

Θp
{Nj}({xm}

N
m=1) = γ̂0 +O(N−p). (6)

The main drawback of the approximation γ̂0 ≈ Θp
{Nj}({xm}

N
m=1) is that the expression O(N−p) above

involves some terms in which the small divisors associated with ω appear, with exponent p, as denomi-
nators of the Fourier coefficients of γ. Therefore, a small C in (1) can yield a large asymptotic coefficient
for this error term. It may also be possible that we face a slow convergence speed if the size of some
Fourier coefficients γ̂k, with k 6= 0, is not “small” relative to γ̂0. Mainly if the small divisors associated
with some of these values of k are significantly small.

If the frequency ω0 = 〈k0, ω〉 is known, then it is straightforward to adapt formula (6) to approximate
the Fourier coefficient of γ associated to ω0:

Θp
{Nj}({xme−imω0}Nm=1) = γ̂k0 +O(N−p). (7)

In applications, the values eimω0 can be computed efficiently by trigonometric recurrences. When using
formula (7) to address the numerical computation of γ̂k0 , for increasing values of |k0|1, we should be
aware that |γ̂k0| decreases exponentially fast with |k0|1 (see comments following algorithm 2.5).

Within the framework of remark 2.3, formula (8) below and its implications are the cornerstone
of averaging-extrapolation methods for quasi-periodic frequency refinement. Details are given in ap-
pendix A (see equations (28) and (29) and related computations). Explicitly, we have

Θp
{Nj}({xme−imω̄}Nm=1) = γ̂k0∆̃{Nj}(e

i(ω0−ω̄)) + Ẽ, (8)

where limω̄→ω0 ∆̃{Nj}(e
i(ω0−ω̄)) = 1 and the error term Ẽ satisfies the bound

|Ẽ| ≤ C̃1

Cp

1

Np
+

C̃2

exp (c̃1/ε1/τ )
, (9)

for some positive constants C̃1, C̃2 and c̃1 that only depend on r, τ , p, M , ρ, |k0|1, and µ. It is worth men-
tioning that the expression ∆̃{Nj}(e

i(ω0−ω̄)) only depends on p, {Nj}pj=1, and ω0− ω̄, but it is independent
on the specific values of the entries of the sample {xm}Nm=1.

If ω̄ = ω0 and N → +∞, then the limit value of Θp
{Nj}({xme−imω̄}Nm=1) is the Fourier coefficient γ̂k0

(compare with (7)). If ε = |ω̄ − ω0| verifies 0 < ε� 1 and the extrapolation parameters p and {Nj}pj=1

are appropriately chosen, we expect Θp
{Nj}({xme−imω̄}Nm=1) to be close to γ̂k0 . By properly chosen, we

first mean that a reasonably large N is necessary to actually approach to γ̂k0 . But it may not be a good
idea to takeN too large, as it is natural to think that the limit value of Θp

{Nj}({xme−imω̄}Nm=1) is zero (this
is, indeed, the actual value of the “Fourier coefficient” of ω̄ is it is not a true frequency of the signal).
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Formula (8) provides theoretical support to the unfolding procedure introduced in [15]. We proceed
by selecting an averaging order pu ≥ 1 for the unfolding (pu = 2 works fairly well in general), a
(moderately) large positive integer L, and integer values {Lj}puj=1 behaving geometrically as those in
equation (4), with Lpu = L. The unfolded signal {xun}n∈Z of {xm}m∈Z, computed in terms of the
approximate frequency ω̄, is defined by

xun = einω̄ Θpu
{Lj}({xn+m−1e−i(n+m−1)ω̄}Lm=1). (10)

If the sample {xm}Nm=1 is known, for some N � L, then we can compute the sample {xum}N−L+1
m=1 . For

almost all values of ω̄ ≈ ω0, the signal {xun}n∈Z turns out to be a complex analytic quasi-periodic signal
with the same frequencies as {xm}m∈Z. This assertion may fail for a zero Lebesgue measure set of ω̄.
However, from the perspective of applications, we do not have to pay attention to this fact, as we have
an exponentially small bound for the non-quasi-periodic contribution (see equation (9)).

Suppose for a moment that we were able to set ω̄ = ω0. Then, the limit signal of the unfolding, when
L → ∞, is the rigid rotation xun = γ̂k0e

inω0 . This means that xcn = arg(xun) = nω0 is a quasi-periodic
signal of T with rotation frequency ω0. Here, the values of the complex argument arg(xun) are selected
according to the rotational dynamics of {xun}n∈Z. The idea of [15] is that if ω̄ is close enough to ω0 and a
properly unfolded signal has been computed, then ω0 becomes the rotation frequency around the origin
of {xun}n∈Z. In this case, if we are capable of computing the correct determination of xcn = arg(xun),
according to the dynamics of {xun}n∈Z in the plane, then it takes the form xcn = nω0 + φ(nω). Here,
φ : Tr → C turns out to be an analytic function for which no other specific property is required. This
means that the computed signal {xcn}n∈Z provides the values of a lift to R of the signal defined by the
projection of {xun}n∈Z onto T. In particular, we can get ω0 = limn→+∞ x

c
n/n, with a convergence rate of

O(1/n). But, as discussed in the introduction, the application of the methodology of [19] to the sample
{xcm}N−L+1

m=1 allows to improve this rate up to O(1/Npr+1). Here, pr is the selected averaging order for
the frequency refinement (it is natural to select it as high as possible).

The following result constitutes the theoretical support to our modified averaging-extrapolation method-
ology for the quasi-periodic frequency refinement, which we introduce in algorithm 2.5 below.

Proposition 2.4. With notations, definitions and hypotheses above (see definition 2.1, definition 2.2 and
remark 2.3). Let us suppose that the Fourier coefficient associated with ω0 = 〈k0, ω〉 verifies γ̂k0 6= 0. If
ω̄ is sufficiently close to ω0, then the quotient below provides an improved approximation ω̄(1) to ω0:

eiω̄(1)

= Θp
{Nj}({xm+1e−imω̄}Nm=1)/Θp

{Nj}({xme−imω̄}Nm=1). (11)

The first crucial point to justify proposition 2.4 is the above mentioned fact that the expression
∆̃{Nj}(e

i(ω0−ω̄)) of equation (8) does not depend on the sample under consideration. The second cru-
cial point lies in the following observation. Let us assume, according to definition 2.1, that the Fourier
representation of the signal {xm}m∈Z is given by the relation xm =

∑
k∈Zr γ̂k eim〈k,ω〉. Then, the shifted

signal {xm+1}m∈Z verifies xm+1 =
∑

k∈Zr(γ̂k ei〈k,ω〉) eim〈k,ω〉. This means that the quotient between the
k-th Fourier coefficients of {xm+1}m∈Z and {xm}m∈Z equals to ei〈k,ω〉.

Algorithm 2.5. We propose the following construction to carry out the refinement process of a known
approximation ω̄ to a frequency ω0 of a quasi-periodic signal {xm}m∈Z.
1. Select an averaging order p ≥ 1, a geometric ratio 0 < µ < 1, and compute a (large) sample of

iterates {xm}N+1
m=1 of the signal so that, if we define the integers {Nj}pj=1 as in (4), then N1 � 1.
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2. Compute a new approximation ω̄(1) to ω̄ using equation (11). Explicitly, we use definition 2.2 to
compute Θp

{Nj}({xm+1e−imω̄}Nm=1) and Θp
{Nj}({xme−imω̄}Nm=1). We define ω̄(1) as the value of the

complex argument of its quotient closest to ω̄.
3. Set ω̄ = ω̄(1) as a new (improved) approximation to ω0 and apply again the previous step. In this way,

we define a sequence {ω̄(n)}n≥1. A natural way to estimate the iterative error for ω̄(n) is to compute
the difference between two consecutive iterations, i.e., |ω̄(n) − ω̄(n−1)|. Then, we can increase n until
the estimated error does not improve after two consecutive iterations.

4. We denote by ω̄∗ = ω̄(n∗), for some n∗ ≥ 1, the final value thus computed. Since the sequence
{ω̄(n)}n≥1 does not actually converge to ω0, what we expect is that if ω0 is a significant enough
frequency of the signal, then |ω̄∗ − ω0| should be of O(1/Np).

5. We also can compute the following approximation to the Fourier coefficent associated with ω0:

γ̂k0 ≈ Θp
{Nj}({xme−imω̄∗}Nm=1). (12)

Below, we summarize some issues to consider in the numerical implementation of algorithm 2.5.
• The first step of the process, before the actual application of algorithm 2.5 itself, should be to replace

the computed sample {xm}N+1
m=1 by {xm − x̄}N+1

m=1, where x̄ is a numerical value for the average γ̂0 of
the signal. This approximation to the average can be computed, with an O(N−p) convergence rate,
without knowing any frequency. We just need to use formula (12) with ω̄∗ = 0. We note that the
substraction of x̄ does not result in any error for the frequencies. However, in many cases the average
turns out to be the largest Fourier coefficient of the signal and can therefore be an important source of
noise for any averaging-extrapolation method. We also observe that, for a given signal {xm}m∈Z, the
numerical validation of the fast convergence speed of the average can be used as an indicator that we
are really dealing with a quasi-periodic signal (see [3, 4, 16, 17, 18]).
• We recommend to use as large values of p as possible to apply algorithm 2.5. However, we have to be

aware that, as we increase p, we need also to increase N in order to really achieve an O(1/Np) be-
haviour for the error. The numerical accuracy of the sample is also a limitation for the efficiency of the
method, as many cancellations occur when applying Richardson’s extrapolation. The computational
cost of each iteration of the refinement process is independent on the number of basic frequencies.
• When performing the sums Sln of definition 2.2 numerically, we have to be aware of the fact that
Sln = O(nl) to avoid losing too much numerical precision. To try to overcome this problem, there is
the option of a computer arithmetic with a large number of decimal digits. As an alternative, all the
numerical computations below have been performed using a computer arithmetic of double precision,
while storing separately the integer and decimal parts of the recursive sums Spn. Furthermore, before
starting the iterative computation of these sums, we recommend to scale all iterates by the maximum
of their moduli (this scaling factor should be subsequently removed when necessary).
• Taking µ = 1/2 allows to use explicit formulas (5) for the extrapolation coefficients. Taking also N =

2Q facilitates the computation of several extrapolated values for ω̄(1), by dealing simultaneously with
several different averaging orders and several samples of different length. In the presented numerical
examples, we proceed as follows. We choose a maximum extrapolation order P and, for any p between
1 and P , we compute ω̄(1)

(p,q) as the extrapolated value for ω̄(1) (provided by formula (11)) obtained by
using averaging order p, µ = 1/2, and a sample of length 2q + 1. The value of q moves from a
minimum value q0 ≥ P to Q. For each fixed p, we estimate the error e(p,q) of ω̄(1)

(p,q) by comparing the
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(p, q)-extrapolated value with the (p, q − 1)-extrapolated one:

ep,q = |ω̄(1)
(p,q) − ω̄

(1)
(p,q−1)|, 1 ≤ p ≤ P, q0 + 1 ≤ q ≤ Q. (13)

We take as a numerical value for ω̄(1) the value ω̄(1)
(p∗,q∗) that minimizes ep,q, i.e.:

ep∗,q∗ = min
1≤p≤P, q0+1≤q≤Q

{ep,q}. (14)

We will use the same criteria to try to determine which is the “best” extrapolated value (among all
those obtained) when computing the average of the signal or any other associated Fourier coefficient.
• We have to be aware that even though the iterative error |ω̄(n∗) − ω̄(n∗−1)| of ω̄∗ = ω̄(n∗) may be very

small, it does not mean that we are approaching a true frequency ω0 of the signal with such precision.
The actual accuracy |ω̄∗ − ω0| is strongly conditioned by how dominant the Fourier coefficient asso-
ciated with ω0 is (with respect to the other Fourier coefficients) and by the proximity to ω0 of other
dominant frequencies in the signal. In particular, if the numerical value of the Fourier coefficient asso-
ciated with ω̄∗ is significantly small, then this probably means that we have in fact refined a spurious
frequency of the signal, perhaps very inaccurately. This aspect is discussed in section 4.
• As previously noted with regard to DFT methods, the removal of the Fourier contribution of the

frequencies already computed enhances the visibility of the other ones. But this removal may be not
necessary in the framework of averaging-extrapolation methods, since the Fourier contribution of any
frequency, other than the target one, is averaged out very fast. Therefore, if we know approximations
to a set of basic frequencies of {xm}m∈Z, and all these frequencies have a sufficiently significant
amplitude, then we expect to be able to refine each of them by dealing with the initial signal (without
performing any removal). Conversely, if we remove the Fourier contribution of the previously refined
frequencies, then we are introducing an additional source of error for the other ones.
• Once a complete set of basic frequencies has been refined, we can approach the computation of an

accurate as possible Fourier representation of the signal. In this case, we are faced with a different
situation from the one discussed above. In order to compute γ̂k0 for increasing values of |k0|1, it may
be better to apply formula (12) not to the original signal, but to the signal obtained after removing
from {xm}m∈Z the Fourier contribution associated with the previously computed coefficients. In the
numerical examples, we first compute the Fourier coefficients of order 1 (in fact they are already
known) by dealing with {xm}m∈Z minus its average. Next, we remove the Fourier contribution of
order 1 from it and compute the Fourier coefficients of ordre 2 from this residual signal. And so on.

To place the peaks on the real line providing the first approximations to the frequencies, we rely of the
first order correction of the DFT provided by the unfolding process (see [15]). Precisely, let us consider
the sample {xm}Lm=1 of the initial quasi-periodic signal, for some moderately large L (although here the
same symbol L is being used, the actual value of L has nothing to do with the one used to introduce the
unfolding process). The DFT approach consists of searching for the peaks with respect ω̄ of the function

Z1(ω̄) =
∣∣Θ1
{L}({xme−imω̄}Lm=1)

∣∣ =
1

L

∣∣∣∣∣
L∑

m=1

xme−imω̄

∣∣∣∣∣ . (15)

To try to increase the visibility of the main peaks, we suggest to take L even and to use the function:

Z2(ω̄) =
∣∣Θ2
{L/2,L}({xme−imω̄}Lm=1)

∣∣ =
4

L2

∣∣∣S2
L({xme−imω̄}Lm=1)− 2S2

L/2({xme−imω̄}L/2m=1)
∣∣∣ . (16)
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We can ease the computation of Z2(ω̄) by using the explicit formula S2
L({xm}Lm=1) =

∑L
l=1(L−l+1)xl.

We can adapt definition (16) to define Zp(ω̄), for any p > 2. However, the larger p is, the larger L must
be to actually improve the frequency resolution by using Zp(ω̄). For a large p and a very large L, the
main peaks of Zp(ω̄) become strongly narrowed and any numerical approach faces the risk of omitting
some of them. Therefore, we proceed by taking p = 2.

Remark 2.6. If ω is a frequency of a discrete-time quasi-periodic signal, then we can always get an
equivalent one in the interval (−π, π). If the signal has real entries and ω is a frequency, then so is −ω
(the associated Fourier coefficients are one the complex conjugate of the other). Hence, for real signals,
it is sufficient to look for (independent) frequencies in the interval (0, π).

Algorithm 2.7. We propose the following construction to carry out the computation of the first approxi-
mations to the dominant frequencies of a real valued quasi-periodic signal {xm}m∈Z as peaks of Z2.
1. Select a moderately large even value of L and consider the sample {xm}Lm=1.
2. To avoid having a dominant peak for ω̄ = 0, we replace the sample {xm}Lm=1 by {xm− x̄}Lm=1, where
x̄ is a numerical value for the average (x̄ can be computed using a larger sample).

3. Select a moderately large M and consider the sample {ω̄(m)}Mm=1 of equispaced values of ω̄ ∈ (0, π].
4. Use formula (16) to compute the value of Z2 for the points in this sample, i.e., {Z2(ω̄(m))}Mm=1.
5. We compute the first approximations to the dominant frequencies as those defining the main peaks of
{Z2(ω̄(m))}Mm=1. We proceed recursively as follows. The first peak corresponds to the index j1 such
that Z2(ω̄(j1)) maximizes Z2 among the sample. Next, we redefine Z2 by setting Z2(ω̄(j)) = 0 for
those j belonging to the “support” of this peak, i.e., for those j with Ĵ1 ≤ j ≤ J̃2, in such a way the
value of Z2(ω̄(j)) increases with j if Ĵ1 ≤ j ≤ j1, and decreases with j if j1 ≤ j ≤ J̃2. The second
peak corresponds to the index j2 such that Z2(ω̄(j2)) maximizes the new function Z2 thus defined. And
so on, until the desired number of peaks is obtained.

6. Before applying to them algorithm 2.5, there is the chance to improve these peaks by refining the
sample of values of Z2 around them.

Once the approximations to frequencies of {xm}m∈Z provided by algorithm 2.7 have been refined
through algorithm 2.5, we are then faced with the issue of deciding which of these refined frequencies are
independent and which are a combination of the others. This process can be computationally expensive
if the signal has a large number of independent frequencies (as is the case in section 4.2). To carry out
it numerically, we introduce the following definition. Given a vector ω ∈ Rr and an integer M ≥ 1, we
introduce the quantity:

ε(M)(ω) = min
{∣∣∣〈k, ω

2π

〉
−m

∣∣∣ : k ∈ Zr, 0 < |k|1 ≤M, m ∈ Z
}
, (17)

i.e., ε(M)(ω) stands for the strongest quasi-resonance verified, up to order M , by the components of ω.

Algorithm 2.8. We propose the following construction to analyze resonances between a set of refined
frequencies {ω(j)

ref}Rj=1 of a quasi-periodic signal.

1. Sort the entries of {ω(j)
ref}Rj=1 in decreasing order according to the numerical value of the modulus of

the associated Fourier coefficient (i.e., from most dominant to least dominant). Frequencies with a
significantly small Fourier coefficient should be eliminated from the discussion.
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2. Select a moderately large integer NR ≥ 1 and a small tolerance εR > 0 (of size comparable to the
actual accuracy with which we know the refined frequencies). We will assume that the components of
a frequency vector ω are (numerically) rationally dependent if ε(M)(ω) < εR.

3. We first compute ε(NR)(ω
(1)
ref , ω

(2)
ref ). If ω(1)

ref and ω(2)
ref are found to be “independent”, then we compute

ε(NR)(ω
(1)
ref , ω

(2)
ref , ω

(3)
ref ). And so on until some set of frequencies becomes “resonant”.

4. When we detect that a certain set of frequencies verifies a resonant relation, we remove from the set
the less dominant one for which the coefficient of the integer combination defining this resonance is
±1. If none of the coefficient is equal to ±1, then we report the resonance, but we do not remove any
frequency (we have not faced this situation in any numerical example). We then add the next frequency
in the list to the set and proceed again. And so on, until we have extracted a set of independent
frequencies among those in {ω(j)

ref}Rj=1.

Remark 2.9. Instead of the definition T = R/2πZ used in the presentation above, for the numerical
examples in sections 3 and 4 we set T = R/Z. This means that, instead of dealing with a quasi-periodic
signal in terms of its frequencies, we are dealing with the corresponding rotation frequencies. We do
this only to simplify the handling of resonances between frequencies, which is one of the main aspects of
section 4. Therefore, this modification does not affect the implementation details of the methods at all.
We only have to be aware of the fact that the considered Fourier expansions must be of the form

γ(θ) =
∑
k∈Zr

γ̂ke
2πi〈k,θ〉 (18)

and that in all the formulas involving any frequency ω, we must replace it by 2πω̃, where ω̃ is the
associated rotation frequency.

3 Numerical example for an explicit signal
In this section, we discuss the numerical performance of the presented methodology by dealing with a
quasi-periodic signal {xm}m∈Z defined by an explicit formula. Given a vector of rotation frequencies
ω̃ ∈ Rr and ν = e2π ρ, for some ρ > 0, we define:

xm = γ(n ω̃), m ∈ Z, γ(θ) = 2 Re

(
r∏
j=1

1

1− ν e2πiθj

)
, θ ∈ Tr = (R/Z)r. (19)

The Fourier coefficients of γ (see (18)) are all zero apart from its average γ̂0 = 2 and γ̂k = ν |k|1 , for
those k ∈ Zr \ {0} for which kj ≥ 0, ∀j = 1, . . . , r, or for which kj ≤ 0, ∀j = 1, . . . , r. Furthermore,
the maximum possible value for the width of the strip of analyticity of γ around Tr equals to ρ, which
allows us to illustrate the significance of the size of this width in the good performance of our approach.

We present results for r = 5 and for r = 10. For r = 10 we select the following rotation vector
ω̃ ∈ R10 for the quasi-periodic forcing (whose components belong to (0, 1/2)):

(
√

2− 1, 2−
√

3,
√

5− 2, 3−
√

7,
√

11− 3, 4−
√

13,
√

17− 4,
√

19− 4, 5−
√

23,
√

29− 5). (20)

For r = 5, we select ω̃ ∈ R5 as the one defined by the 5 first components of (20). Some outstanding
quasi-resonances, up to order 10, for the selected rotation frequencies ω̃ ∈ R5 are ε(3) ≈ 1.2 · 10−3,
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ε(5) ≈ 2.9 · 10−4 and ε(9) ≈ 5.1 · 10−5, where ε(M) = ε(M)(2πω̃) (see equation (17)). The same analysis
for r = 10 results in ε(2) ≈ 4.7·10−3, ε(3) ≈ 2.7·10−4, ε(4) ≈ 1.8·10−5, ε(6) ≈ 1.5·10−6, ε(9) ≈ 5.1·10−8.

Our plan is to fix not only r ∈ {5, 10} and ω̃ ∈ Rr, but also to fix the value of all the parameters
involved in the implementation of algorithms 2.5 and 2.7. This uniformity on the numerical computations
allows us to visualize the behaviour of the different methods for decreasing values of ρ. Hence, once
we set a particular ρ, we first compute an approximate value x̄r(ρ) for the average of (19). Since the
true value of the average is know, we can evaluate the actual error |x̄r(ρ) − 2|. In addition, we can also
use formulas (13) and (14) to compute the corresponding estimated error for x̄r(ρ). We denote as Lr(ρ)
and lr(ρ) the log10 of the actual error and the estimated error, respectively. We compute the log10 of the
errors since it provides minus the number of correct decimal digits. The next step is to directly select
the r peaks of Z2(2πω) (computed as a function of the rotation frequency ω ∈ (0, 0.5]) that are closest
to each of the components of ω̃. We then try to refine each of these peaks by means of algorithm 2.5
and compute the actual error of each of the final refined values. The function Rr(ρ) accounts for the
log10 of the maximum of the errors of these r refined peaks. However, as ρ decreases, the graph of Z2

becomes so wild that it is not possible to locate adequate approximations to the components of ω̃ from
its peaks, unless we drastically improve the computational parameters of Z2. This is clearly apparent in
the top left plot of figure 1, where we display Z2(2πω) for r = 10 and ρ = 0.09 (the graph of Z1(2πω)
is quite similar). This is because for small ρ there is a significant amount of γ Fourier harmonics in (19)
with an amplitude very similar to those associated to the ω̃ components. Then, when we find out that
for a small ρ we are unable to use Z2 to detect approximations to all the components of ω̃, we do not
deal with this ρ and neither do we deal with smaller values of ρ. Let us note that this stopping criterion
does not mean that algorithm 2.5 is not capable of refining the significant peaks of Z2 to signal rotation
frequencies (although the final accuracy may decrease drastically with ρ). For the values of ρ for which
we have been able to refine all the components of ω̃, we also compute the Fourier coefficients of the signal
associated with integer combinations, up to a prefixed order, of the set of basic rotation frequencies ω̃.
To carry out these computations, we have taken into account the last of the issues discussed following
algorithm 2.5. As the value of all the Fourier coefficients of γ is known, we can compute the actual
error of each of them. Since Fourier coefficients go to zero as the order increases, it makes sense to deal
not with their absolute error, but with their relative error. Indeed, we have divided the absolute error of
each coefficient of order k by νk (the same normalization is also applied to the absolute error of those
coefficients of order k that we know must be zero). For a fixed r, we denote by Fk(ρ) the log10 of the
maximum of these relative errors, computed among the Fourier coefficients of a given order k ≥ 1.

The chosen parameters for the implementation of the case r = 5 are the following. We consider
47 equispaced values of ρ ∈ [0.04, 0.5], with step 0.01. Therefore, ν = e−2πρ moves between 0.0432
and 0.7778. For ρ = 0.03 we have not been able to use the computed sample of the function Z2 to
locate approximations of all the components of ω̃. For each value of ρ within the selected range, we
have computed the sample {xm}N+1

m=1 of the quasi-periodic signal (19), with N = 220. All the averaging-
extrapolation processes carried out in connection with algorithm 2.5 (i.e., frequency refinement and
computation of the average and of other Fourier coefficients) have been performed as discussed in con-
nection with equations (13) and (14), by using extrapolation orders p between 1 and P = 10, and samples
of length 2q, with q ranging from q0 = 10 and Q = 20. To approximate the frequencies by the peaks
of Z2(2πω), we have considered the sample {ω̃(j)}10000

j=1 of equispaced values of the rotation frequency
ω ∈ (0, 1/2], while we have used L = 212 to evaluate Z2(2πω̃(j)) through formula (16). Next, we
have computed the 15 dominant peaks of the sample {Z2(2πω̃(j))}10000

j=1 , and we have identified which
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Figure 1: Graphs for results on signal (19). Top left: Z2(2πω) vs. ω for r = 10, ρ = 0.09. Top right:
log10 of the estimated error and the actual error, for r = 5 and r = 10, of the computed average vs. ρ.
Bottom left: log10 of the maximum of the actual errors, for r = 5 and r = 10, of the refined rotation
frequencies vs. ρ. Bottom right: log10 of the maximum, for r = 5, of the actual relative errors of the
refined Fourier coefficients of orders from 1 to 5 vs. ρ.

of them is really close to each of the components of ω̃ ∈ R5. To carry out the frequency refinement
of each selected peak of Z2, we have performed 6 iterations of the refinement method of algorithm 2.5.
After 4 iterations we have, in general, reached the highest possible accuracy for any of them (similar
behaviour occurs with the other frequency refinement processes im the paper). Finally, approximation to
the Fourier coefficients of the signal have been computed, for each selected ρ, up to order 5. For r = 5,
the total number of complex Fourier coefficients up to order 5 is 1683, although we do not compute those
which are the complex conjugate of one already calculated. We proceed similarly for r = 10, but now
we can deal with 42 equispaced values of ρ ∈ [0.09, 0.5], with step 0.01 (ν = e−2πρ moves between
0.0432 and 0.5681). To approximate the components of ω̃ ∈ R10 for each of these ρ, we have identified
the 30 first peaks of Z2 associated to a sample of 15000 equispaced values of the rotation frequency in
(0, 1/2]. The frequency refinement of each of the selected 10 peaks has been performed in the same way
as for r = 5. Finally, Fourier coefficients up to order 4 have been computed (for r = 10 the total number
of complex Fourier coefficients up to order 5 is 8361).

In table 1 we show the 4 first iterations of the refinement of the computed peak of Z2 closest to ω̃1.
Left table corresponds to r = 5 and ρ = 0.04 and right table to r = 10 and ρ = 0.09. Columns labelled
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ω errω Errω ω errω Errω
0.414200000000000 1.4 · 10−5 0.414200000000000 1.4 · 10−5

0.414213600063258 1.4 · 10−5 3.8 · 10−8 0.414215075053919 1.5 · 10−5 1.5 · 10−6

0.414213561586767 3.8 · 10−8 7.9 · 10−10 0.414213610516040 1.5 · 10−6 4.8 · 10−8

0.414213563754556 2.2 · 10−9 1.4 · 10−9 0.414213562381056 4.8 · 10−8 8.0 · 10−12

0.414213561624734 2.1 · 10−9 7.5 · 10−10 0.414213562075675 3.1 · 10−10 3.0 · 10−10

Table 1: Iterative results of the refinement of the peak of Z(2)(2πω) closest to ω̃1 for the signal (19). Left
table corresponds to r = 5 and ρ = 0.04. Right table corresponds to r = 10 and ρ = 0.09.

as ω give the sequence of values of the rotation frequency, while eω and Eω are the iterative error and
the actual error, respectively. Iterative errors are defined from the difference between the values before
and after iteration (so they are not defined for the first row). In addition to the aforementioned graph
of Z2(2πω) for r = 10 and ρ = 0.09 (upper left plot), in figure 1 we display some graphs showing
the behaviour of the errors in the computation of the average, frequencies and Fourier coefficients as ρ
decreases. The top right plot shows the log10-errors functions Lr(ρ) and lr(ρ) introduced above from the
errors on the computation of the average of the signal, for r ∈ {5, 10}. It is worth mentioning that the
actual and estimated errors in the computation of the average behave quite similarly (as is also the case in
the frequency refinement of the components of ω̃). The bottom left plot displays the log10-error function
Rr(ρ) associated to the maximum of the actual errors on the refined frequencies, for r ∈ {5, 10}. The
bottom left plot shows the log10-error functions Fk(ρ), associated to the maximum of the relative errors
on the Fourier coefficients of order k = 1, . . . , 5, but only for r = 5. We do not show the corresponding
log10-error functions for r = 10 because they only provide significant results for k ∈ {1, 2}. For k > 2,
the relative errors in the Fourier coefficients become of order one if ρ is small, probably because in this
case there are a very large amount of Fourier coefficients of very similar size to those of order one.

4 Numerical example for a quasi-periodically forced standard map
The second example to show the numerical performance of the methodology is the quasi-periodically
forced Chirikov’s standard map Fα,β,ω̃ : (θ̃, x, y) ∈ Tr ×T×R→ (θ̃′, x′, y′) ∈ Tr ×T×R, defined as:

θ̃′ = θ̃ + ω̃, y′ = y + α sin(2πx) + β

r∑
j=1

sin(2πθ̃j), x′ = x+ y′. (21)

The map (21) defines a quasi-periodic analytic skew-product of T×R, with rotation frequencies ω̃ ∈ Rr.
We suppose that the corresponding vector of frequencies, given by 2πω̃, verifies a Diophantine condition
(see (1)). Enlarging the phase space to Tr × T × Rr × R, by the addition of appropriate new variables
Ĩ ∈ Rr, allows to rewrite (21) as an exact symplectic map for the actions (θ̃, x) and the momenta (Ĩ , y)

(these new variables Ĩ do not mean any modification for the dynamics of (θ̃, x, y)). Since for α = β = 0
the map (21) is an integrable and non-degenerate twist map, then we expect to have plently of KAM
(primary) invariant tori of Fα,β,ω̃ if 0 < |α|, |β| � 1. These tori carry quasi-periodic motion with a
rotation vector of the form ω = (ω̃, ω̂) ∈ Rr × R. The inner rotation frequency ω̂ should be close to the
value of the y coordinate along the torus.
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We have selected the map (21) for several reasons. From its iterates we can generate non-trivial quasi-
periodic signals, which are not defined ad hoc. The computational cost of each iteration is relatively
mild, since the expression

∑r
j=1 sin(2πθ̃j) can be evaluated recursively by trigonometric recurrences.

Moreover, if we iterate the map for a large set of initial conditions, all with the same initial value for θ̃,
then the sequence of iterates of this trigonometric sum is the same for all these points. Finally, before
starting the frequency analysis, we have strong control for the r + 1 frequencies of each quasi-periodic
solution that belongs to a primary invariant torus. Indeed, not only the frequencies of the forcing are
known a priori, but the average of the discrete-time signal defined by the component y of the iterates
gives the value of the inner rotation frequency ω̂. Explicitly, let (x, y) = ϕ(θ) be a parameterization of
an (r + 1)-dimensional invariant torus of Fα,β,ω̃, in such a way that the dyamics for θ = (θ̃, θ̂) ∈ Tr × T
is a rigid rotation of rotation vector ω = (ω̃, ω̂). This means that the functional (invariance) equation
Fα,β,ω̃(θ̃, ϕ(θ)) = (θ̃ + ω̃, ϕ(θ + ω)) holds. If ϕ parametrizes a primary torus of the map, then we can
express (x, y) = ϕ(θ) as x = θ̂ + φ(θ) and y = ψ(θ), with φ(θ) and ψ(θ) 1-periodic on the angles (i.e.,
the torus in the (x, y) space is homotopic to T× {0}). Consequently, this invariance equation reads as:

ψ(θ + ω) = ψ(θ) + α sin(2π (θ̂ + φ(θ))) + β
r∑
j=1

sin(2πθ̃j), ω̂ + φ(θ + ω) = φ(θ) + ψ(θ + ω).

In particular, expressions above mean that the average with respect to θ of ψ(θ) equals to ω̂.
We consider initial conditions of the form (θ̃(1), x(1), y(1)) = (0, 0, y0), with 0 ≤ y0 ≤ 1, and perform

the iteration (θ̃(m+1), x(m+1), y(m+1)) = Fα,β,ω̃(θ̃(m), x(m), y(m)), m ≥ 1. If an initial condition belongs
to a primary invariant torus of Fα,β,ω̃, then {y(m)}m≥1 defines a quasi-periodic signal with rotation vector
ω = (ω̃, ω̂), whose average is ω̂. We then first try to numerically compute the average γ̂0 of {y(m)}m≥1

from a sample of the signal. As noted in the introduction, if γ̂0 can be computed with significantly large
accuracy, then we can use this fact as a first indicator that this time-discrete signal is quasi-periodic.
Therefore, in order to really expect that we have a primary torus, we also have to check that the computed
value ω̂ = γ̂0 (the candidate to inner rotation frequency of the torus) is non-resonant with the rotation
vector ω̃ of the forcing. A resonance between ω̂ and ω̃ may mean that the initial condition belongs to
a non-primary invariant torus contained in a resonant zone of the map. From the numerical viewpoint,
non-resonance means ε(NR)(2πω̃, 2πω̂) > εR, for some NR � 1 and 0 < εR � 1 (see algorithm 2.8).

We present results for r = 5 and for r = 10 by using the same rotation vectors ω̃ ∈ Rr introduced in
section 3. Hence, the selected εR above should be in consonance with ε(NR)(2πω̃) (see equation (20) and
related comments). Furthermore, to reduce the amount of parameters, we set α = 0.01 fixed throughout
the computations. This α is clearly below the critical value αGM ≈ 0.971635/2π ≈ 0.15464 correspond-
ing to the breakdown of the last invariant curve of the Chirikov’s standard map (with rotation frequency
the Golden Mean).

4.1 Results for r = 5

We perform a numerical exploration to detect candidates for initial conditions (θ̃(1), x(1), y(1)) = (0, 0, y0)
giving rise to primary invariant tori of F0.01,β,ω̃. We consider 101 equispaced values of β ∈ [0, 0.02] and,
for each of these β, we consider 1001 initial conditions defined by equispaced values of y0 ∈ [0, 1]. After
iteration of each initial condition, we use the y-coordinate to generate the sample {y(m)(y0, β)}N+1

m=1, with
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Figure 2: Couples (y0, β) for which we expect that the selected initial conditions (numerically) define a
primary invariant torus of the map F0.01,β,ω̃ for r = 5 (left plot) and r = 10 (right plot).

N = 220. We proceed as described in comments following algorithm 2.5 in order to compute a numeri-
cal value ω̂(y0, β) for the average of {y(m)(y0, β)}m≥1 as well as an estimated error e(y0, β). Explicitly,
we rely on the methodology discussed in connection with equations (13) and (14), using extrapolation
orders p between 1 and P = 6, and samples of length 2q, with q ranging from q0 = 10 and Q = 20. The
same implementation has been used below to evaluate each averaging-extrapolation operator associated
to the frequency refinement and to the computation of the Fourier coefficients, as well as to estimate
the associated errors. We first purge the selected collection of parameters (y0, β) by removing those for
which e(y0, β) is larger than 10−9. Next, we remove those parameters for which ω̂ = ω̂(y0, β) does not
verify ε(NR)(2πω̃, 2πω̂) > εR for NR = 10 and εR = 10−7. The couples (y0, β) and (y′0, β

′) for which
|ω̂(y0, β) − ω̂(y′0, β

′)| < 10−7 are also removed. We do so because if two values of the inner frequency
are so close, for different parameters, it seems reasonable to think that they are associated with a (higher
order) resonance. The surviving values of (y0, β) (about 41% of the initial ones) are displayed in the
left plot of figure 2. For these values we expect that {y(m)(y0, β)}m≥1 numerically behaves as a true
quasi-periodic signal, with vector of rotation frequencies given by (ω̃, ω̂), with ω̂ ≈ ω̂(y0, β).

Among the surviving parameters, we focus on β = 0.014 and y0 = 0.82 (so we can omit the
dependence on (y0, β) until the end of this sub-section). This is the analysed pair (y0, β) which gives
rise to an estimated error of order 10−11 (or smaller) for as large as possible β. For the associated
discretre signal {y(m)}m≥1, we get the values ω̂ = ω̂3,18 ≈ 0.83397589718242415 and e ≈ 1.5 · 10−11

(we observe that ω̂ is reasonably close to y0). For this particular case, we have repeated the computation
of the average by allowing averaging order up to p = 10. We get the new (improved) values ω̂ = ω̂10,17 ≈
0.83397589848930753 and e ≈ 7.8 · 10−13. The smaller quasi-resonance obtained up to ordrer 12 for
this computed value for ω̂ is ε(12)(2πω̃, 2πω̂) ≈ 1.1 · 10−6 (see equation (17)).

The first step in performing the frequency refinement on {y(m)}n≥1 is to obtain initial approximations
to the frequencies. We proceed as if we had no prior information on any of them. We introduce the signal
{xm}m≥1 by removing from y(m) the estimated value for its average, i.e., xm = y(m) − ω̂. We then use
the sample {xm}Lm=1, with L = 212, to compute the modulus Z1 of the DFT and the modulus Z2 of
the “refined” DFT transform (see equations (15) and (16)). In the upper part of figure 3 we display
Z1(2πω) (left plot) and Z2(2πω) (right plot) after computing both for 1000 equispaced values of the
rotation frequency ω ∈ (0, 0.5]. We observe that the dominant peaks of Z2 are narrower than those of Z1
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Figure 3: Graphs of Z1(2πω) (left) and of Z2(2πω) (right) for the selected signal generated by the
y-coordinate of Fα,β,ω̃ for r = 5.

and that some spurious oscillations have been eliminated. This is mainly visible in the zoomed-in lower
graphs. We then have tried to obtain approximations to rotation frequencies of {y(m)}n≥1 from the 15
first peaks of the above computed sample {Z2(2πω(j))}1000

j=1 (see algorith 2.7). These peakes have been
iteratively refined (along with associated Fourier coefficients) using algorithm 2.5. We have performed
6 iterations of the refinement method for each approximate frequency but, in fact, after 4 iterations we
have reached the highest possible accuracy for any of them. In table 2, we show the first 4 iterations
for two of the approximate frequencies. The two columns labelled by ω give the iterates of the rotation
frequency, while errω and errcoefω give the iterative errors for ω and for the Fourier coefficient coefω,
respectively. Since 1.66 ≈ 1 − ω̂ (see remark 2.6), where ω̂ is the previously computed value for the
average of {y(m)}m≥1, we expect that the sequence of values in the first column approaches to a value
close to the inner frequency 1− ω̂ of the signal (see comments below).

A summary of the results for all refined frequencies is shown in table 3, where rotation frequencies
are sorted in decreasing order according to the modulus of the Fourier coefficient coefωref

associated
with the refined frequency ωref . As we are not removing from the signal the Fourier contribution of
previously refined frequencies, the selected refinement order is not important. In table 3, ωpeak is the
initial approximation to the frequency provided by a peak of Z2. Further, errωref

and errcoefωref
are the

the errors of the refinement method for ωref and coefωref
, respectively. Refinement errors are defined
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ω errω errcoefω ω errω errcoefω

0.166000000000000 0.07000000000000000
0.166024094641940 2.4 · 10−5 5.1 · 10−3 0.07004387216647549 4.4 · 10−5 3.6 · 10−4

0.166024101510722 6.9 · 10−9 5.1 · 10−6 0.07004387468195829 2.5 · 10−9 5.0 · 10−7

0.166024101510723 1.1 · 10−15 8.4 · 10−13 0.07004387468195822 6.9 · 10−17 1.6 · 10−14

0.166024101510725 1.3 · 10−15 1.0 · 10−12 0.07004387468195820 1.4 · 10−17 3.5 · 10−15

Table 2: Iterative results of the refinement for two of the peaks for the selected signal generated by the
y-coordinate of Fα,β,ω̃ for r = 5.

using the difference between the two last iterates. We recall that errωref
does not necessary reflects the

accuracy of ωref as a frequency of the signal. Hence, we have also computed, when possible, the error
Errωref

defined by comparing ωref with the corresponding true rotation frequency of the quasi-periodic
forcing (rows 1, 3 to 6) or with the previously computed value 1−ω̂ for the inner frequency of {y(m)}m≥1

(row 2). Errors of the frequency refinement for these 6 frequencies match quite well with those expected.
Since the number of independent frequencies is not set a priori when applying the method, the next

step is to numerically detect resonances (up to order 10) between refined frequencies. We have not
examined ω(15)

ref , as its Fourier coefficient is extremly small. Peaks of Z2 giving rise to a refined frequency
with a very small amplitude should come from spurious peaks (probably related to oscillations due to
“secondary” frequencies contained in the peak’s support of a “dominant” frequency). Not omitting
these frequencies a priori has the problem that they may be related to high order resonances that can be
difficult to detect, as these frequencies are probably known with a low level of accuracy. We have used
the methodology proposed in algorithm 2.8 to analyze resonances between {ω(j)

ref}14
j=1. As a conclussion,

we confirm that {ω(j)
ref}6

j=1 are independent, and we derive the following relations for the remaining ones:

ω
(7)
ref ≈ ω

(1)
ref − ω

(2)
ref , ω

(8)
ref ≈ ω

(3)
ref − ω

(2)
ref , ω

(9)
ref ≈ ω

(4)
ref − ω

(2)
ref , ω

(10)
ref ≈ 2ω

(2)
ref ,

ω
(11)
ref ≈ ω

(5)
ref − ω

(2)
ref , ω

(12)
ref ≈ ω

(1)
ref + ω

(2)
ref , ω

(13)
ref ≈ ω

(2)
ref + ω

(3)
ref , ω

(14)
ref ≈ 2ω

(2)
ref − ω

(1)
ref .

These relations are used to define Err(j)
ωref

for j = 7, . . . , 14 in table 3. E.g., Err(7)
ωref

= |ω(7)
ref −ω

(1)
ref +ω

(2)
ref |.

We have also computed the Fourier coefficients of the quasi-periodic signal {y(m)}m≥1 associated
with integer combinations, up to order 5, of the set of basic rotation frequencies {ω(j)

ref}6
j=1. Harmonics of

order 6 are so small that it is unrealistic to expect any significant accuracy for them. The total number of
complex Fourier coefficients up to order 5, for 6 frequencies, is 3653. To compute the Fourier coefficients
we have used the approach suggested in the comments that follow algorithm 2.5. Therefore, we first
compute the Fourier coefficients of order 1 (in fact they are already known) by dealing with the signal
{y(m)}m≥1 minus its average. Next, we remove the Fourier contribution of order 1 from {y(m)}m≥1 and
compute the Fourier coefficients of ordre 2 from this residual signal. And so on. We denote by m(n),
for n ≥ 0, the maximum size of the modulus of the iterates {y(m)}Nm=1 after the removal of their Fourier
harmonics up to order n. We have obtained m(0) = 5.4 · 10−2, m(1) = 2.0 · 10−3, m(2) = 5.3 · 10−4,
m(3) = 2.7 · 10−4, m(4) = 2.0 · 10−4, and m(5) = 1.7 · 10−4. Although m(n) does not decrease too fast
with n, this fact has not been an obstacle to compute fairly good approximations for the frequencies. We
point out that we have generally observed that the numerical results of averaging-extrapolation methods
for frequencies are usually better than those for the Fourier coefficients (which, in fact, is very common
in all frequency analysis methods).
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j ω
(j)
peak ω

(j)
ref err

(j)
ωref |coef(j)

ωref
| err

(j)
coefωref

Err(j)
ωref

1 0.2360 0.236067977499787 7.5 · 10−16 5.2 · 10−3 5.7 · 10−12 2.6 · 10−15

2 0.1660 0.166024101510724 4.4 · 10−15 5.0 · 10−3 2.6 · 10−12 3.1 · 10−14

3 0.2680 0.267949192431126 4.7 · 10−15 4.7 · 10−3 4.5 · 10−12 3.1 · 10−15

4 0.3165 0.316624790355398 3.4 · 10−15 4.2 · 10−3 1.6 · 10−11 2.2 · 10−15

5 0.3540 0.354248688935411 3.6 · 10−15 3.9 · 10−3 2.2 · 10−11 1.2 · 10−15

6 0.4140 0.414213562373096 2.8 · 10−15 3.6 · 10−3 4.6 · 10−11 8.3 · 10−16

7 0.0700 0.070043874681958 1.4 · 10−17 2.8 · 10−4 3.5 · 10−15 1.3 · 10−9

8 0.1020 0.101925089613485 2.8 · 10−17 1.6 · 10−4 4.5 · 10−15 1.3 · 10−9

9 0.1505 0.150600687655115 3.4 · 10−15 1.1 · 10−4 6.7 · 10−14 1.9 · 10−9

10 0.3320 0.332048203021388 7.9 · 10−15 9.1 · 10−5 7.1 · 10−14 3.1 · 10−15

11 0.1880 0.188224586235124 1.0 · 10−15 6.7 · 10−5 5.8 · 10−14 1.2 · 10−9

12 0.4020 0.402092079010574 4.1 · 10−15 6.4 · 10−5 2.7 · 10−14 9.2 · 10−14

13 0.4340 0.433973293941802 1.7 · 10−16 5.1 · 10−5 2.2 · 10−14 1.3 · 10−14

14 0.0960 0.095980228138780 1.2 · 10−14 4.0 · 10−5 3.5 · 10−13 2.6 · 10−9

15 0.0155 0.015499878428198 2.0 · 10−10 5.2 · 10−11 5.8 · 10−14

Table 3: Results of the refinement process for the selected signal generated by the y-coordinate of Fα,β,ω̃
for r = 5.

4.2 Results for r = 10

Once again, we set α = 0.01 and perform a numerical exploration of the map by computing the average
of the y-coordinate. Now, we select a mesh of 1001× 101 values for the pair (y0, β) ∈ [0, 1]× [0, 0.004]
(equispaced in both directions). The numerical value ω̂(y0, β) for the average of {y(m)(y0, β)}m≥1 and
the estimate e(y0, β) for its error are both computed as done for r = 5 (using the same number of iterates
and the same averaging-extrapolation orders). We have applied the same purge to the set of parameters
(y0, β) as done for r = 5, with the only difference that we only check the non-resonance conditions up
to order NR = 8. The verification of these non-resonances is by far the most time-consuming part of
these computations. In this case, only about 1.7% of these initial points survive (see the right plot of
figure 2). We note that, in fact, about 22% of them survive if we only eliminate those for which we have
detected a resonance up to order NR = 8. Many other initial conditions have been suppressed because
we are assuming that if a pair of different initial conditions give rise to very close values of ω̂(y0, β) it is
because they are probably resonant.

We select β = 0.00392 and y0 = 0.195 as parameters that we expect to define a primary torus of
the map for r = 10 (from now on we omit any dependence on (y0, β)). For this pair (y0, β) we get the
values ω̂ = ω̂4,19 ≈ 0.21793798707514395 (not “too far” from y0) and e ≈ 2.4·10−12. The smaller quasi-
resonance, up to ordrer NR = 8, between ω̂ and the frequencies of the forcing is ε(8)(ω̃, ω̂) ≈ 8.6 · 10−7

(see equation (17)). We compute the functions Z1(2πω) and Z2(2πω) for the signal {xm}m≥1 defined
as xm = y(m) − ω̂, using the same implementation parameters as for r = 5. The graphical comparison
of the peaks of Z1 (left graphs) with those of Z2 (right graphs) is shown in figure 4.

We discuss the results of the refinement process for the 15 “dominant” peaks of the computed sample
{Z2(2πω(j))}1000

j=1 . Refinement has been performed using the same implementation parameters as for
r = 5. In particular, we have done 6 iterations for every approximate frequency provided by each of



J. Villanueva 21

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

Z
1
(2

 π
 ω

)

ω

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

Z
2
(2

 π
 ω

)

ω

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.2  0.205  0.21  0.215  0.22  0.225  0.23  0.235  0.24  0.245  0.25

Z
1
(2

 π
 ω

)

ω

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.2  0.205  0.21  0.215  0.22  0.225  0.23  0.235  0.24  0.245  0.25

Z
2
(2

 π
 ω

)

ω

Figure 4: Graphs of Z1(2πω) (left) and of Z2(2πω) (right) for the selected signal generated by the
y-coordinate of Fα,β,ω̃ for r = 10.

ω errω errcoefω ω errω errcoefω

0.2180000000000000 0.05000000000000000
0.2179385328503463 6.1 · 10−5 3.5 · 10−3 0.05001176875732311 1.2 · 10−5 1.4 · 10−4

0.2179379935504115 5.4 · 10−7 5.4 · 10−3 0.05001119810412949 5.7 · 10−7 1.2 · 10−4

0.2179379947008482 1.2 · 10−9 1.5 · 10−5 0.05001119779828809 3.1 · 10−10 8.9 · 10−8

0.2179379947001661 6.8 · 10−13 8.8 · 10−9 0.05001119779844358 1.6 · 10−13 4.5 · 10−11

0.2179379947001665 3.9 · 10−16 5.1 · 10−12 0.05001119779844351 6.9 · 10−17 1.9 · 10−14

Table 4: Iterative results of the refinement for two of the peaks for the selected signal generated by the
y-coordinate of Fα,β,ω̃ for r = 10.

these peaks. Table 4 shows the iterative process for two of these approximate frequencies (compare
with table 2) and table 5 shows a summary of the results for all these approximations (compare with
table 3). Entries in table 3 with error equal to zero are due to the fact that, after some iterations of
the refinement process applied to these frequencies, there is no difference between two consecutive
values of these quantities (in terms of the used double precision arithmetic). As expected, refinement
of the approximations associated with the first 11 peaks yields the internal frequency of the torus and
the frequencies of the forcing (the corresponding errors are those in the last column). The difference
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j ω
(j)
peak ω

(j)
ref err

(j)
ωref |coef(j)

ωref
| err

(j)
coefωref

Err(j)
ωref

1 0.2180 0.21793799470016659 5.6 · 10−17 3.9 · 10−3 5.1 · 10−12 7.6 · 10−9

2 0.1230 0.12310562561766709 3.7 · 10−16 2.6 · 10−3 1.6 · 10−12 6.5 · 10−15

3 0.2040 0.20416847668727622 1.8 · 10−15 1.8 · 10−3 9.1 · 10−12 4.7 · 10−15

4 0.2360 0.23606797749977840 1.4 · 10−15 1.5 · 10−3 5.2 · 10−12 1.1 · 10−14

5 0.2680 0.26794919243111931 1.7 · 10−16 1.3 · 10−3 4.6 · 10−13 3.5 · 10−15

6 0.3165 0.31662479035539526 0 1.2 · 10−3 0 4.6 · 10−15

7 0.3540 0.35424868893539035 6.1 · 10−15 1.1 · 10−3 1.8 · 10−11 1.9 · 10−14

8 0.3590 0.35889894354065921 5.6 · 10−17 1.1 · 10−3 5.1 · 10−12 1.5 · 10−14

9 0.3850 0.38516480713450540 2.0 · 10−15 1.0 · 10−3 5.1 · 10−12 1.7 · 10−15

10 0.3945 0.39444872453600111 5.6 · 10−17 1.0 · 10−3 7.0 · 10−12 9.8 · 10−15

11 0.4140 0.41421356237305801 3.2 · 10−15 1.0 · 10−3 1.2 · 10−11 3.7 · 10−14

12 0.0500 0.05001119779844351 0 8.8 · 10−5 1.9 · 10−14 6.7 · 10−11

13 0.0950 0.09500213189842259 8.3 · 10−17 4.5 · 10−6 1.2 · 10−14 1.2 · 10−9

14 0.0180 0.01800004701773137 1.1 · 10−7 4.1 · 10−8 8.0 · 10−8

15 0.0140 0.01399779145758519 2.6 · 10−10 6.9 · 10−8 3.2 · 10−10

Table 5: Results of the refinement process for the selected signal generated by the y-coordinate of Fα,β,ω̃
for r = 10.

|ω(1)
ref − ω̂| ≈ 7.6 ·10−9 between the refined value of the inner frequency and the computed value ω̂ for the

average of {y(m)}m≥1 is, perhaps, larger than expected a priori (compare with the second row of results
in table 3 for r = 5). We are more confident in the result for ω(1)

ref than in that for ω̂. This larger than
expected error for the average of the signal may explain why we get several spurious peaks in the sample
{Z2(2πω(j))}1000

j=1 that accumulate close to ω = 0 (see figure 3 and the last 4 rows of table 5). The refined
frequencies {ω(j)

ref}15
j=12 in table 5 should be resonant with the first 11. We have been able to establish this

fact for j ∈ {12, 13}, while for j ∈ {14, 15} the corresponding Fourier coefficients are so small that we
do not expect too much accuracy for them. Specifically, we have:

ω
(12)
ref ≈ ω

(5)
ref − ω

(1)
ref , ω

(13)
ref ≈ 3ω

(1)
ref − ω

(2)
ref − ω

(3)
ref + ω

(7)
ref + ω

(11)
ref − ω

(13)
ref − 1.

The error associated with each of these resonances is shown in the corresponding entry in the last column
of table 5. Finally, we have computed by averaging and extrapolation the Fourier coefficients of the signal
{y(m)}m≥1 up to order 4. In this case, the corresponding residuals m(n) behave worse than those for the
selected torus for r = 5. Concretely, we obtain m(0) = 3.1 · 10−2, m(1) = 3.9 · 10−3, m(2) = 2.8 · 10−3,
m(3) = 2.4 · 10−3, and m(4) = 2.1 · 10−3.
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A Some technical details
Throughout this section, we use notations, definitions and assumptions of section 2. The starting point is
as described in remark 2.3. Our main purpose is to provide the details on the validity of formula (8) and,
by extension, of formulas (6) (for ω̄ = 0) and (7) (for ω̄ = ω0), which correspond to the cases ε = 0.

To achieve these aims, we select an averaging order p ≥ 1, and use recurrences in definition 2.2 to
compute Sln = Sln({xme−imω̄}Nm=1), for any n = 1, . . . , N and l = 0, . . . , p. Leaving aside any issue
about convergence, it is not difficult to establish by induction the following formal expression for these
sums (in terms of the Fourier coefficients of γ):

Sln =
∑
k∈Zr

γ̂kF
l
n(λkλ̄

−1). (22)

To simplify formula (22), we have introduced the notations λk = ei〈k,ω〉 and λ̄ = eiω̄, and we have defined

F l
n(x) =

xl

(x− 1)l
(xn − 1)−

l−1∑
s=1

(
n+ l − s− 1

l − s

)
xs

(x− 1)s
.

We note that by setting xm = 1, ∀m, it is not difficult to verify that F l
n(1) = Sln({xm}Nm=1) =

(
n+l−1

l

)
.

We set l = p and rewrite formula (22) as follows:

Spn = γ̂k0F
p
n(λk0λ̄

−1)−
p−1∑
s=1

(
n+ p− s− 1

p− s

)
Aps + epn, (23)

where

Aps =
∑

k∈Zr\{k0}

γ̂k
(λkλ̄

−1)s

(λkλ̄−1 − 1)s
, epn =

∑
k∈Zr\{k0}

γ̂k
(λkλ̄

−1)p

(λkλ̄−1 − 1)p
((λkλ̄

−1)n − 1). (24)

The motivation for writing Spn as in (23) is that, as λk0λ̄
−1 ≈ 1, then we expect γ̂k0F

p
n(λk0λ̄

−1) ≈
γ̂k0
(
n+p−1

p

)
to be the dominant term of this expression. Furthermore, F p

n(λk0λ̄
−1) ≈ np/p! if n� 1.

Let us briefly discuss the convergence of expressions above. The simplest case is when ω̄ = ω0 (i.e.,
ε = 0). Then, Diophantine conditions (1) for ω imply that |λkλ̄−1 − 1| ≥ C|k − k0|−τ , ∀k 6= k0. This
lower bound on the denominators ofAps and epn in (24), along with the analyticity of γ (see (2)), guarantee
the convergence of these expressions and allows to derive an upper bound for the size of epn independent
of n. If 0 < ε� 1, then it is not difficult to prove that we still have a Diophantine condition of the form
|λkλ̄−1 − 1| ≥ (C/2)|k − k0|−τ , ∀k 6= k0, except for a Cantor-like set of values of ω̄ of small Lebesgue
measure. For the values of ω̄ that verify this slightly worse Diophantine condition, the result for ε 6= 0 is
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analogous to the result for ε = 0. For general values of 0 < ε� 1, we can only ensure that the condition
|λkλ̄−1−1| ≥ (C/2)|k−k0|−τ is satisfied up to very large values of |k|1. Explicitly, if |k−k0| ≤ c1/ε

1/τ ,
for some c1 > 0. Therefore, we only have a lower bound for the denominators in (24) related to such
values of k. But if |k − k0| > c1/ε

1/τ , then the analyticity of γ guarantees that the size of the Fourier
coefficient γ̂k is exponentially small on ε. This observation is the key point of the main result of [8], so
the interested reader is referred there for further details. We split the contribution of γ to Spn into two
parts. The first one collects the contribution of the coefficients γ̂k for which |k − k0| ≤ c1/ε

1/τ and the
second one collects the contribution of those coefficients for which |k − k0| > c1/ε

1/τ . To control the
size of the first part, we rely on the Diophantine bounds for the denominators. To control the size of the
second one, we simply multiply |γ̂k| by a factor that takes into account the number of terms involved in
the sum, rather than trying to bound the size of the sum by a geometric progression. We use this splitting
to justify the validity of the following expression for the averaged sums S̃pn = p!Spn/n

p:

S̃pn = γ̂k0F̃
p
n(λk0λ̄

−1) +

p−1∑
s=1

Ãps
ns

+ ẽpn. (25)

The constants {Ãps}
p−1
s=1 (independent of n) are defined in terms of the constants {Aps}

p−1
s=1, after redefining

them by restricting the sums in (24) to |k − k0| ≤ c1/ε
1/τ . The new error term ẽpn is defined in terms

of epn and the part of the sums in (24) involving {Aps}
p−1
s=1 that is associated with |k − k0| ≥ c1/ε

1/τ .
Finally, F̃ p

n = p!F p
n/n

p. Hence, for a fixed p, we have that F̃ p
n(λk0λ̄

−1) ≈ 1 if ε � 1 and n � 1.
Furthermore, we have the following bound for the error term (we mainly highlight the contribution to it
of the Diophantine constant C of (1)):

|ẽpn| ≤
C̃1

Cp

1

np
+

C̃2

exp (c̃1/ε1/τ )
, (26)

for some constants C̃1, C̃2 and c̃1 independent of n. Globally speaking, these constants only depend
on r, τ , p, M , ρ and |k0|1. The idea of the presented averaging-extrapolation method is to ignore the
contribution of ẽpn to formula (25) and to apply Richardson’s extrapolation to the resulting expression.
This allows to remove from it the contribution associated with the constants {Ãps}

p−1
s=1. More specifically,

we fix p and N , and we select increasing positive integers {Nj}pj=1 behaving geometrically as those in
definition 2.2, with Np = N . We compute {S̃pNj

}pj=1 and use these values to perform the extrapolation.
To further describe the process, we introduce the following p-dimensional column vectors:

S = (S̃pN1
, . . . , S̃pNp

)>, Ns = (1/N s
1 , . . . , 1/N

s
p )>, F = (F̃ p

N1
, . . . , F̃ p

Np
)>, E = (ẽpN1

, . . . , ẽpNp
)>,

for s = 0, . . . , p. Then, we have established the following equation:

S − γ̂k0F(λk0λ̄
−1)− E =

p−1∑
s=1

ÃpsNs.

As the vector defined by the rightmost part of this equality is linear combination of the vectors {Ns}p−1
s=1,

then the p× p determinant that has these p vectors as columns must be zero. Consequently, we obtain:

det(S,N1, . . . ,Np−1) = γ̂k0∆(λk0λ̄
−1) + det(E ,N1, . . . ,Np−1), (27)
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where
∆ = det(F ,N1, . . . ,Np−1).

In particular, we observe that if we use

F̃ p
n(1) =

p!

np

(
n+ p− 1

p

)
=

(n+ p− 1)(n+ p− 2) · · · (n+ 1)n

np
,

then it is not difficult to show that the value of ∆(1) is given by the following Vandermonde determinant:

∆(1) = det(N0,N1, . . . ,Np−1) =
∏

s1,s2=1,...,p
s1>s2

(
1

Ns1

− 1

Ns2

)
=

1

(N1 · · ·Np)p−1

∏
s1,s2=1,...,p

s1>s2

(Ns2 −Ns1).

Furthermore, we introduce the (p − 1)-dimensional column vectors Ns;l and the (p − 1) × (p − 1)
Vandermonde determinants ∆l, for s, l = 1, . . . , p, defined by the following expressions:

Ns;l = (1/N s
1 , . . . , 1/N

s
l−1, 1/N

s
l+1, . . . 1/N

s
p )>,

∆l = det(N1;l, . . . ,Np−1;l) =
1

(N1 · · ·Nl−1Nl+1 · · ·Np)p−1

∏
s1,s2=1,...,p
l 6=s1>s2 6=l

(Ns2 −Ns1).

From them, we have:

det(S,N1, . . . ,Np−1) =

p∑
l=1

(−1)l+1∆lS̃
p
Nl
, det(E ,N1, . . . ,Np−1) =

p∑
l=1

(−1)l+1∆lẽ
p
Nl
.

If we divide equation (27) by ∆(1), then we have established the following formula:

p∑
l=1

(−1)l+1 ∆l

∆(1)
S̃pNl

= γ̂k0
∆(λk0λ̄

−1)

∆(1)
+

p∑
l=1

(−1)l+1 ∆l

∆(1)
ẽpNl

. (28)

Simple computations show that if we set cpl = (−1)l+1∆l/∆(1), then the coefficients cpl = cpl ({Nj}pj=1)
are given by formula (3). Consequently, we have established formula (8) for the extrapolation operator
Θp
{Nj}, where ∆̃{Nj} = ∆̃ and the error term Ẽ are given by:

∆̃(ei(ω0−ω̄)) = ∆̃(λk0λ̄
−1) =

∆(λk0λ̄
−1)

∆(1)
, Ẽ =

p∑
l=1

cpl ẽ
p
Nl
. (29)

We note that the function ∆̃ only depends on the selected integers {Nj}pj=1 and that ∆̃(1) = 1. According
to definition 2.2, the integers {Nj}pj=1 verify Nj ∼ µp−jN , for some 0 < µ < 1. Consequently, the size
of the coeficients {cpj}

p
j=1 given by (3) can be bounded, in terms of µ, by an expression independent of

the selected Np = N . Then, using (26), we conclude that Ẽ verifies a bound like the one given in (9), by
re-defining the values of the constants C̃1 and C̃2 in (26), that now also depend on µ.


