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Quasi-Periodic Frequency Analysis Using Averaging-Extrapolation Methods∗

Alejandro Luque† and Jordi Villanueva‡

Abstract. We present a new approach to the numerical computation of the basic frequencies of a quasi-
periodic signal. Although a complete toolkit for frequency analysis is presented, our methodology
is better understood as a refinement process for any of the frequencies, provided we have a rough
approximation of the frequency that we wish to compute. The cornerstone of this work is a recently
developed method for the computation of Diophantine rotation numbers of circle diffeomorphisms,
based on suitable averages of the iterates and Richardson extrapolation. This methodology was
successfully extended to compute rotation numbers of quasi-periodic invariant curves of planar
maps. In this paper, we address the case of a signal with an arbitrary number of frequencies. The
most outstanding aspect of our approach is that frequencies can be calculated with high accuracy
at a moderate computational cost, without simultaneously computing the Fourier representation of
the signal. The method consists in the construction of a new quasi-periodic signal by appropriate
averages of phase-shifted iterates of the original signal. This allows us to define a quasi-periodic orbit
on the circle in such a way that the target frequency is the rotation frequency of the iterates. This
orbit is well suited for the application of the aforementioned averaging-extrapolation methodology
for computing rotation numbers. We illustrate the presented methodology with the study of the
vicinity of the Lagrangian equilibrium points of the restricted three body problem (RTBP), and we
consider the effect of additional planets using a multicircular model.
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1. Introduction. Invariant tori play a fundamental role in understanding the long-term
behavior of dynamical systems. This is especially the case for Hamiltonian systems and
also for exact symplectic maps, their discrete counterpart. If the Hamiltonian function is
a small perturbation of an integrable Hamiltonian, the KAM theorem claims that, under
generic assumptions, there are plenty of (maximal dimensional) invariant tori carrying quasi-
periodic motion [1]. Invariant tori are also present far from integrability in the sense that
they persist for larger values of the perturbation than predicted by KAM theory. There are
other ways to generate quasi-periodic solutions apart from the close-to-integrable context.
For example, if a system is forced periodically or quasi-periodically, fixed points, periodic
orbits, and invariant tori inherit the frequencies of the perturbation [23, 38]. An analogous
phenomenon takes place in the autonomous case, in connection with the excitation of elliptic
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normal modes of linearly stable fixed points, periodic orbits, or lower dimensional invariant
tori [10, 22]. These small oscillations generate new invariant tori. In addition, invariant tori
are “effective barriers” to diffusion in phase space in the sense that trajectories close to a
maximal dimensional torus or to a linearly stable lower dimensional one remain around it for
a very long time [22, 33] (i.e., invariant tori are very “sticky”). These considerations lead
quasi-periodic solutions to be the fundamental class of “stable solutions” in the Hamiltonian
context. These solutions are relevant in applications to celestial mechanics, astrodynamics,
molecular dynamics, and plasma-beam physics. Beyond the study of Hamiltonian systems and
symplectic maps, existence of quasi-periodic solutions with stable behavior also occurs in other
contexts, such as dissipative ordinary differential equations [3]. We refer the interested reader
to [3, 4, 6, 38] and references therein for a wider picture of quasi-periodicity in dynamical
systems.

Given an initial condition on a quasi-periodic torus, we can reconstruct this object from the
corresponding orbit. If the dynamical system is defined by a map (discrete case), the iteration
of this initial condition under the map defines a quasi-periodic signal. If the dynamical system
is defined by a vector field (continuous case), this signal can be defined either by a stroboscopic
section or by a Poincaré section.

The crucial issue to characterize quasi-periodic signals is to compute their frequencies.
Indeed, the evolution of these frequencies along a family of trajectories allows us to understand
the global behavior of the system, for example, by detecting resonances from the ratios between
the computed frequencies. The regularity of the frequency map also provides information on
the persistence of invariant tori. Moreover, the variation of the (local) frequencies with time
is a dynamical indicator by which to measure diffusion and chaos [25].

The computation of frequencies and amplitudes of a signal is called quasi-periodic fre-
quency analysis. We note that frequencies define a dense set of R, although only a finite
number of them may be independent. A vector of basic frequencies is any collection of in-
dependent frequencies. Frequencies are typically approximated by the peaks of the discrete
Fourier transform (DFT) associated to a sample of points of the signal (see (30)). The size
of the peak gives an approximation of the corresponding amplitude. This approximation is
good up to errors of order 1/N , where N is the number of points of the truncated signal.
An important source of error is a phenomenon known as leakage. For periodic functions (the
quasi-periodic case is similar), when the length T of the time interval spanned by the sample
is not an integer multiple of the period, spurious frequencies appear in the DFT and the peaks
are displaced. A procedure based on refined Fourier techniques to reduce leakage and improve
this approximation was introduced in [25] (see also [26, 28]). This celebrated methodology
introduces in the definition of the DFT a suitable window function, usually a power p ≥ 1
of the so-called Hanning filter. After multiplying the quasi-periodic function by this window
function, the derivatives of the new function vanish (up to order 2p − 1) at the endpoints of
the interval. If the quasi-periodic function is smooth enough, then this new function can be
extended outside [0, T ] as a periodic function of class C2p−1. This regularization has the effect
of reducing the leakage phenomenon and allows for improving the resolution of the peaks
corresponding to the dominant frequencies. After a frequency and its amplitude have been
determined, this harmonic can be subtracted from the original signal, thus improving the
computation of the remaining frequencies. This methodology has been successfully applied to



FREQUENCY ANALYSIS BY AVERAGING AND EXTRAPOLATION 3

a wide set of problems (see, for example, [12, 27, 35] and references therein).

Among the improvements of this methodology, we highlight [13, 14]. The cornerstone of
these papers is to refine both frequencies and amplitudes by a collocation method. Specific-
ally, the signal is fitted to a generic Fourier expansion. After truncation of the series and
discretization of the signal to a finite sample, the resulting system of nonlinear equations is
solved simultaneously for both the frequencies and the Fourier coefficients (using the Newton
method). The approximations of frequencies and amplitudes provided by the DFT are used
as the initial guess for the solution of these equations.

There are other approaches to frequency analysis in the literature. For example, in [41] a
method based on wavelets is presented, while [18] relies on the construction of sequences of
orthogonal polynomials (frequencies are approximated by the zeros of these polynomials).

The methodology developed in the present paper assumes that we have a finite number
of iterates of a quasi-periodic signal with Diophantine frequencies. We also suppose that the
signal is analytic, although large enough differentiability suffices. Before discussing our ap-
proach to frequency analysis, let us outline some previous works that have laid the foundation
of the method presented in this paper.

The cornerstone of our construction is a method introduced in [36] for computing Dio-
phantine rotation numbers of circle diffeomorphisms. This method was justified under the
assumption that the map is conjugate to a rigid rotation in a sufficiently smooth way. Basically,
it consists in averaging the iterates of the map (actually its lift), together with Richardson
extrapolation. In most of the cases, it is capable of computing the rotation number with high
accuracy at low cost. We refer the reader to [8, 29, 37] for some works where this approach
has been useful in dealing with problems related to circle maps.

The method of [36] was successfully extended in [30] to compute rotation numbers of quasi-
periodic invariant curves of planar maps and, more generally, of quasi-periodic signals with one
basic frequency ω. The methodology consists in building a new quasi-periodic signal having
the same frequency. Any new iterate is defined by a weighted average of L consecutive phase-
shifted iterates of the signal. Shifts are defined in terms of an approximation to the frequency
of the signal (information on the amplitudes is not required). The purpose of these averages
is to modify the Fourier coefficients of the signal so that the new one resembles as closely as
possible a circle centered at the origin. For this reason, the construction is referred to as the
“unfolding process.” The goal is that the projection of the new signal onto the unit circle
induces a circle diffeomorphism, defined by means of the correspondence between consecutive
iterates. The rotation number of this map, which coincides with ω, can be obtained by the
method of [36].

To ensure that the projection of the iterates generates a circle map, we can unfold the
curve until we obtain a new one which is a graph over the argument. From the theoretical
viewpoint, this achievement is possible if one has a sufficiently good approximation of the
frequency and L is large enough. The complete unfolding of the signal can be quite expensive,
but it turns out that the convergence of the curve to a circle can be accelerated by performing
higher order averages and extrapolation (in analogy to the methodology of [36] for computing
the rotation number). Moreover, in practice we do not need to unfold the curve completely.
It suffices to unfold the curve removing only the main folds of the signal in such a way that
the size of the remaining folds is small compared with the frequency ω. This is achieved with
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a less expensive computational cost. Although the projection of the iterates onto the circle
may not define a circle map, in general it defines a smooth quasi-periodic signal on the circle
rotating with frequency ω (i.e., ω/2π is the averaged number of turns by iterate). It turns
out that the method of [36] also works in this case for computing ω. The reason is that the
key ingredient in [36] is not that the map is conjugate to a rigid rotation but that the iterates
behave quasi-periodically on the circle. We extensively exploit this fact in the present work.

In this paper we arrange the methodology of [30] to deal with quasi-periodic signals de-
pending on more than one basic frequency. A rough approximation1 of the target frequency is
used to unfold the signal, leading to a new quasi-periodic signal having the same frequencies
as the original one. Under suitable conditions, the projection of the unfolded signal induces
a quasi-periodically forced circle diffeomorphism. Now, the object projected onto the circle is
not a curve but a strip (that can be viewed as a planar projection of a torus whose dimension
is the number of basic frequencies of the signal). There is no general result ensuring that
the dynamics of a given quasi-periodically forced circle map is conjugate to a rigid rotation
(if this holds, conjugation depends quasi-periodically on the forcing frequencies). Existence
of the conjugation is not guaranteed by any nonresonance condition or by the smoothness
of the map (we refer the reader to [16, 17]). In the present context, if the projection truly
defines such a map, then it is conjugate to a rotation by construction because the projected
signal is already quasi-periodic. As noted before, in practice we need only a projected signal
where the rotation frequency is the frequency that we want to compute, so we can apply the
averaging-extrapolation methodology to refine it.

Let us summarize some features of the method. The computation of frequencies is carried
out without simultaneously computing a Fourier representation of the signal. Fourier coef-
ficients can be obtained a posteriori by slightly modifying the procedure for calculating the
frequencies. Computation of frequencies is performed individually, so we can focus on one in
particular. The same holds for the corresponding Fourier coefficient. The presented methodo-
logy is especially well suited if we are able to compute a large number of iterates of the signal
with high precision. In most of the cases the method is capable of computing frequencies
with great accuracy at a reasonable computational cost. As a conclusion, once we have an
approximation to a particular frequency, the presented averaging-extrapolation approach can
be viewed as a refinement process for it. Although this is not the ultimate purpose of this
work, the proposed methodology can be arranged to get the required approximations.

From a theoretical viewpoint, the accuracy of the method is not constrained by the number
of significant Fourier harmonics required to approximate the quasi-periodic signal or by the
number of basic frequencies of the problem. Notice that after appropriate parameters have
been selected to unfold the signal, the cost to calculate any new iterate is not conditioned
by the accuracy that we want to achieve for the target frequency. By contrast, the accuracy
expected by using the collocation procedure of [13, 14] is limited by the truncation order of the
Fourier series. Indeed, if the problem has many basic frequencies or the Fourier coefficients do
not decrease quickly enough, then performing high accuracy computation by fitting the Fourier
expansion requires solving a system of large dimension. In the framework of the presented

1Sometimes this approximation is given by the context or by a preliminary study of the signal using a
DFT-based method.
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averaging-extrapolation construction, more precision can be obtained by computing more
iterates of the signal (or, in the best-case scenario, by simply increasing the extrapolation
order). This is done without increment of the memory cost and with a computational cost
which is essentially linear on the number of computed iterates. If the signal is obtained by
numerical integration of a vector field, the bottleneck in the computation time is the evaluation
of the iterates and the cost of the method is almost negligible.

The paper is divided into two main parts. In section 2 we present the methodology for
performing frequency analysis and related computations. This includes an informal exposi-
tion of the key ideas behind the “unfolding process.” In section 3 we illustrate the presented
methodology with the study of the vicinity of a Lagrangian equilibrium point of the restric-
ted Sun–Jupiter–asteroid problem. We compute the frequencies for different sets of initial
conditions to enhance some of the features of the methodology. We also consider a multicir-
cular model where the effect of additional planets is taken into account. In Appendix A we
pay attention to some algorithmic details so that the interested reader can implement this
methodology, obtaining an efficient performance.

2. Description of the averaging-extrapolation methods. In this section we present an
averaging-extrapolation procedure for the computation of frequencies and amplitudes of a
quasi-periodic signal. After introducing the problem in section 2.1, we summarize the main
ideas behind our approach in section 2.2. We present our unfolding approach to single out
a particular frequency in section 2.3. In section 2.4, we explain the averaging-extrapolation
methodology to compute (“refine”) this frequency. In section 2.5 we arrange this construction
for the computation of the Fourier coefficients of the signal, while in section 2.6 we discuss how
we can get approximations to the frequencies using the presented approach. In section 2.7 we
test the methods by considering an example with known frequencies.

2.1. Setting of the problem. In this section we set some basic notation and properties
of quasi-periodic signals. We pay special attention to the construction of such signals in
applications.

Definition 2.1. Let Tr = Rr/(2πZ)r be the r-dimensional standard torus. We say that a
complex sequence {zn}n∈Z is a quasi-periodic signal with frequency vector ω ∈ Rr if there
exists γ : Tr → C such that zn = γ(nω) ∀n ∈ Z. If we denote the Fourier expansion of γ as

γ(θ) =
∑
k∈Zr

γ̂ke
i〈k,θ〉, γ̂k =

1

(2π)r

∫
Tr

γ(θ)e−i〈k,θ〉dθ,

then we have the relation

(1) zn = γ(nω) =
∑
k∈Zr

γ̂ke
in〈k,ω〉.

In this paper we restrict the exposition to analytic signals. Analyticity of γ means that there
exist positive constants ρ and M such that |γ̂k| ≤Me−ρ|k|1, where |k|1 := |k1|+ · · · + |kr|.

We consider complex-valued analytic signals because this simplifies the presentation of
the methods, even though large enough differentiability suffices (see [36] for details). The
presented approach also works if {xn} is a real-valued quasi-periodic signal. The method itself
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will turn it into a complex-valued one. If we have a vector-valued signal, xn = (x1n, . . . , x
l
n),

then we have the chance to deal with one of the components or to build a complex signal from
them (for example, zn = x1n, zn = x1n + ix1n+1, or zn = x1n + ix2n). Note that it can be useful
to define zn so that it “turns” around the origin (or around any other point) with a rotation
frequency that is close to that we wish to calculate. This can save many computations.

Remark 2.2. If ω verifies nonresonance conditions 〈k, ω〉 + 2πm 	= 0 for any k ∈ Zr \ {0}
and m ∈ Z, then ω is called a vector of basic frequencies of the signal. If these nonresonance
conditions are not met, then we can rewrite {zn} in terms of a lower number of frequencies.
Besides nonresonance, we are going to assume that ω verifies Diophantine conditions of the
form

(2) |ei〈k,ω〉 − 1| ≥ C

|k|τ1
∀k ∈ Zr \ {0},

for some C, τ > 0. It is well known that if τ > r, then the subset of ω ∈ Rr for which
conditions (2) do not hold, for any C > 0, has zero Lebesgue measure (see [6]).

Remark 2.3. The vector of basic frequencies ω ∈ Rr is not univocally defined. If we perform
the transformation ω 
→ Mω + 2πk, with k ∈ Zr and M an unimodular matrix, i.e., M ∈
Mr×r(Z) with det(M) = ±1, then we obtain an equivalent vector of basic frequencies. We
have to be aware of this fact when performing the frequency analysis. On the one hand, such a
property must be taken into account to correctly determine a set of basic frequencies. On the
other hand, if the Fourier coefficient γ̂ej is small, then computing ωj directly can be difficult.
We have the chance to address its computation by dealing with another integer combination
of basic frequencies 〈k, ω〉, with kj 	= 0, with a larger Fourier coefficient γ̂k.

Quasi-periodic signals like (1) are typically associated to a discrete dynamical system. This
system can be defined by a map F : U ⊂ Rl → Rl or, more generally, by a quasi-periodically
forced map G : U × Ts → Rl × Ts of the form G(x, θ̂) = (g(x, θ̂), θ̂ + ω̂), where U ⊂ Rl and
ω̂ ∈ Rs. Let us suppose that γ : Tr → Rl is a parameterization of a quasi-periodic invariant
torus of any of these maps. In the “autonomous case” we have F (γ(θ)) = γ(θ+ω). For quasi-
periodically forced maps, the invariance condition is g(γ(θ), θ̂) = γ(θ+ω), where θ = (θ̃, θ̂) and
ω = (ω̃, ω̂) (i.e., the torus inherits the frequencies of the forcing). If we take an initial condition
on the torus, x0 = γ(θ0), for some θ0 ∈ Tr, then xn = Fn(x0) or (xn, nω̂) = Gn(x0, θ̂0) defines
a vector-valued quasi-periodic signal given by xn = γ(ωn+ θ0).

Let us also consider quasi-periodic functions of continuous variable f : R → C, i.e.,
f(t) = F (ω̃t), with F : Tr → C and ω̃ ∈ Rr. These are typically associated to a continuous
dynamical system. We can introduce a (discrete-time) quasi-periodic signal as zn = f(nT )
for a fixed T > 0. Then, {zn} has frequency vector ω = T ω̃. In this situation we have to be
aware of some facts due to the time discretization.

(a) Nonresonance conditions for a vector of basic frequencies of a continuous-time quasi-
periodic signal are 〈k, ω̃〉 	= 0 ∀k ∈ Zr \ {0}. To ensure that T ω̃ is a nonresonant
frequency vector for the discretized signal, we need that T 	= 2πm

〈k,ω̃〉 for any k ∈ Zr \{0}
and m ∈ Z. It is equivalent to say that the (r + 1)-dimensional vector (ω̃, 2π/T )
is a nonresonant frequency vector of a continuous-time quasi-periodic signal; i.e., we
are adding an “artificial” frequency when performing the time discretization. In fact,
an “exact resonance” between T and ω̃ is not a bad thing because then we are not
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adding a new frequency due to the discretization (see Remark 2.4 for comments on
time-dependent differential equations). Numerically, problems arise when we are close
to a low-order resonance, i.e., T ≈ 2πm

〈k,ω̃〉 , with k and m not “too big.” Then, we are

going to have bad Diophantine conditions for ω (a small C in (2)). This is the worst
situation for our methods. However, in the framework of this paper, the computation
of ω̃ will follow from the prior knowledge of an approximate value ω̃0 ≈ ω̃. Then, we
have the chance to ensure, numerically, that there are no low-order resonances between
ω̃0 and T .

(b) If ω ∈ Rr is a vector of basic frequencies of the discretized signal, then we cannot
always claim that ω/T is a vector of basic frequencies of the continuous-time signal. It
turns out that we can select ω̃ = ω/T +2πm/T for some m ∈ Zr. Let ω̃0 be an initial
approximation to one of the components of ω̃, say, ω̃0 ≈ ω̃1 > 0. Then, it is natural
to select T ω̃0 as initial approximation of a frequency of the discretized signal. If after
application of our methodology we compute a refined value ω1 such that ω1 ≈ T ω̃0

1,
then it is quite natural that ω1/T is a refined value for ω̃1. However, we have to be
careful with the “size” of the selected T . This is because our methodology is based
on tracking how the argument of the discretized signal turns around the origin. Then,
we must select T so that T ω̃1 < 2π. Otherwise, what we compute is the value of T ω̃1

minus the turns. See Remark 3.2 for additional comments.

Remark 2.4. A relevant case of a continuous quasi-periodic signal is a quasi-periodic in-
variant torus of an ordinary differential equation. Any trajectory on the torus defines a
quasi-periodic function of continuous variable. Then, we introduce a discrete quasi-periodic
signal as follows:

(a) If the equation is periodic or quasi-periodic in time, it is natural to perform strobo-
scopic sections. Indeed, in the periodic case one can select T as the period of the
system. In the quasi-periodic case, if ω1 > 0 is a basic frequency of the differential
equation, then it is natural to select T = 2π/ω1 (i.e., we are performing a Poincaré
section by the angle associated to this frequency). This approach can also be used
in the autonomous case in order to remove a frequency already known (for instance,
a “dominant frequency,” so that we “magnify” the contribution of the Fourier coef-
ficients of the other ones). To do that, it is important to know it very accurately.
Otherwise, instead of removing a frequency, we are replacing it by a close to resonant
one (if ω0 is this frequency and we take T = 2π/ω1, then we are adding the frequency
2πω0/ω1), which can lead the method to fail.

(b) In the autonomous case, one can define the discretized signal through a Poincaré
section by a transversal hypersurface of the phase space. This has the advantage of
removing a frequency of the quasi-periodic continuous-time signal instead of adding a
new one.

2.2. Informal scheme of the main construction. In this section we outline the basic
aspects of our approach to the computation of frequencies. We focus on the schematic ex-
position of the unfolding process, omitting details on the computation (refinement) of the
frequencies and explanations on the methods to accelerate the convergence of the procedure.
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Figure 1. The signal (3) for A = 1, B = 0.8, ω1 = (
√
5 − 1)π/8 ≈ 0.4854, and ω2 = 2ω1. The top

plots show the planar curve described by (3) and the correspondence R → R generated by a lift of the complex
argument of the iterates. The bottom plots correspond to the unfolded signal (6) and its lift, with ω0 = ω1 +0.1
and L = 4. As a matter of fact, the signal is completely unfolded for L = 5, and the lift becomes a graph.

Let us consider a “toy example” given by the signal

(3) zn = Aeinω1 +Bein(ω1+ω2)

for some A,B ∈ C, with ωj > 0 and ωj/2π /∈ Q for j = 1, 2. Note that if ω1/ω2 ∈ Q, then (3)
densely fills a planar curve (i.e., there is only one independent frequency). For general values of
A and B this curve is noninjective and can have many folds (see Figure 1). If ω1/ω2 /∈ Q, then
the signal can be viewed as a planar projection of a two-dimensional torus in R3. Throughout
the exposition we concentrate on the computation of ω1.

The simplest situation is when B = 0 and A 	= 0. Note that zn belongs to the complex
circle of radius |A| centered at the origin. By means of the argument we can project this
signal onto T = R/2πZ. Then, the correspondence zn 
→ zn+1 generates the rigid rotation
x ∈ T 
→ x+ω1 ∈ T, with rotation number ω1/2π. The fundamental point of our approach is
that if A·B 	= 0, but |B/A| is small enough, then the projection of the signal onto the unit circle
also generates an orbit with “rotation number” ω1/2π. Next we assume that 0 < |B/A| < 1.
In this case, we can find a simple expression for the dynamics of the argument. There exists



FREQUENCY ANALYSIS BY AVERAGING AND EXTRAPOLATION 9

a periodic and analytic function ϕ(θ) = arg(1 + (B/A)eiθ) such that2

(4) zn = |A+Beinω2 |ei(nω1+arg(A)+ϕ(nω2)),

so that the iterates xn = arg(zn) are given by

(5) xn = nω1 + arg(A) + ϕ(nω2).

Now we consider two different situations:
• We have a single independent frequency. We assume that ω2 = mω1 for some m ∈ Z.

If |B/A| is small enough such that |mϕ′(θ)| < 1 ∀θ ∈ T, then the correspondence
xn 
→ xn+1 generates a circle diffeomorphism f : T → T. By construction, f is
conjugate to the rigid rotation x 
→ x + ω1. The conjugation is θ 
→ θ + ϕ(mθ).
In this case, we speak about a “projectable” curve or signal in the sense that the
mere “projection” of the iterates onto T generates a circle diffeomorphism with the
same frequency as the signal. We can evaluate a lift of f to R just by tracking how
the iterates of the signal rotate around the origin (adding the accumulated turns to
the argument of zn). Indeed, formula (5) gives the expression of the iterates by the
lift. As shown in section 2.4, the averaging-extrapolation methodology of [36] allows
computing ω1 from the iterates of the lifted signal.

• We have two rationally independent frequencies. If B 	= 0, the correspondence xn 
→
xn+1 does not generate any circle map, but, since |B/A| < 1, it induces a quasi-
periodically forced circle map with ω2 as the frequency of the forcing. This map takes
the form of a skew-product, (θ1, θ2) ∈ T × T 
→ (f(θ1, θ2), θ2 + ω2) ∈ T × T. The
transformation f is conjugate to the rigid rotation x 
→ x+ ω1 by a conjugation that
depends quasi-periodically on θ2, with frequency ω2. This conjugation is (θ1, θ2) 
→
(θ1 + ϕ(θ2), θ2). If we compute the lift to R of the argument of the iterates {zn}, it is
also given by (5). Although now the right-hand side of (5) depends quasi-periodically
on ω2, we can compute ω1 by averaging and extrapolation.

If |B/A| ≥ 1, the discussions above are no longer true. Nevertheless, given an approximation
ω0 of ω1, we can build a new quasi-periodic signal from (3) having the same frequencies, a
slightly modified A, and a smaller B. In fact, given L ∈ N, we introduce

(6) z(L,ω0)
n =

1

L

L+n−1∑
m=n

zmei(n−m)ω0 =
A

L

1− ei(ω1−ω0)L

1− ei(ω1−ω0)
einω1 +

B

L

1− ei(ω1+ω2−ω0)L

1− ei(ω1+ω2−ω0)
ein(ω1+ω2).

Note that z
(L,ω0)
n involves the sum of the L consecutive phase-shifted iterates zme−imω0 , m =

n, . . . , L + n − 1. To understand the purpose of the construction in (6), we note that in the
“limit case” ω0 = ω1 we get

(7) z(L,ω1)
n = Aeinω1 +

B

L

1− eiω2L

1− eiω2
ein(ω1+ω2).

Thus, for large enough values of L, the signal z
(L,ω1)
n turns out to be “projectable” onto T,

giving rise to a circle map or to a quasi-periodically forced circle map, depending on the case,

2If |B/A| > 1, then the analytic continuation of ϕ(θ) is not periodic, but ϕ(θ + 2π) = ϕ(θ) + 2π.
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Figure 2. The signal (3) for A = 1, B = 0.75, ω1 = (
√
5− 1)π/8, and ω2 = (

√
2− 1)π/4 ≈ 0.3253. The

top left plot shows how the dynamics densely fills the annulus that contains the orbit. The top right plot shows
the correspondence R → R generated by a lift of the signal. This correspondence fills a strip in R2 (the plot
shows how the dynamics organizes this strip). The bottom left plot shows the same lift, but now computed as
R×T → R. Synthetically, this lift is generated by the transformation (u, v) = (arg(zn), nω2) �→ arg(zn+1) (i.e.,
v is the angle associated to ω2, which is interpreted as a quasi-periodic forcing). The result looks like a smooth
(but folded) surface. The bottom right plot shows the unfolded signal (6) for ω0 = ω1 (the exact frequency) and
L = 20. The dynamics becomes a perturbation of a rotation of angle ω1 on the unit circle.

with rotation frequency ω1. If ω0 ≈ ω1 are close enough, then the behavior of z
(L,ω0)
n is similar

for “moderately large” values of L. In section 2.3 we show that if we have a generic quasi-
periodic signal, with an arbitrary number of frequencies, then the same construction is useful
in order to single out a particular frequency ω1. This construction is illustrated in Figure 1
(ω1 and ω2 are dependent) and Figure 2 (ω1 and ω2 are independent). Due to the observed
geometrical effect, we refer to this procedure as the unfolding of the signal.

We observe that if the signal is very folded (for example, if |B/A| is very large in (3)),
then it can be expensive to generate a projectable signal (even impossible if |ω1 − ω0| is not
extremely small). From the computational viewpoint, “expensive” means that we are forced
to take large values of L in (6) in order to decrease the contribution of the Fourier coefficients
different from that of einω1 . Fortunately, in applications it is not necessary to completely
unfold the signal. Next, we try to clarify this assertion.
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Let {zn} be a generic analytic and quasi-periodic signal with only one frequency ω1 ∈
(0, 2π). Although the corresponding curve is nonprojectable, we can consider the dynamics of
the argument along the iterates. Indeed, if xn = arg(zn), then the couples (xn, xn+1) generate
a correspondence on the circle given by xn ∈ T 
→ xn+1 ∈ T. If we lift this correspondence
to R along the whole curve, then we obtain a correspondence R 
→ R. The lift describes
how the argument of the iterates evolves along the origin, regardless of whether it moves
forward or backward as a function of n (the lift must rise 2π for every turn of the signal).
Although in general this lift is not a graph, it is natural to expect that it is given by an
analytic curve. This is illustrated in Figure 1 for the signal in (3). By following the evolution
of the lift along the iterates, we can define the rotation frequency ω̄1 of the signal in a
complete analogy to the rotation number of a circle map. Specifically, ω̄1/2π gives the average
number of turns by iterate. The important thing is that not only is the mere definition
ω̄1 = limn→∞(xn − x0)/n valid in this case, but the averaging-extrapolation procedure of [36]
works as well for accelerating the convergence to ω̄1.

We note that ω̄1 is not necessarily related to any frequency of the signal. If we have a
good enough approximation of ω1, then we can unfold {zn} by means of (6) until we get a

projectable signal {z(L,ω0)
n }, giving rise to a circle map of frequency ω1. Hence, we truly have

ω̄1 = ω1 for the new signal. Moreover, practice shows that removing the main folds suffices to
set the target frequency as a rotation frequency of this “partially unfolded signal,” provided
that the folds of the new signal are small compared with ω1. These small folds are averaged
out when computing the rotation frequency. Performing partial unfolding is computationally
less demanding.

Let us summarize the discussion above for the signal (3) when ω1/ω2 ∈ Q. The corres-
pondence of R induced by the lift is analytic except when |A| = |B|. If ω2 = mω1, then the
condition |mϕ′| < 1 in (5) ensures that the signal is projectable. In general, to ensure that
the rotation frequency around the origin is ω1, we need the weaker condition |B/A| < 1. This
is enough for our purposes. When |B/A| > 1 the rotation frequency is ω1+ω2. The unfolding
method defines a new signal having the same frequency but with a smaller value of B.

For a quasi-periodic signal {zn} with many basic frequencies, ω ∈ Rr, the picture is very
similar. Let ω0 be a numerical approximation to one of the frequencies, say, ω0 ≈ ω1. Assume
that using (6) we can (partially) unfold the signal so that ω1 is the rotation frequency around

the origin of {z(L,ω0)
n }. Then, the lift to R of the dynamics of the argument of {z(L,ω0)

n }
generates a quasi-periodically forced correspondence of R. The frequencies of the forcing are
the r−1 remaining components of ω. We expect this lift to be given by an analytic expression
in θ ∈ Tr, where θ are the angle variables of the torus that parameterizes the quasi-periodic
signal (see Definition 2.1). Then, the methodology of [36] is well suited for computing ω1 from
the iterates of this lift.

Remark 2.5. To plot the lifts of these signals (Figures 1 and 2) we display the couples
(xn, xn+1), where xn = arg(zn). We must take suitable determinations of the arguments
(defined modulus 2π) in order to achieve the usual translation properties of the lift. As
we have an explicit expression for the quasi-periodic signal (3), we can define Z(θ1, θ2) =
Aeiθ1 + Bei(θ1+θ2) so that zn = Z(nω1, nω2). This allows using a continuous variable t ∈ R

instead of the discrete one n, so that the plots can be made in terms of z(t) = Z(ω1t, ω2t).
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Then, the lift can be parameterized as t 
→ (x(t), x(t + 1)), where x(t) = arg(z(t)). This
corresponds to taking the closure of the lift computed only for the discrete iterates zn.

2.3. Unfolding of the signal to isolate a frequency. In this section we describe in detail
the unfolding process of a quasi-periodic signal that we have outlined in section 2.2. The goal
is to build a new signal having the target frequency as a rotation frequency around the origin.
This allows computing this particular frequency, with high accuracy, by the methodology of
section 2.4. As we discussed in the introduction, the presented construction is an adaptation
of the approach of [30].

This section is organized as follows. In section 2.3.1 we present the basic features of the
unfolding process. This introduces a new quasi-periodic signal by a weighted average, inspired
in the DFT, of some consecutive iterates. Under appropriate conditions, the convergence rate
is of O(1/L), where L is the number of iterates involved in the average. In sections 2.3.2
and 2.3.3 we present higher-order averages that accelerate the convergence of the unfolding
process up to orders O(1/L2) and O(1/Lp), respectively.

2.3.1. First order unfolding. Here we present the fundamental method to unfold a quasi-
periodic signal. The cornerstone is the following construction.

Definition 2.6. Let {zn}n∈Z be an analytic complex-valued quasi-periodic signal as in Defin-
ition 2.1. We assume that the frequency vector ω ∈ Rr verifies Diophantine conditions (2).
For any ω0 ∈ R and L ∈ N, we define the following iterates:

(8) z(L,ω0)
n =

1

L

L+n−1∑
m=n

zmei(n−m)ω0 .

It is easy to verify that for most3 values of ω0, the sequence {z(L,ω0)
n }n∈Z is a quasi-periodic

signal with the same frequency vector ω. Indeed,

(9) z(L,ω0)
n = γ(L,ω0)(nω) =

∑
k∈Zr

γ̂
(L,ω0)
k ein〈k,ω〉,

where the new Fourier coefficients are

(10) γ̂
(L,ω0)
k =

γ̂k
L

L+n−1∑
m=n

ei(m−n)(〈k,ω〉−ω0) =
γ̂k
L

1− eiL(〈k,ω〉−ω0)

1− ei(〈k,ω〉−ω0)
.

Assume that ω0 is one of the frequencies of the signal, say, ω0 = ω1. Omitting the dependence

on ω0, we write z
(L)
n = z

(L,ω1)
n . Then, expression (10) takes the form (compare with (7))

z(L)n =
∑
k∈Zr

γ̂
(L)
k ein〈k,ω〉, γ̂(L)e1 = γ̂e1 , γ̂

(L)
k =

γ̂k
L

1− eiL(〈k,ω〉−ω1)

1− ei(〈k,ω〉−ω1)
for k 	= e1.

3The set of values of ω0 for which z
(L,ω0)
n is not quasi-periodic has zero Lebesgue measure. This theoretical

situation plays no role in this work.
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Since the signal is analytic and ω Diophantine, then γ̂
(L)
k = O(e−ρ|k|1 |k − e1|τ1/L) if k 	= e1.

Consequently, for large enough values of L, the “unfolded signal” {z(L)n } becomes a quasi-
periodic perturbation of a planar rotation of angle ω1. Indeed, provided that γ̂e1 	= 0,

(11) z(L)n = γ̂e1e
inω1(1 + Γ(L)(nω)),

where Γ(L) : Tr → C is analytic and Γ(L) = O(1/L). We consider the projection of this orbit
onto the circle T = R/2πZ through the argument

(12)
C −→ T,

z
(L)
n 
−→ x

(L)
n = arg(z

(L)
n ).

If Γ(L) is small enough, then this projection introduces a quasi-periodic signal {x(L)n } on T in
such a way that the target frequency ω1 is the rotation frequency of the iterates. Specifically,
by using polar coordinates we can write

z(L)n = |γ̂e1 | · |1 + Γ(L)(nω)|ei(nω1+φ(L)(nω)),

where φ(L) : Tr → R is an analytic function, with φ(L) = O(1/L). Then {x(L)n } is defined by
taking modulo 2π on the expression

(13) x(L)n = nω1 + φ(L)(nω).

The cornerstone of the averaging-extrapolation method of section 2.4 for computing ω1 is

that (13) gives the lift to R of arg(z
(L)
n ).

Remark 2.7. Let us suppose that φ(L) is small enough such that Ψ(θ) = (θ1+φ
(L)(θ), θ̂) is a

change of variables of Tr, where θ = (θ1, θ̂). Then, the correspondence x
(L)
n 
→ x

(L)
n+1 induces a

quasi-periodically forced circle map, where the frequencies of the forcing are ω̂ = (ω2, . . . , ωr).
This map takes the form F (θ) = (f(θ), θ̂ + ω̂), where f is defined through the relation

f(θ1 + φ(L)(θ)) = θ1 + ω1 + φ(L)(θ + ω).

Then, x
(L)
n+1 = f(x

(L)
n , nω̂). By construction, the dynamics of x

(L)
n is conjugate to the rotation

x 
→ x + ω1, by a conjugation that depends quasi-periodically on θ̂. Specifically, F ◦ Ψ(θ) =
Ψ(θ + ω). If Ψ is not a change of variables, but expression (13) holds, then the dynamics of

x
(L)
n is only semiconjugate to a rotation. Although in this situation we do not have any kind

of circle map, semiconjugation suffices for our purposes (regardless of the size of φ(L)).
A realistic setting is to suppose that we know only an approximation ω0 of ω1, say, ω0 =

ω1+ε. If ε is small enough, then it is natural to expect that we can choose L = L(ε) such that

the projection (12) of the “unfolded” signal z
(L,ω0)
n has behavior similar to that when ω0 = ω1.

If we want an expression like (13) for x
(L,ω0)
n = arg(z

(L,ω0)
n ), then L|ε| must be fairly small.

This is required to ensure that γ̂
(L,ω0)
1 in (10) remains close to γ̂1, while the other Fourier

coefficients behave as O(1/L).
Remark 2.8. If ε 	= 0, then (2) does not provide lower bounds for the denominators of

γ̂
(L,ω0)
k in (10). The behavior of these denominators varies depending on the particular value
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of ω0 = ω1 + ε (resonances define a dense set). However, if ε is small, it is unlikely to find
obstructions due to resonances. Besides the fact that the set of values of ε for which we do not
have Diophantine bounds has zero Lebesgue measure, we also have the following observation.
If ε is small, we can guarantee Diophantine bounds such as

(14) |1− ei(〈k,ω〉−ω0)| ≥ C/2

|k − e1|τ1
, k ∈ Zr \ {e1},

up to a very large value of |k|1 (precisely, up to O(1/ε
1/τ
0 )). As the Fourier coefficients γ̂k

are exponentially small on |k|1, this means that the contribution of the remaining part of the
Fourier series is very small (exponentially small in ε), with independence of any Diophantine
bound. We do not formalize this fact precisely, but we refer the reader to [21], where this idea
is the keystone of the paper.

Among the drawbacks of the method are the obvious constraints of a signal having very
low regularity4 or having close-to-resonant frequencies (with a very small C in (2) and (14)).
Another limitation is when the Fourier coefficient of the frequency that we want to compute
is small, e.g., when the signal is generated by a dynamical system that contains a small quasi-
periodic perturbation and we want to compute the frequencies of the perturbation. A similar
scenario is the study of a frequency associated to small oscillations around a linearly stable
quasi-periodic torus of a Hamiltonian system. In these cases, unfolding the signal to single out
such a frequency can be very difficult or even impossible. This does not imply that the method
always fails to compute a frequency with small amplitude, but a very good approximation to
this frequency is needed to unfold the signal, and the cost of the unfolding can be quite
expensive. Sometimes this constraint can be addressed by changing the target frequency (in
the sense of Remark 2.3). As a general rule, to tackle this issue we can subtract from the
original signal the Fourier polynomial associated to its “dominant frequencies” (assuming they
have been already computed).

Remark 2.9. Even when the unfolding process is unsuccessful (perhaps L is not large
enough or the first approximation to ω1 is not good enough), in general the averaging-

extrapolation methodology of section 2.4 applied to x
(L,ω0)
n converges to a certain value ω̄1

(usually with high accuracy). The issue is if ω̄1 is a true frequency of the signal. Fortunately,
if ω̄1 is not a frequency, then it is easy to realize the mistake. This is discussed in Remark 2.19.
Then, we must improve the unfolding process.

In the best-case scenario, the new signal z
(L,ω0)
n tends to be a rotation with a convergence

rate of O(1/L). This is the same speed that we have when computing the rotation number
of a circle map by the definition. In general, this is not quite satisfactory in practice. The
issue is that if a large L is required, then this increases the computational cost. At first
glance, we can subtract the average of the signal as a simple (but useful) way to improve the
unfolding process. In sections 2.3.2 and 2.3.3 we describe a systematic procedure to accelerate
the convergence of the unfolding.

4Finite differentiability means that γ̂k is O(1/|k|p1). We require a sufficiently large p to justify our approach.
We refer the reader to [37] for an example where averaging-extrapolation methods have been arranged to address
a problem with very low regularity.
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2.3.2. Second order unfolding. To accelerate the unfolding we perform higher-order av-
erages and Richardson extrapolation. We start introducing the second order averages.

Definition 2.10. Under the same notation and hypotheses of Definition 2.6, we introduce
the sequences

(15) Z(L,ω0,2)
n =

L∑
l=1

l+n−1∑
m=n

zme−imω0 , Z̃(L,ω0,2)
n =

(
2

L(L+ 1)
Z(L,ω0,2)
n

)
einω0 .

Then, we define the following iterates:

(16) z(2L,ω0,2)
n = 2Z̃(2L,ω0,2)

n − Z̃(L,ω0,2)
n .

For most values of ω0, the signal {z(2L,ω0,2)
n }n∈Z is quasi-periodic with frequency vector ω.

As before, the limit case ω0 = ω1 is useful in illustrating the properties of the new iterates.

Then, we write Z(L)
n = Z(L,ω1,2)

n and compute

Z(L)
n =

L∑
l=1

l+n−1∑
m=n

∑
k∈Zr

γ̂ke
i(m−n)(〈k,ω〉−ω1)

=
L(L+ 1)

2
γ̂e1 + L

∑
k 
=e1

γ̂k
ein(〈k,ω〉−ω1)

1− ei(〈k,ω〉−ω1)
−
∑
k 
=e1

γ̂k
1− eiL(〈k,ω〉−ω1)

(1− ei(〈k,ω〉−ω1))2
ei(n+1)(〈k,ω〉−ω1).

Consequently,

Z̃(L)
n = γ̂e1e

inω1 +
2

L+ 1
A1(nω) +

2

L(L+ 1)
E2(nω),

where A1(nω) and E2(nω) are quasi-periodic (and hence bounded) expressions. Note that if
γ̂e1 	= 0, the new iterates are given by

z(2L,ω1,2)
n = γ̂e1e

inω1(1 + Γ(2L,ω1,2)(nω)),

where Γ(2L,ω1,2) : Tr → C verifies Γ(2L,ω1,2) = O(1/L2). Then, as done in (11), we can

construct a quasi-periodic signal {x(2L,ω1,2)
n }n∈Z on T, but now with a smaller perturbation of

the rotation. As we show in Proposition 2.12, if ω0 ≈ ω1, we have a similar scenario, at least
for L not too large.

Besides motivating the reader, there are several reasons to introduce second order un-
folding (p = 2) separately from the general case p > 1. On the one hand, in general the
asymptotic rate O(1/L2) gives a sufficiently good performance. On the other hand, we note
that this asymptotic speed is secured only when ω0 = ω1. Hence, any discrepancy between ω0

and our target frequency is propagated through the unfolding process. The potential disturb-
ance of this discrepancy increases with the extrapolation order. Finally, note that for p = 2 we
have explicit formulae (15) and (16) for any general value of L. In higher-order extrapolations
we choose L as powers of 2 in order to obtain simple extrapolation coefficients.
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2.3.3. Unfolding of order p. We introduce the following higher-order averages that ex-
tend Definitions 2.6 and 2.10 to any p ∈ N.

Definition 2.11. Under the same notation and hypotheses of Definition 2.6, we introduce
the recursive sums

(17) Z(L,ω0,1)
n =

L+n−1∑
m=n

zme−imω0 , Z(L,ω0,p)
n =

L∑
l=1

Z(l,ω0,p−1)
n , p ≥ 2,

and the averaged sums of order p

(18) Z̃(L,ω0,p)
n =

[(
N + p− 1

p

)−1

Z(L,ω0,p)
n

]
einω0 .

We take fixed values of p ≥ 1 and q ≥ p, and we define the new sequence

(19) z(2
q ,ω0,p)

n =

p−1∑
j=0

c
(p−1)
j Z̃(Lj ,ω0,p)

n ,

where Lj = 2q−p+j+1 and the (extrapolation) coefficients c
(m)
j are given by

(20) c
(m)
j = (−1)m−j 2j(j+1)/2

δ(j)δ(m − j)
, δ(n) = (2n − 1)(2n−1 − 1) · · · (21 − 1), δ(0) = 1.

Sequence {z(2q ,ω0,p)
n }n∈Z gives an unfolding of order p of {zn}n∈Z computed from the

approximate frequency ω0. As before, for most values of ω0, the new signal is quasi-periodic
with frequency vector ω. Following [30, 36], we select Lj as powers of 2 in order to give
explicit formulae for the extrapolation coefficients. Note that the important requirement for
performing the extrapolation is that the values of Lj in (19) behave geometrically in j, so

other choices can be made. To define z
(2q ,ω0,p)
n we are using L = 2q consecutive iterates

zl, for l ∈ {n, . . . , n + L − 1}. As discussed in Proposition 2.12, if ω0 is close enough to a

particular frequency ω1 and L|ω0−ω1| is fairly small, then z
(2q ,ω0,p)
n is a perturbation of order

O(1/Lp) = O(2−pq) of a rotation of angle ω1.
Proposition 2.12. Assume the same notation and hypotheses of Definition 2.6, and suppose

that ω0 satisfies the Diophantine bounds in (14) ∀k ∈ Zr \{e1}. Then, there exists an analytic

function γ(2
q ,ω0,p) : Tr → C such that the sequence z

(2q ,ω0,p)
n introduced in Definition 2.11 can

be written as z
(2q ,ω0,p)
n = γ(2

q ,ω0,p)(nω). For every p we have

(21) |z(2q ,ω0,p)
n − γ̂(2

q ,ω0,p)
e1 einω1 | = O(2−pq) ∀n ∈ Z.

Moreover, the Fourier coefficient γ̂
(2q ,ω0,p)
e1 verifies limω0→ω1 γ̂

(2q ,ω0,p) = γ̂e1 . This limit is
uniform on q provided that 2q|ω1 − ω0| → 0.

Proof. This result is a straightforward adaptation of Proposition 2.18 in [30], which es-
sentially follows ideas introduced in [36]. For this reason, we focus on the computational
details of the proof, omitting some technical aspects. We are referring to the quasi-periodic
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expressions {A(ω0,p)
l }l=1,...,p−1 and E(L,ω0,p), which are convergent and bounded by a constant

cp (independent of L). By taking into account (14) and the analyticity assumptions on the
signal, these claims are clear to any reader familiar with estimates on solutions of small divisor
equations. For more details, see [36].

To simplify the notation we set ε = ω1 −ω0. The cornerstone of the proof is the following
expressions, which can be easily obtained by induction:

Z(L,ω0,p)
n = Δ(L,ω0,p)einε +

(
p−1∑
l=1

(
L+ l − 1

l

)
A(ω0,p)

l (nω) + E(L,ω0,p)(nω)

)
e−inω0 ,

Z̃(L,ω0,p)
n = Δ̃(L,ω0,p)einω1 +

p−1∑
l=1

(p− l + 1) · · · pA(ω0,p)
l (nω)

(L+ p− l) · · · (L+ p− 1)
+

p! E(L,ω0,p)(nω)

L · · · (L+ p− 1)
,

where

A(ω0,p)
l (nω) = (−1)l+1

∑
k 
=e1

γ̂k
ei(l−1)(〈k,ω〉−ω0)

(1− ei(〈k,ω〉−ω0))l
ein〈k,ω〉,

E(L,ω0,p)(nω) = (−1)p+1
∑
k 
=e1

γ̂k
ei(p−1)(〈k,ω〉−ω0)(1− eiL(〈k,ω〉−ω0))

(1− ei(〈k,ω〉−ω0))p
ein〈k,ω〉,

whereas Δ(L,ω0,p) and Δ̃(L,ω0,p) are defined recursively by

Δ(L,ω0,1) = γ̂e1
1− eiεL

1− eiε
, Δ(L,ω0,p) =

L∑
l=1

Δ(l,ω0,p−1), Δ̃(L,ω0,p) =

(
L+ p− 1

p

)−1

Δ(L,ω0,p).

It is not difficult to verify that limε→0 Δ̃
(L,ω0,p) = γ̂e1 . We rewrite Z̃(L,ω0,p)

n as

(22) Z̃(L,ω0,p)
n = Δ̃(L,ω0,p)einω1 +

p−1∑
l=1

Ã(ω0,p)
l (nω)

Ll
+ Ẽ(L,ω0,p)(nω).

Note that the new function-coefficients {Ã(ω0,p)
l }l=1,...,p−1 Ã(ω0,p)

l are independent of L and

that Ẽ(L,ω0,p) is of O(1/Lp), so expression (22) is well suited for Richardson extrapolation. A

suitable combination of the averaged sums {Z̃(Lj ,ω0,p)
n }j=0,...,p−1 with Lj = 2q−p+j+1 allows

removing the coefficients {Ã(ω0,p)
l }l=1,...,p−1. The resulting expression behaves in n like a

rotation of angle ω1 plus a quasi-periodic error of O(1/Lp
0).

To formalize this construction, we consider an arbitrary sequence {SL}L≥1 that satisfies

(23) SL = α+

p−1∑
l=1

Al

Ll
.

In [30, 36] it was shown that α = Θ̂(p,q)({SL}), where the extrapolation operator Θ̂(p,q) is
defined as

(24) Θ̂(p,q)({SL}) =
p−1∑
j=0

c
(p−1)
j SLj , Lj = 2q−p+j+1,
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and the coefficients c
(m)
j are given in (20). Then, we use (24) for SL = Z̃(L,ω0,p)

n −Δ̃(L,ω0,p)einω1−
Ẽ(L,ω0,p)(nω) and α = 0, thus obtaining

z(2
q ,ω0,p)

n = γ(2
q ,ω0,p)(nω) :=

p−1∑
j=0

c
(p−1)
j Δ̃(L,ω0,p)

︸ ︷︷ ︸
γ̂
(2q,ω0,p)
e1

einω1 +

p−1∑
j=0

c
(p−1)
j Ẽ(L,ω0,p)(nω).

Finally, bounds in (21) are straightforward, and limε→0 γ̂
(2q ,ω0,p)
e1 = γ̂e1 follows from∑p−1

j=0 c
(p−1)
j = 1.

2.4. Computation of frequencies. In this section we sketch the method developed in [36]
for computing Diophantine rotation numbers of circle diffeomorphisms. Other than for the
sake of completeness, the main motivation for including this review in the paper is to show that
the construction is well suited to deal with quasi-periodic signals on the circle depending on
many frequencies. This methodology, applied to the unfolded signal constructed in section 2.3,
constitutes the cornerstone of our approach to the computation of frequencies. We do not
plan to perform a systematic presentation of the methodology or to discuss its full theoretical
justification. For details we refer the reader to [36].

The starting point of the method is a quasi-periodic signal on T whose lift to R takes the
form

(25) xn = nω1 + φ(ωθ) = nω1 +
∑
k∈Zr

φ̂ke
i〈k,ω〉, n ∈ N,

where φ : Tr → R. Our goal is to compute ω1. Notice that we are not assuming that (25)
is related to any kind of map or quasi-periodically forced map on the circle. In analogy with
the definition of the rotation number of circle maps, we have that ω1 = limn→∞(xn − x0)/n,
for which we expect a convergence rate of O(1/n). Note that this rate is not satisfactory
for practical purposes since it requires computing a tremendous number of iterates in order
to reach a moderate tolerance. In a complete analogy with Definition 2.11, the key issue for
accelerating the convergence speed of ω1 is to introduce suitable recursive and averaged sums.

Definition 2.13. Given a sequence {xn}n≥1, we introduce the recursive sums

S
(0)
N = xN , S

(p)
N =

N∑
n=1

S(p−1)
n , N, p ≥ 1,

and the averaged sums of order p

S̃
(p)
N =

(
N + p

p+ 1

)−1

S
(p)
N .

Note that the combinatorial numbers in the definition of S̃
(p)
N are not the same as those

in the definition of Z̃(L,ω0,p)
n in (18). This is because the leading term of xn in (25) is of O(n)
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while the term γ̂1e
inω1 that we want to extrapolate from zn in (1) is of O(1). This discrep-

ancy between the “dominant orders” is also evident in the expressions of the corresponding
extrapolation operators (compare (23) and (24) with (27)).

Proposition 2.14. Let us consider a real-valued signal {xn}n∈N of the form (25). We
assume that φ is analytic and that the vector ω ∈ Rr verifies Diophantine conditions (2).
Then, we have the following expression for the averaged sums of Definition 2.13:

(26) S̃
(p)
N = ω1 +

p∑
l=1

Ã
(p)
l (nω)

N l
+ Ẽ(N,p)(nω), N ≥ 1,

where {Ã(p)
l (nω)} and Ẽ(N,p)(nω) are analytic and quasi-periodic expressions, with Ẽ(N,p) =

O(1/Np+1).
Furthermore, we consider fixed integer values q ≥ p ≥ 1, and we define the following

extrapolation operator of order p, which involves N = 2q consecutive iterates of {xn}n∈N:

(27) Θ(p,q) =

p∑
j=0

c
(p)
j S̃

(p)
Nj
,

where Nj = 2q−p+j and the coefficients c
(p)
j are given in (20). Then, we have

(28) ω1 = Θ(p,q) + e(p, q),

where e(p, q) = O(1/Np+1) = O(2−(p+1)q).
We omit the proof of Proposition 2.14 because it follows the same reasoning as the proof

of Proposition 2.12. As in Definition 2.11, we select Nj as powers of two.
Remark 2.15. Selecting appropriate values of p and q to extrapolate the frequency is in-

dependent of how the signal has been unfolded. The values of p and q in Θ(p,q) in (27) have

nothing to do with their counterparts in z
(2q ,ω0,p)
n in (19).

Remark 2.16. If the signal comes from experimental data, then it is natural to assume that
it contains some roundoff errors that behave in random way. Such a situation was discussed
in [30], where the uncertainty coming from experimental data was simulated by adding to
a quasi-periodic signal (with just one frequency) a normally distributed random error. The
result was that the presented methodology still provides very accurate approximations to the
frequency of the signal, significantly smaller than the size of the random component.

Remark 2.17. The methodology of [36] for computing rotation numbers was addressed
in [29] to compute derivatives of the rotation number with respect to parameters. Although
this issue is not discussed in this paper, this approach can be adapted to the framework of
the frequency analysis.

2.5. Computation of amplitudes. In a very naive way, the unfolding construction presen-
ted in section 2.3 basically tries to extrapolate the Fourier harmonic corresponding to the
“closest frequency” to ω0. Once we have computed a refined value for the approximate fre-
quency ω0, we can adapt the construction to get a posteriori the corresponding amplitude by
means of averaging and extrapolation. We emphasize that this procedure does not require
any information on the remaining frequencies.
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Proposition 2.18. With the same notation and hypotheses of Definition 2.6, let k∗ ∈ Zr

and ω∗ = 〈k∗, ω〉 (i.e., ω∗ is the combination of the basic frequencies ω ∈ Rr associated to the
Fourier coefficient γ̂k∗ in (1)). We introduce the following recursive and averaged sums for
the quasi-periodic signal {zn}, for any N, p ≥ 1:

F (k∗,0)
N = zNe−iNω∗

, F (k∗,p)
N =

N∑
n=1

F (k∗,p−1)
n , F̃ (k∗,p)

N =

(
N + p− 1

p

)−1

F (k∗,p)
N .

Furthermore, given integer values q ≥ p ≥ 1, we define the following extrapolation operator of
order p, which involves N = 2q consecutive iterates of {zn}:

(29) Γ(k∗,p,q) =

p−1∑
j=0

c
(p−1)
j F̃ (k∗,p)

Lj
,

where Lj = 2q−p+j+1 and the coefficients c
(p−1)
j are given in (20). Then, we have

γ̂k∗ = Γ(k∗,p,q) + e(k∗, p, q),

where e(k∗, p, q) = O(1/Np) = O(2−pq).
Proposition 2.18 follows by the same arguments as Propositions 2.12 and 2.14 (see [30]

for the case of one basic frequency). Although this result is formulated in terms of a single
amplitude, it can be performed simultaneously for multiple Fourier coefficients in the spirit
of FFT strategies. This saves operations when computing the Fourier representation of the
signal.

We take note of some problems that may arise when computing γ̂k∗ for large values of k∗.
On the one hand, the smallness of γ̂k∗ makes it difficult to obtain a significant expression for
it. On the other hand, the disturbing effect of the dominant Fourier coefficients of the signal
is present along the averaging-extrapolation process. Although (29) provides a numerical
value for γ̂k∗ with an error of O(2−pq), such a result follows after many cancellations between
expressions of size larger than γ̂k∗ . This leads to the loss of many significant digits. If an
accurate Fourier representation of {zn} is needed, one can try to combine Proposition 2.18
with the collocation methods of [13, 14] already mentioned in the introduction. This allows
us to refine amplitudes and frequencies by the Newton method. Furthermore, sometimes the
iterates {zn} correspond to an initial condition giving an approximation of an invariant torus of
a Hamiltonian system or symplectic map. In the literature there are “nonperturbative” KAM
methods proving existence of quasi-periodic solutions close to a good-enough candidate (see,
for example, [7, 15, 31]). Then, after computing the approximate frequencies and amplitudes
for {zn}, we can correct them by means of these KAM schemes.

In addition to the pure computation of the Fourier coefficients, the following remarks
account for some interesting applications of Proposition 2.18.

Remark 2.19. As noted in Remark 2.9, if the unfolding is not performed correctly, it can
happen that the refinement of a frequency (algorithm described in section 2.4) converges to
a value ω̄1 which is not a frequency of the original signal. Indeed, we can only claim that
ω̄1 is the rotation frequency around the origin of the partially unfolded signal. In general,
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we can easily realize this failure due to a big discrepancy between the approximate frequency
ω0 and the computed value ω̄1. A systematic way to check the correctness of ω̄1 is to apply
Proposition 2.18 with ω∗ = ω̄1. If ω̄1 is a true frequency, then we end up computing the
corresponding Fourier coefficient. If ω̄1 is not a frequency, we expect that the extrapolated
amplitude tends to zero very quickly.

Remark 2.20. The simplest but perhaps most interesting case of Proposition 2.18 is for k∗ =
0. Note that γ̂0 corresponds to the average of the quasi-periodic signal, which can be computed
without any information on the frequencies. Let us observe that the computational cost of
γ̂0 is fairly less expensive than that of any other Fourier coefficient (there is no trigonometric
part involved in the computations). We have the following straightforward applications:

(a) Generically, γ̂0 is one of the largest Fourier coefficients of the signal. If we subtract γ̂0
from the signal, then we can improve the unfolding process.

(b) The study of the convergence of Γ(0,p,q) in (29) can be used as a fast indicator to
decide if a given orbit is quasi-periodic or not before performing frequency analysis.
Note that fast convergence does not always mean that the signal is quasi-periodic (for
instance, this criterion also detects initial conditions belonging to the stable manifold
of an invariant torus). Moreover, divergence of Γ(0,p,q) (including oscillatory behavior)
or even slow convergence means that the signal is not quasi-periodic (or, at least, that
it has bad Diophantine frequencies).

2.6. First approximation of frequencies. As explained in the introduction, the classical
method to obtain approximations of the frequencies of a quasi-periodic signal is to look for
the peaks of the modulus of its DFT.

The unfolding methodology presented in this paper requires approximations of the fre-
quencies (but not of the corresponding amplitudes). Sometimes these approximations are
given by the context, e.g., if we are in a neighborhood of an elliptic fixed point or carrying out
continuation with respect to parameters of a quasi-periodic solution with known frequencies.
In section 3 we study a (large) neighborhood of an elliptic equilibrium point of a Hamiltonian
system, and we include quasi-periodic perturbations. In this case, one can perform a continu-
ation process for the frequencies starting close to the equilibrium point. Otherwise, we can
obtain approximations to the frequencies by a preliminary study of the signal by a DFT-based
method (performed with low accuracy).

Additionally, we have the chance to adapt the unfolding methodology of section 2.3 in
order to get such approximations. We outline this approach, which can be understood as an
alternative to the use of filters in the DFT. We refer the reader to [30] for the case of a single
frequency and for the accurate description of some implementation details.

Let us consider a quasi-periodic signal {zn}. From a sample of L points we compute its
DFT as a function of ω0, given by the formula

(30) ω0 
−→ 1

L

L−1∑
m=0

zme−imω0 .

This expression coincides with the “zero iterate” z
(L,ω0)
0 of the unfolded signal (8) of order

p = 1. We denote Z(L,1)(ω0) = |z(L,ω0)
0 | the modulus of (30). The classical approach to the
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Figure 3. Comparison between Z
(2L,2)
0 (ω0) (continuous graph) and Z

(2L,2)
0 (ω0) (discontinuous graph) for

L = 10. We plot these functions in terms of ω1 − ω0, and so the desired local maximum is set at the origin.

frequency analysis is based on the following observation. Assume for the moment that {zn}
is a quasi-periodic signal consisting of a single Fourier harmonic, say, zn = einω1 . Then, the
modulus of the DFT is given by

(31) Z
(L,1)
0 (ω0) =

1

L

∣∣∣∣sin(L(ω1 − ω0)/2)

sin((ω1 − ω0)/2)

∣∣∣∣ ,
which has a local maximum at ω0 = ω1. If {zn} is a generic (but smooth enough) quasi-
periodic signal, then the effect of the remaining Fourier harmonics on Z(L,1)(ω0) can be viewed
as a perturbation of (31) around ω0 = ω1. This leads to a displacement of the maximum of

Z
(L,1)
0 (ω0), which allows computing a “dominant” frequency ω1 of {zn} with an accuracy of

O(1/L). As we already summarized in the introduction, this displacement can be modulated
by introducing suitable window functions in the DFT.

We propose a new approach to correct the DFT based on higher-order unfoldings. Let
us concentrate on the case p = 2. We consider a sample of 2L points of {zn} and intro-

duce Z(2L,2)(ω0) = |z(2L,ω0,2)
0 |, where z(2L,ω0,2)

0 is the zero iterate of the unfolded signal (see
Definition 2.10). If zn = einω1 , then it is not difficult to realize that the corresponding func-

tion giving the modulus, namely, Z
(2L,2)
0 (ω0), also reaches a local maximum at ω0 = ω1. As

shown in Figure 3, the resolution of this maximum for Z
(2L,2)
0 (ω0) is magnified with respect

to Z
(2L,1)
0 (ω0) in the sense that the spurious peaks nearby are modulated by the unfolding.

We recall that when ω0 ≈ ω1 are close enough (see Proposition 2.12), then the unfolded signal
“tends to” the planar rotation einω1 with a convergence rate of O(1/L2) (see Proposition 2.12).
This implies that we can determine a dominant frequency ω1, up to an accuracy of O(1/L2),
from the study of Z(2L,2)(ω0). We can extend this construction up to an arbitrary order

p by considering Z(2q ,p)(ω0) = |z(2q ,ω0,p)
0 | (see Definition 2.11). In this way, the theoretical

resolution of the maximum improves up to O(2−pq) (see Proposition 2.12).
To built a refined methodology to detect frequencies based on the study of the maxima of

Z(2q,p)(ω0) is not the purpose of this work (this is the spirit of [25, 13]), although in this way
we have the chance to implement a self-contained toolkit to perform frequency analysis. We
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Figure 4. We show 105 iterates of the quasi-periodic signal defined by (32) (top left plot) and the

corresponding unfolded signals {z(L,ω1)
n } using L = 8 (top right plot), L = 32 (bottom left plot), and L = 128

(bottom right plot).

remark that dealing with Z(2q,p)(ω0) has some advantages with respect to introducing filters
on the DFT, from the point of view of both dynamics and regularity. For example, if we
introduce a Hanning filter on the DFT, then we are turning any analytic quasi-periodic signal
into a periodic one, with a regularity that depends on the order of the filter. In this way,
the Fourier coefficients of the filtered signal behave asymptotically as an inverse power of the
order of the coefficient. By contrast, the unfolding procedure of this paper keeps both the
analyticity and quasi-periodicity of the signal. In particular, we are not introducing spurious
frequencies due to the length of the selected sample. Moreover, if ω0 ≈ ω1, then we expect
the contribution to Z(2q,p)(ω0) of the high-order Fourier harmonics to be exponentially small
with respect to the order.

2.7. Testing the method with a known quasi-periodic signal. In this section we test the
performance of the presented methods in an example with known frequencies. Let us consider
a quasi-periodic signal zn = γ(ωn), with three independent frequencies, given by

(32) γ(θ1, θ2, θ3) =
eiθ1 + eiθ2 + eiθ3 + ei(θ1+θ2) + ei(θ2+θ3) + ei(θ1−θ3) + e3iθ1

(1− μ cos(θ1))(1 − μ cos(θ2))(1 − μ cos(θ3))
,
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Figure 5. Top: We plot ω0
2π

∈ [0, 1] �→ Z(64,p)(ω0) for p = 1 (left plot) and p = 2 (right plot). Bottom:

We plot the standard deviation of the radius for the first 50000 unfolded iterates z
(26,ω0,p)
n as a function of

ω0
2π

∈ [0, 1] for p = 1 (left plot) and p = 2 (right plot).

where ω1 = 2π(
√
2 − 1), ω2 = 2π(

√
3 − 1), and ω3 = π(

√
5 − 1). Taking μ 	= 0 allows us

to introduce infinitely many harmonics and to break the entire character of the signal. From
the qualitative viewpoint, results do not depend on the particular value of 0 < μ < 1, so
we take μ = 0.3 in all the computations. Notice that if μ → 1, then the strip of analyticity
of γ(θ) around θ ∈ T3 collapses on the real torus. The reader interested in the behavior of
averaging-extrapolation methods outside their domain of validity is referred to [8, 37].

Some iterates of (32) are shown in Figure 4. We also plot the corresponding first order

unfolded signals {z(L,ω0)
n } (see Definition 2.6), computed in terms of the exact frequency

ω0 = ω1 and for L = 8, 32, and 128. We observe how the cloud of points of the original signal,
that fills up densely an open set of the plane, approaches (as L increases) a more organized
distribution of points on an annulus.

Let us illustrate how we can obtain a first guess of the frequencies using the method
presented in section 2.6. We assume for the moment that the iterates {zn} are known but
that the frequencies of the signal are unknown. We must stress that here we are more inter-
ested in illustrating the observed phenomena rather than in describing an efficient and fast
implementation of the algorithm. At the top of Figure 5 we show the function ω0

2π 
→ Z(L,p)(ω0)
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for p = 1 (left plot) and p = 2 (right plot) using only L = 64 (in the plots frequencies are
represented modulo 1 rather than modulo 2π). The main peaks observed are candidates for
approximations of the frequencies of the signal. Observe that for p = 2 the number of spuri-
ous peaks is significantly reduced. For example, if we compute Z(64,2)(ω0) for a sample of 200
points ω0

2π ∈ [0, 1] (with step 0.005), then the numerical approximations for the picks are easy
to relate to combinations of the basic frequencies of (32). Indeed, 0.415 � 1

2πω1, 0.730 � 1
2πω2,

and 0.620 � 1
2πω3. Other relevant peaks are, for example, 0.145 � 1

2π (ω1+ω2), 0.24 � 1
2π3ω1,

0.350 � 1
2π (ω2 + ω3), and 0.795 � 1

2π (ω1 − ω3).

We recall that Z(L,p)(ω0) gives the modulus of the zero unfolded iterate computed in terms
of the approximate frequency ω0. Hence, Z(L,p)(ω0) is useful in detecting approximations to
the frequencies but does not show the dynamical features of the unfolding. Now, we illustrate
the behavior of the unfolding process in connection with the peaks of Z(64,p)(ω0). The aim is
to characterize the phenomenology displayed in Figure 4 in a systematic way.

For a given ω0, we compute 50000 iterates of the unfolded signal {z(26,ω0,p)
n } (see Defini-

tion 2.11), and we estimate the distance to a circle around the origin by the standard deviation
of its averaged radius. Results as function of ω0

2π ∈ [0, 1] are shown at the bottom of Figure 5
for p = 1 (left plot) and p = 2 (right plot). In this way, we illustrate how the unfolded process
is successful when ω0 approaches a frequency of the signal.

Finally, we perform a refinement of the approximated frequencies of the signal (32) by
the method described in section 2.4. Computations are performed using an arithmetic of 32

decimal digits. To define the unfolded iterates {z(2q ,ω0,p)
n }, we take p = 2 and q = 6. To refine

the frequency, we select averaging order p = 3, and we compute up to N = 221 iterates of the

unfolded signal {z(64,ω0,2)
n }. Then, we extrapolate the frequency according to Θ(p,q) in (27)

by using all the possible values of q, i.e., for 3 ≤ q ≤ 21. In the left plot of Figure 6 we
show the real error in the extrapolation of the basic frequencies ω1, ω2, and ω3, taking ω0

as the exact value of the frequency to be computed. For q = 21 we get almost 20 correct
digits. In the right plot of Figure 6 we repeat the computations for the frequency ω1, now
using different approximations ω0 to unfold the curve. Specifically, we take ω0 = δω1, with
δ = 1, 1.005, 1.01, and 1.015. We observe that the results do not depend essentially on the
selected value of ω0 and that the approximation ω1

2π � 0.415, previously obtained looking

at the peaks of Z(64,2)(ω0), belongs to the interval containing the selected values of ω0, i.e.,√
2− 1 ≤ ω0

2π ≤ 1.015 × (
√
2− 1).

3. Study of a restricted three body problem. Let us consider two punctual masses
(usually called primaries) which move in a circular orbit around their common center of mass
according to the Kepler laws. The restricted three body problem (RTBP) describes the motion
of a third particle (asteroid) on the vector field produced by these two primaries, assuming that
the mass of the asteroid is so small that it does not affect the motion of the first two masses.
As usual, we choose units of distance, time, and mass such that the gravitational constant is
1, the period of the primaries is 2π, and the sum of masses of the primaries is 1. With these
units the distance between the primaries is also equal to 1. We denote by μ the mass of the
smallest primary, μ ∈ (0, 12 ]. In what follows we take μ = 0.95388118036309677 × 10−3, which
corresponds to the Sun–Jupiter system, although the following presentation is common for
any μ. For details, see [40].
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Figure 6. Left: We plot the log10 of the error in the refinement of the frequencies ω1, ω2, and ω3 of (32)
(vertical axis) versus q (horizontal axis), where 2q is the number of used iterates. See the text for details.
Right: The same refinement process, now only for the frequency ω1, by using different approximations ω0 � ω1

to unfold the signal. We take ω0 = δω1, with δ = 1, 1.005, 1.01, and 1.015.

It is also usual to use a rotating (also called synodic) coordinate system with origin at the
center of mass of the primaries, so that the two primaries are kept fixed on the x-axis. The
x-axis points to the biggest primary, the z-axis points to the direction of angular motion of
the primaries with respect to the center of mass, and the y-axis is defined such that we obtain
an orthogonal, positive-oriented, system of reference. In this system, the primary of mass μ is
at the point (μ− 1, 0, 0), and that of mass 1− μ is at (μ, 0, 0). Defining momenta px = ẋ− y,
py = ẏ + x, and pz = z, the equations of motion can be written in Hamiltonian form, with
Hamilton function

(33) H0(x, y, z, px, py, pz) =
p2x + p2y + p2z

2
+ ypx − xpy − 1− μ

rS
− μ

rJ
,

where
r2S = (x− μ)2 + y2 + z2, r2J = (x− μ+ 1)2 + y2 + z2.

This system has five equilibrium points belonging to the xy plane. Three of them (the Eulerian
points L1, L2, and L3) are on the x-axis, and the other two (the Lagrangian points L4 and
L5) form an equilateral triangle with the primaries. The equilibrium point L5 is

x = μ− 1

2
, y =

√
3

2
, z = 0, px = −

√
3

2
, py = −1

2
+ μ, z = 0.

As the mass parameter of the Sun–Jupiter system is less than the Routh critical value μR �
0.03852, the point L5 is linearly stable, with frequencies

(34) ω1 =

[
1

2
(1− (1− 27μ(1 − μ))1/2)

]1/2
, ω2 =

[
1

2
(1 + (1− 27μ(1 − μ))1/2)

]1/2
,

and ω3 = 1 (this corresponds to the vertical oscillations). KAM theory can be applied in
a straightforward way (see [9, 22]), thus obtaining plenty of invariant tori close to L5. The
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validity of the classical KAM approach applies only in a small neighborhood of the point,
while the stability domain around L5 is known to be much larger (pioneering results were
presented in [34] for the Earth–Moon system). We refer the reader to the example of the
region of Trojan asteroids (see the studies in [5, 11, 12, 13, 35]). The point L4 is equivalent.

Our aim is to apply the methodology developed in section 2 to compute frequencies in
the stability domain of L5. We first consider in section 3.1 the planar RTBP, where the
motion of the asteroid is restricted to the plane of the primaries, i.e., z = 0 and pz = 0. In
section 3.2 we deal with the full spatial problem given by (33). Finally, in section 3.3, we
consider the so-called multicircular problem. This system is defined by adding to the RTBP
the perturbation of planets moving in circular orbits around the center of mass of the Sun
and Jupiter. The Hamiltonian for this perturbed problem, considering d additional planets of
masses mi, orbital radii ai, and rotation frequencies ω̂i, with i = 1, . . . , d, is given by

(35) HMC(x, y, z, px, py, pz, t) = H0(x, y, z, px, py, pz)−mi

d∑
i=1

(
1

ri
+
x cos θi
a2i

− y sin θi
a2i

)
,

where θi = ω̂it+ θ
(0)
i and

r2i = (x− ai cos θi)
2 + (y + ai sin θi)

2 + z2.

As considered in [20], in the computations presented we take into account the gravitational
effect of Saturn, Uranus, Neptune, and Earth.

To numerically integrate the vector fields, we use a high-order Taylor method (the order
depending on the desired precision). This method is an efficient way to perform both long term
and highly accurate computations (to the extent that the use of explicit methods is a suitable
choice). Although we coded our own integrator for the problem, very efficient packages have
been developed for this purpose and are available to the public (see [2, 24]).

Remark 3.1. Using the Taylor method, we can integrate the vector field with a large time
step—limited by the radius of convergence of the Taylor expansion of the solution. It can
happen that the sampling time T used to built a quasi-periodic signal (see section 2.1) is
smaller than the estimated radius of convergence of the series. In this case, we can save
significant computational time by evaluating the computed Taylor polynomial (also called
the jet) of the solution as long as we are inside the domain of convergence. Only when this
evaluation is not possible must we recompute the Taylor expansion. For example, in the planar
RTBP, a typical value for the radius of convergence is h � 1.4, which is significantly larger
than reasonable sampling times (we recall that h = 2π corresponds to a rotation of Jupiter).

3.1. Planar case. Next we test the methodology of section 2 by performing the frequency
analysis of initial conditions on the region of stability of L5. This problem has already been
studied in [13] using collocation methods, so it represents a nice test of the approach presented
in this paper. Note that the planar problem has two degrees of freedom, and so, under
isoenergetic nondegeneracy KAM conditions, invariant tori play the role of barriers in phase-
space. This allows us to prove the nonlinear stability of L5 in the planar RTBP for any
0 < μ < μR, except for two values for which the point is unstable (see [32]). This leads to a
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region of perpetual stability of L5 in the planar case, even though in the spatial case we can
only talk about “effective stability” (i.e., stability for a very long time).

Due to the characteristic “banana shape” of the stability region, it is very useful to intro-
duce the adapted coordinates (see [12])

(36)

(
x
y

)
=

(
μ
0

)
+ (1 + ρ)

(
cos(2πα)
sin(2πα)

)
to parameterize initial conditions, so that L5 corresponds to α = 1/3 and ρ = 0. An initial
condition of the form

(37) x0 = x(α, ρ), y0 = y(α, ρ), px0 = −y0, py0 = x0

is considered to be in the domain of stability of L5 if it librates around the equilibrium point.
This means that the trajectory neither approaches the primaries nor encircles the main one. A
criterion to detect whether a given trajectory escapes from L5 is whether it eventually satisfies
y < −0.5 (see [13]). Note that the initial conditions of the form (37) have zero synodic velocity
and do not belong to any particular energy manifold of H0 (i.e., do not have the same Jacobi
constant).

From the results reported in [12, 13], we know that the initial conditions in (37) belonging
to the stability domain of L5 are contained in the box (α, ρ) ∈ [0.03, 0.42]× [−0.015, 0.015] and
that this domain is symmetric with respect to ρ = 0. To perform a systematic computation
of the basic frequencies of this problem, we take a grid 500×250 of values of (α, ρ) in this box
and consider the corresponding initial conditions (37). For any initial condition, we introduce
the complex signal zn = x(n) + iy(n), defined by evaluating the trajectory of (33) at time
t = n ∈ N. Since we take the sampling time T = 1, we expect the computed frequencies for
the discretized signal to give frequencies of the signal of continuous variable defined by the
trajectory—assuming that we have a good enough approximation of them. The numerical
integration is performed using a Taylor method of order 24, working with double precision
arithmetic and asking for local error 10−16.

We are mainly interested in trajectories that belong to invariant tori with basic frequencies
that are continuations of those of the elliptic point L5. In analogy to a Lyapunov family of
periodic orbits of an elliptic fixed point, we can refer to such tori as the (Cantor) family of
Lagrangian invariant tori that emanates from L5 (or simply to the family of invariant tori
of L5). We know that the set of initial conditions that belongs to a torus of this family has
large relative Lebesgue measure if we are close enough to L5 (see [9, 22]). Of course, it is
clear that not any quasi-periodic solution in the region of stability of L5 belongs to a torus of
this family. For example, there are also “secondary invariant tori” created by the resonances,
whose basic frequencies are not direct continuations of those of L5; incidentally, secondary
tori also have “different topology” as they do not turn around the point. Secondary tori are
outside the scope of this systematic study.5 There are other trajectories in the stability region

5To carry out the frequency analysis for a secondary torus we must perform a preliminary study of the
signal in order to find a good set of approximate frequencies (see section 2.6). We also have to be aware that
(at least) one of the frequencies is small and with small amplitude.
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of L5 that are not quasi-periodic but, for example, have stochastic behavior between the two-
dimensional tori confining them. As the initial approximations to the frequencies will be taken
close to those of L5, we expect the approach of this paper to fail for any trajectory not in the
family that emanates from L5 (even if it survives the long time integration). Throughout the
discussion we will abuse the notation introduced in (34), and we will refer to ω1 and ω2 as the
frequencies of the family of invariant tori that emanates from L5.

Initial approximations to the frequencies are obtained by taking advantage of the fact that
frequencies move slowly with the initial conditions, so they remain very close to the planar
frequencies (34) of the elliptic point (this is common to many problems in celestial mechanics).
Specifically, we look for candidates in intervals of length 0.05 centered at the frequencies of L5

(this length is suggested by the results reported in [12, 13]). We evaluate the first L = 1024
iterates, and, following section 2.6, we compute Z(1024,2)(ω0) for 60 values of ω0 in each of
the two intervals, thus obtaining suitable candidates for the frequencies ω1 and ω2. This
criteria has both a negligible computational cost and a good global performance for the range
of orbits considered. We also use these iterates to compute a rough approximation Γ(0,2,10) of
the average of zn, using the method in section 2.5. We redefine the signal by subtracting this
estimated average, i.e., zn 
→ zn − Γ(0,2,10). In this way we improve the performance of the
unfolding procedure (see Remark 2.20).

Given an approximation of a frequency, we unfold the signal by applying the methodology
of section 2.3 with p = 2 (second order unfolding) and q = 10 (i.e., we use L = 1024 iterates to
define any unfolded iterate). We refine the frequencies by the averaging-extrapolation method
of section 2.4, taking p = 4 and computing 216 = 65536 iterates of the signal at most. We
stop the computations if two consecutive approximations to the frequencies differ by less than
10−12. If this tolerance is not reached along the integration, then we store the last values
for the frequencies that we have computed as well as the estimated error. The maximum
time that we integrate a trajectory is tmax = 210 + 216 = 66560 (i.e., about 10593 revolutions
of Jupiter). If during the integration we detect that the trajectory escapes (i.e., it satisfies
y < −0.5), then the corresponding initial condition is rejected, and we do not associate any
frequency to it.

In the left plot of Figure 7 we show the points that have not been rejected. Of course,
trajectories for these initial conditions can escape if tmax is increased. Due to the fact that
KAM tori are sticky (see [33]), a huge value of tmax is required to obtain a sharp estimation of
the boundary of the domain of stability. For example, in the computations presented in [13],
trajectories are integrated up to 200 Myears in physical time (about 16777216 revolutions
of Jupiter). Characterizing this frontier of stability is not among the aims of our approach.
Nevertheless, it is worth paying attention to the behavior of the method in this zone. Hence,
we plot in black those points where the refinement of the frequency has a “bad performance”
(when the sum of the final estimated errors for ω1 and ω2 is larger than 6 · 10−6) and in red
the remaining ones. If we compare with the domain of stability reported in [13, Figure 10],
it seems that the black points are going to escape eventually (note that they accumulate at
the boundary). Hence, the information given by the convergence of the method can allow
us to detect some escaping trajectories before they leave the domain of influence of L5, thus
obtaining an approximation of the frontier of stability using a short range integration. We
come back to this point later.
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Figure 7. Left: We plot ρ (vertical axis) versus α (horizontal axis) for the initial conditions (37) according
to the following criteria: White for those points that escape before tmax = 66560, black if the estimated error
for the computed frequencies is larger than 6 · 10−6, and red otherwise. Points within the marked rectangle will
be considered again in Figure 12. Right: We show the graph ω1/2π versus α when ρ = 0 only for those points
with a final error for the frequencies smaller than 10−6.
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Figure 8. We plot ρ (vertical axis) versus α (horizontal axis) labeling the initial conditions (37) for the
planar RTBP. We represent the error in the computation of the frequencies using a log10 color scale.

In Figure 8 we plot the initial conditions (37) according to the convergence of the method.
The palette of colors represents the sum of the final errors (in log10 scale) in the computation
of ω1 and ω2. We select a color palette from white (error 10−5) to black (error 10−12). This
palette is also used in subsequent figures. For a “good initial condition” (i.e., belonging to a
three-dimensional invariant torus with frequencies close to those of L5 and far from resonance),
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Figure 9. For the planar problem, we show ω1/2π (left plot) and ω2/2π (right plot) versus α for every ρ.
We plot only those points with total error smaller than 10−5.

we require about 3000 Jupiter revolutions to reach the requested tolerance of 12 digits. In
Figure 9 we show the computed frequencies ω1/2π (left plot) and ω2/2π (right plot), and
the quotient ω2/ω1 is shown in Figure 10. As previously mentioned, the frequencies present
a small range of variation. We recall that we are asking the frequencies to be Diophantine
(with a constant C in (2) not too small) in order to justify the validity of our averaging-
extrapolation approach, so it is not surprising that the convergence of the method has problems
as we approach a resonant zone. The final estimated error manifests this fact. Resonances
correspond to ω2/ω1 ∈ Q, and this color palette turns out to be very useful in visualizing
them (the integer resonances and the semi-integer resonances as well) in Figure 10. Another
way to visualize these resonances is to fix a value of ρ and to plot the graph α 
→ ω2/ω1.
This is done in the right plot of Figure 7 for ρ = 0. The result resembles a Devil’s Staircase,
which is a classical way to refer to the graph of the rotation number of a family of circle maps
as a function of a parameter. Recall that a Devil’s Staircase for a family of circle maps is a
continuous graph, but here we observe holes for the parameters for which there are no tori.

As discussed in section 2.5 (see Remark 2.19), computing the amplitude corresponding to
a given frequency is a very simple and reliable test to verify the computations. Although we
rely on the fact that the refined frequencies remain close to the first approximation to validate
the computations presented above, in the following we illustrate this test with a particular
case. We consider the trajectory corresponding to α = 0.2211 and ρ = 0 that has frequency

ω1/2π � 0.011933549909.

We implement Proposition 2.18 to compute the amplitude corresponding to ω1, taking k
∗ =

e1 = (1, 0) and p = 4. Using q = 15, we obtain the approximation (clearly different from zero)

γ̂e1 � Γ(e1,4,15) = 0.241593382 + 0.07606123 i,

with an estimated error 3 · 10−9.
Let us summarize some statistics of the obtained results. After integrating up to tmax,

we have that 54.8% of initial conditions escape from the region of libration around L5. For
75.3% of the remaining trajectories, the total estimated error for the frequencies is smaller
than 10−11. We may consider that they belong to quasi-periodic invariant tori with (good)
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Figure 10. Computation of frequencies in the planar problem. We show ω2/ω1 versus α for every value
of ρ. We restrict the figure to ω2/ω1 ∈ [12, 16].

Diophantine frequencies. Only for 1.04% of the trajectories that do not escape the frequencies
have been approximated with an error larger than 5 · 10−6. Many of these trajectories are
close to the boundary of the region of stability and some of them will escape eventually after
a larger integration. These numbers do not match exactly with the behavior of the method
reported in [13] since here we deal only with Lagrangian invariant tori of frequencies close to
those of L5. In [13] secondary tori are also taken into account.

Another phenomenon that we want to illustrate is the effect of the sampling time T (see
section 2.1) in the computation of the frequencies. To this end, we consider a particular
trajectory, given by α = 0.2952 and ρ = 0, that has frequencies

(38) ω1/2π � 0.012689145311, ω2/2π � 0.158623295518.

From this trajectory, we introduce quasi-periodic signals of the form zn = x(nT ) + iy(nT ),
n ∈ N, for different sampling times T ∈ (0, 4). Recall that, after computing a frequency ω̄ in
terms of the sampling time T , we expect ω̄/T to be a frequency of the original trajectory (at
least for T not too large). We try to approximate ω1 for different values of T according to the
same implementation details used before. A first approximation of the frequency is obtained
from the study of Z(210,2)(ω0). Then, to unfold the signal we use p = 2 and L = 210, and to
compute the frequencies we use p = 4 and up to N = 214 = 16384 iterates. The estimated
error in the computation of ω1 as a function of T is shown in the left plot of Figure 11. We
observe that for small values of T the performance of the method improves when T increases.
Beyond resonances, this phenomenon is clear since the total integration time is proportional
to T . This improvement stops when 14 correct digits have been obtained (we recall that
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Figure 11. Left: Error (in log10 scale) versus the sampling time T in the computation of ω1 in the
planar problem for α = 0.2952 and ρ = 0 (see (37)). Right: Error (in log10 scale) versus q = log2 N in the
computation of ω1 for α = 0.2211 and ρ = 0 for different extrapolation orders p = 0, . . . , 7 (we join consecutive
points by lines).

computations are performed using double precision arithmetic). For largest values of T , the
method loses efficiency when T is close to a resonant value of the form T ≈ 2πm/〈ω, k〉, for
some k ∈ Z2 and m ∈ N. Some of the main resonances observed in the plot correspond to
m = 1 and k = (2, 2), (1, 2), (0, 2), (−1, 2), and (−2, 2). The values of T for these resonances
are T � 2.918644, 3.030893, 3.152122, 3.283453, and 3.426203.

Remark 3.2. Since ω1 is small, we only lose information on the frequency of the trajectory
due to accumulated turns of the discretized signal if we take T > 2π/ω1 � 78.8. In general,
if we want to get rid of the effect of the accumulated turns due to the selection of T , we can
proceed as follows. Let us compute two numerical values ω(j) for a frequency of the discretized
signal—associated to the same approximate frequency of the trajectory—after considering two
“unrelated” values of the sampling time, T = Tj , j = 1, 2. If we set ω̃(j) = ω(j)/Tj , then a true
value for the frequency of the trajectory can be identified by inspection of the coincidences
between the sets {ω(j) + 2πm/Tj : m ∈ Zr} for j = 1, 2.

Following section 2.4, we can compute frequencies with high accuracy due to the asymp-
totic behavior O(1/Np+1) of the error. However, since computations have been performed us-
ing double precision arithmetic, the maximum accuracy for the frequency is attained quickly,
and the results cannot be improved by considering more iterates or higher extrapolation or-
ders. We refer the reader to [29, 30, 36] for detailed discussions in terms of computations
performed using 32 and 64 digit arithmetic. To illustrate the behavior of this methodology for
large values of p and q, we present some computations performed using 32 digit arithmetic.
We integrate the vector field using a Taylor method of order 36 and asking for a tolerance of
10−32. As an example, we tackle the computation of ω1 for the trajectory given by α = 0.2211
and ρ = 0. As sampling time we take T = 1, and as initial approximation of the frequency we
take ω1/2π � 0.01193354991 (the value we have previously obtained using double precision
arithmetic). As noted before, once the signal has been “successfully unfolded,” the potential
accuracy that we can reach for the frequency is not conditioned by the distance to a rigid
rotation of the projected signal. In other words, improving the computation of the frequency
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Figure 12. We plot ρ versus α for the points inside the marked rectangle of Figure 7. We use white for
those conditions that escape before tmax = 8192, black for those points where the final estimated error in the
computation of the average is larger than 10−4 after tmax, and red otherwise.

by the averaging-extrapolation method of section 2.4 does not require increasing the values
p = 2 and L = 210 used to unfold the signal. Results are shown in the right plot of Figure 11.
The vertical axis is the log10 of the error of the method, which gives (minus) the number of
correct decimal digits (the error is estimated by comparing two consecutive computations).
The horizontal axis means q = log2N , whereN = 2q is the number of iterates used to compute
the frequency. The error-curves correspond to different values p = 0, . . . , 7 of the extrapola-
tion order (recall that if p = 0, then the method reduces to applying the definition of rotation
number). For N = 222 the curves are ordered from top to bottom by increasing value of the
extrapolation order p. One can check that, for a sufficiently large value of q, the slope of the
curves tends to be −(p+ 1) log10 2, as expected, due to the asymptotic behavior of the error.

As observed in Remark 2.20, the computation of the average of the discretized signal is
a simple (and fast) indicator of candidates for quasi-periodic solutions (without computing
any frequency). To show the features of this approach, we take a 500 × 250 grid of initial
values of (α, ρ) ∈ [0.08, 0.15] × [0.0025, 0.0065]. This corresponds to a zoom of the left plot of
Figure 7 and of Figure 8 that contains part of the boundary of the domain of stability (see
the marked rectangle in Figure 7). Then, we use the algorithm described in Proposition 2.18
to compute the average of the corresponding trajectories. Specifically, we take p = 4 and at
most 213 = 8192 iterates in formula (29), with sampling time T = 1. As we only want to
detect such trajectories for which the average seems to converge, but not an accurate value
for it, we stop the computations if the difference between two consecutive iterations, i.e.,
|Γ(0,4,q) − Γ(0,4,q−1)|, is less than 10−8. In Figure 12 we show the points that have not been
rejected after tmax = 8192. We plot in black those points where the computation of the
average has a bad performance (the final estimated error is larger than 10−4) and in red the
remaining points.

Notice that looking at the red points we obtain a nice approximation of the boundary
of stability using a relatively short integration time—only about 1304 Jupiter revolutions at
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most. Compare with the 16777216 revolutions (at most) used in [13] to accurately characterize
the boundary in terms of the criterion that escaping solutions eventually reach y < −0.5. In
other words, we note that many points which will eventually escape after a long integration
are still librating around L5 after the considered integration time, but the accuracy of the
average is less than 10−4. We emphasize that the computation of the average is useful for
detecting initial conditions on secondary tori. However, it has the inconvenience that some of
these “bad” points correspond to trajectories that are confined inside the domain of stability
but that do not belong to any invariant torus of the system.

Although analyzing the behavior of the computation of the average by averaging and
extrapolation is not the purpose of this work, we think that this approach is interesting for
purposes of studying a wide set of problems in a systematic way—to detect either escaping
or chaotic trajectories—since the average can be computed with high accuracy at a very low
computational cost. Moreover, this has the advantage of being a general criterion, independent
of the problem at hand (we do not require particular characterizations of escaping orbits such
as the criterion y < −0.5).

3.2. Spatial case. Now we consider the full Hamiltonian (33). In the spatial RTBP we
cannot properly speak about the stability domain of L5, as the three-dimensional KAM tori
of the system do not act as barriers for the solutions in the five-dimensional energy manifolds.
Hence, beyond the set of positive Lebesgue measure defined by these invariant tori, for a
general trajectory of the spatial RTBP we can only ask for effective stability (i.e., stability for
long times in the aim of the classical Nekhoroshev estimates).

It is known that the extension to z > 0 of the domain of stability of L5 has a paraboloid
shape. Then, a good parameterization for the initial conditions is (we refer the reader to [39])

(39)

⎛⎝xy
z

⎞⎠ =

⎛⎝μ0
z

⎞⎠+ (1 + ρ−
√
ψ(z2))

⎛⎝cos(2πα)
sin(2πα)

0

⎞⎠ ,

where

ψ(w) = 1− 1

2
w +

3

25
w2 − 1

28
w3 − 25

213
w4 +

33

216
w5 +

175

220
w6 − 497

223
w7 − 4401

229
w8 + · · · .

We fix ρ = 0, we take a 500×500 grid of values of (α, z) ∈ [0.03, 0.42]× [0, 1], and we consider
initial conditions with zero synodic velocity parameterized as

(40) x0 = x(α, 0, z), y0 = y(α, 0, z), z0 = z, px0 = −y0, py0 = x0, pz0 = 0.

For any of these trajectories we introduce the complex signal zn = x(n) + iy(n) by taking
again sampling time T = 1.

We compute the frequencies ω1, ω2, and ω3 of the invariant tori emanating from the
point L5. Implementation parameters are very similar to those used in the planar case (see
section 3.1). The numerical integration is performed by using a Taylor method of order 24,
working with double precision arithmetic, and asking for local error 10−16. Initial approx-
imations to the basic frequencies are obtained starting from the information of the planar
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Figure 13. We plot z (vertical axis) versus α (horizontal axis) labeling the initial conditions in the spatial
problem according to (40). We represent the error in the computation of the three basic frequencies using a
log10 color scale.

problem. Hence, for z � 0, to approximate ω1 and ω2 we look for peaks close to the fre-
quencies computed for the planar case, and to approximate ω3 we look for a peak close to 1.
After this triplet of frequencies has been refined, we increase the value of z, and we use the
previously obtained frequencies as reference values to look for candidates (peaks) for the new
ones. We look for peaks in intervals of length 0.0032 around each of these reference values
by computing Z(1024,2)(ω0) (see section 2.6) for 60 values of ω0 in any of the three intervals.
It is worth mentioning that ω2 is so close to ω3 that we have to pay attention to this fact
to guarantee that we have a good approximation of any of them. Otherwise, combination of
unfolding and refinement converges to the same result for the two approximations.

As in the planar case, we use the method in section 2.5 to compute a rough approximation
of the average of the signal, and we redefine zn by subtracting this average. Specifically, we
introduce zn 
→ zn − Γ(0,2,10). Then, we unfold the signal by applying the methodology of
section 2.3 with p = 2 (second order unfolding) and q = 10 (i.e., we use L = 1024 iterates to
define any unfolded iterate). We refine the frequencies by the averaging-extrapolation method
of section 2.4, taking p = 4 and computing 216 = 65536 iterates of the signal at most. We
stop the computations if two consecutive approximations to the frequencies differ by less than
10−12.

In Figure 13 we plot the considered initial conditions (40) colored according to the con-
vergence of the method. The palette of colors represents the sum of the estimated errors (in
log10 scale) in the approximation of the three frequencies. Let us observe that set of points
where the computation of the frequencies is not performed accurately corresponds to the “geo-
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Figure 14. Left: We plot the quotients ω2/ω1 (vertical axis) versus (ω3 − ω2)/ω1 (horizontal axis) for a
zoom of the selected grid of conditions in the spatial problem according to (40). We use the same color palette
for the error as in Figure 13.

metrical continuation” to z > 0 of the resonances observed in Figure 8 for ρ = 0. We have
repeated the computations for initial conditions defined as in (40), but for different values of
ρ in (39), obtaining analogous results.

In Figure 14 we represent some combinations of the frequencies associated to the points
in Figure 13. We plot a zoom to enhance the structure of the plot. We use the same log10
color palette for the error as in Figure 13 in order to visualize the main resonances. Note that
resonances correspond to vanishing integer combinations of the three frequencies. As ω2 and
ω3 are very close, we show ω2/ω1 versus (ω3−ω2)/ω1. Apart from the resonances, we observe
that in the plot the points look as if they were distributed in curves. A natural explanation
is that the map

(α, z) 
−→
(
ω3 − ω2

ω1
,
ω2

ω1

)
behaves as a diffeomorphism on a Cantor-like set of large Lebesgue measure. Since we plot
the points corresponding to the grid of values of (α, z) by moving through coordinate lines,
we observe the image of these lines as smooth curves.

Finally, we present some statistics of the obtained results. We obtain that 61.18% of the
trajectories do not escape after integrating up to tmax. For 2.17% of these trajectories, the sum
of the (estimated) errors in the computation of the three frequencies is larger than 5 · 10−6.
We expect most of them to escape after a longer (possibly large) integration. For 45.45% of
them, the sum of the errors is smaller than 10−11. We hope that these trajectories belong to
quasi-periodic invariant tori whose basic frequencies are “very” Diophantine and close to the
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Table 1
Frequencies, masses, and radii of the planets used in (35).

Planet ω̂i mi ai

Neptune 0.92801432138537394 5.1464752074960787e-5 5.7788760748791814
Saturn 0.59716051258412511 2.8561327940941584e-4 1.8335242195766197
Uranus 0.85880670883551138 4.3620791653297386e-5 3.6880511883932363
Earth -0.1862408594090464 3.0375324347911519e-6 0.1923832582416737

normal ones of L5.

3.3. Multicircular problem. Now we consider the Hamiltonian (35), where the effect of
additional planets is taken into account (see Table 1). Specifically, we consider the effect of
Saturn, Uranus, Neptune, and Earth, the first perturbation being the most significant. This
model was studied in [20], where the four-dimensional invariant torus that replaces the point
L5 was computed. Note that we expect the invariant tori of the autonomous spatial system
to enlarge their dimension by adding the frequencies of the planets (see [23, 38]). Indeed, the
natural quasi-periodic solutions of (35) have seven basic frequencies, even though four of them
are known a priori. We use the methodology introduced in this paper to analyze the abundance
of quasi-periodic solutions around the point L5 (indeed, around the four-dimensional torus
that replaces it) by computing the remaining three basic frequencies (as a continuation of
the normal ones of L5) for the stable solutions. We keep the notation ω1, ω2, and ω3 for the
continuation of the frequencies of L5, and we denote by ω̂1, ω̂2, ω̂3, and ω̂4 the frequencies of
the forcing.

We take the same initial conditions (40) as in section 3.2, using the same grid of values
of (α, z) to parameterize (39), and we define the complex signal zn = x(n) + iy(n) by in-
tegrating (35). The implementation details are the same as those in section 3.2, including
the strategy for computing initial approximations to the frequencies (performing continuation
with respect to z). However, since the numerical integration of this problem is computation-
ally more demanding than the spatial RTBP, we restrict the maximum number of iterates to
214 = 16384 (about 2607 Jupiter revolutions), and we stop the computations if two consec-
utive approximations to the frequencies differ by less than 10−8. From the qualitative point
of view, the obtained results look similar to those for larger integration times. Results are
shown in Figure 15.

As done previously, we use a log10 color palette to represent initial conditions according to
the performance of the method. Comparing with Figure 13, we observe that the quasi-periodic
perturbation produces significant changes in the region of stability around the torus replacing
L5. Indeed, the size of the domain of effective stability remains essentially the same, but a
larger quantity of invariant tori of the RTBP is destroyed by the perturbation, especially in
the horizontal direction. In particular, we find quasi-periodic solutions in a region that is
above (in the vertical direction) the torus that replaces L5. This is consistent with the fact
that this torus is linearly stable. Further, this is also in accordance with the study presented
in [19] for the bicircular problem Earth–Moon–Sun, in which the periodic orbit replacing L5

turns unstable, even though stable motion is still obtained in the vertical direction (of course
the effect of Saturn in the Sun–Jupiter case is not as dramatic as the effect of Sun in the
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Figure 15. We plot z (vertical axis) versus α (horizontal axis) labeling the initial conditions in the
multicircular problem according to (40). We represent the error in the computation of the three basic frequencies
using a log10 color scale.

Earth–Moon case).
As far as statistics are concerned, we have that 59.57% of the trajectories have not escaped

after integrating up to tmax. This number is slightly smaller than that for the spatial RTBP
(the “unperturbed problem”), but in this case tmax is significantly smaller. Comparing with
the RTBP, we expect a larger number of trajectories to escape for large values of tmax. In
addition, only 4.56% of the points that have not escaped present an estimated error for the
three frequencies smaller than 10−7. Recall that we are integrating at most up to tmax = 16384,
and we can obtain higher precision for the frequencies by taking a larger integration time.

Next, we study the frequencies of a particular orbit using a larger number of iterates.
We select an initial condition that is known to be on an invariant torus. Specifically, we
consider the two-dimensional torus that replaces L5 in presence of Saturn and Neptune. This
torus, which has basic frequencies ω̂1 and ω̂2 (those of Saturn and Neptune), was numerically
computed in [20, bottom plot of Figure 5], and it is characterized by the initial condition

(41) x = −0.49507899400971284, y = 0.86774513932356423, z = ẋ = ẏ = ż = 0.

We consider first the computation of the average γ̂0 � Γ(0,p,q) (see Proposition 2.18) of this
quasi-periodic trajectory. The numerical integration is performed using a Taylor method
of order 24 working with double precision arithmetic and asking for local error 10−16. In
Figure 16, we show the log10 of the estimated error |Γ(0,p,q) − Γ(0,p,q−1)| versus q = log2N for
different values of the averaging order p. As expected, the behavior is analogous to Figure 11.
Note that if we take p = 4 and q = 14, we approximate the average almost with double
precision.
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Figure 16. Study of the torus that replaces the point L5 in the presence of Saturn and Neptune. We plot
the error corresponding to the computation of the average (in log10 scale) versus q = log2 N for different values
of p.

Table 2
Computed frequencies of the torus that replaces the point L5 in the presence of Saturn and Neptune for

different values of q = log2 N .

q ω̂1 ω̂2

5 0.928653980143709743165276669468929 0.599382329537292660651851066335658
6 0.928074698141400367886405365621802 0.597353799463132731867813521970719
7 0.928011406040210073007649328662823 0.597170683287294613337166912438880
8 0.928012981190058882970132062540001 0.597160863433890478048734042323353
9 0.928014783293092087664994619614988 0.597160521394420061323830787193378
10 0.928014660962250750396756626759760 0.597160512759816035323654200831792
11 0.928014284064984417486857651312489 0.597160512587858793607019746153710
12 0.928014321724697792320504173605765 0.597160512584175033828001053659716
13 0.928014321376624582553768362236468 0.597160512584126112117500504427987
14 0.928014321385749303967589813025608 0.597160512584125119156675196553359
15 0.928014321385373754789964541932186 0.597160512584125110225098552299600
16 0.928014321385373872422970145789419 0.597160512584125110004368874099029
17 0.928014321385373941447437305728162 0.597160512584125110000035659584528
18 0.928014321385373940000194018750186 0.597160512584125110000000852394702
19 0.928014321385373939999739724886880 0.597160512584125110000000016821083
20 0.928014321385373940000004910137652 0.597160512584125110000000000142700

Finally, we face the computation of the frequencies ω̂1 and ω̂2 from the discretized traject-
ory of (41) by unfolding, averaging, and extrapolation. These frequencies are known, but we
want to show that their computation is carried out with high precision by our approach. Recall
that these frequencies come from a “small” quasi-periodic perturbation, so the effectiveness
of the unfolding process is not secured a priori. Computations are performed using an arith-
metic of 32 decimal digits. The numerical integration is carried out using a Taylor method
of order 36 and asking for a tolerance of 10−32. Although we could use the values in Table 1
as “approximations” to the frequencies for the unfolding, we act as if they are unknown, and
we look for candidates for the frequencies looking for peaks in the intervals [0.88, 0.95] � ω̂1

and [0.56, 0.64] � ω̂2. Specifically, we use the criteria described in section 2.6, computing
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Z(1024,2)(ω0) for 60 values of ω0 in each interval. As before, to improve the performance of
the unfolding procedure, we redefine the signal by subtracting a (rough) approximation of
its average, i.e., zn 
→ zn − Γ(0,2,10) (see Remark 2.20). To unfold the signal we use p = 2
and L = 1024. To refine the frequencies of Saturn and Neptune, we use p = 5 and compute
up to N = 220 iterates of the unfolded signal. In Table 2, we present the approximation of
both frequencies for different values of q = 5, . . . 20, where 2q is the number of iterates of the
unfolded signal. Notice that the method performs very well in high precision, and we obtain
the digit 0 beyond the truncated precision of the initial data.

4. Conclusions and final remarks. In this paper we have presented a methodology to per-
form frequency analysis of analytic quasi-periodic signals with Diophantine basic frequencies.
Given a good approximation of any of the frequencies, we can refine it up to high precision at
a moderate computational cost and at low memory requirements. The method is very flexible
and self-contained in the sense that it also allows us to obtain initial approximations of the
frequencies when we have no previous information on them. Such initial approximations are
more accurate than those obtained by straight use of DFT.

A remarkable feature of our approach it that refining a particular frequency does not
require any information on the other frequencies or simultaneously computing any Fourier
coefficient of the signal. The accuracy of the method is not constrained by the number
of significant Fourier harmonics required to approximate the quasi-periodic signal or by the
dimension of the vector of basic frequencies of the problem. Fourier coefficients can be obtained
a posteriori by slightly modifying the procedure for calculating the frequencies.

Among the strengths of our approach is the fact that it is dynamically coherent with the
problem. Indeed, algorithms preserve the quasi-periodic structure of the original signal. No
spurious frequencies are added due to the truncation of the signal to a finite sample, and
it is not necessary to turn the signal into a periodic one in order to magnify its dominant
frequencies.

The presented algorithms are extremely simple to code and optimize. The largest set of
data required to store in memory is an array of length L that corresponds to the number
of iterates used to define an iterate of the unfolded signal. The time cost of computing
an unfolded iterate is essentially the cost of evaluating an iterate of the original signal and
performing 4pu products (see Appendix A, where pu is the order of the unfolding). The cost
of a frequency refinement of order pr, using N iterates of the unfolded signal, is essentially
the cost of evaluating N unfolded iterates and performing 2pr products. There are several
parameters to optimize for a given particular problem (sampling time, averaging orders, etc.).
In this paper we do not present a particular criterion to optimize them, since this depends on
several factors such as the computational cost of evaluating the signal, the magnitude of the
Fourier coefficients related to the frequencies to be computed, and the precision required in
the results.

The method can present limitations if the signal has poor regularity, the frequencies are
close to being resonant, or the amplitude of the target frequency is very small. Comparison
with other methods must take into account the computational cost of the iterates, because
high accuracy may require a large number of them. Indeed, if we want to compute frequencies
up to a very high accuracy, then it is reasonable to use an arithmetic with a large number
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of decimal digits, which, of course, significantly increases the computational cost of any it-
erate. As mentioned above, our approach also allows us to compute the amplitudes of the
signal. However, if many amplitudes are required, then the use of collocation methods is most
probably a better choice.

Finally, we want to emphasize that the “inverse problem” to the frequency analysis can
also be tackled with the same ideas. Given a fixed ω ∈ Rd, it consists in computing an
initial condition for an invariant torus of a Hamiltonian system with d degrees of freedom,
or for a symplectic map in R2d, having ω as a vector of basic frequencies. Of course, ω
must be Diophantine and we require a good enough approximation to this initial condition
(assuming that the torus exists). The key is to combine the methodology of this paper for
the frequency analysis (note that ω is the approximate frequency we use for the unfolding)
with the computation of derivatives of frequencies with respect to parameters and initial
conditions already introduced in [29]. This information allows us to refine the approximation
for this initial condition by applying the Newton method to the d-dimensional frequency map.
Note that the frequency map is well defined in a small neighborhood of a Diophantine torus,
except for a set of exponentially small Lebesgue measure in the distance to the torus, and has
C∞-Whitney regularity. This problem is postponed to future work.

Appendix A. Some implementation details. In this appendix we discuss several imple-
mentation details in order to help the reader both obtain efficient algorithms to unfold a
given quasi-periodic signal (section 2.3) and refine the computation of the target frequency
(section 2.4). These comments can be extended mutatis mutandis to implement the method
for computing Fourier coefficients (section 2.5).

In order to have explicit formulae for the extrapolation coefficients, we restrict our atten-
tion to the case when the number of iterates used for the extrapolation is a power of 2. As we
pointed out after Definition 2.11, the key is that the values of Lj behave geometrically on j, so
other choices can be made—and this may be even recommended depending on the problem.
Let {SL}L≥1 be a sequence that behaves as in (23) (plus higher-order error terms). Then, we
can approximate α by computing SL for p + 1 different values of L (behaving geometrically,
not necessarily with an integer rate) and then solving a (p + 1) × (p + 1) linear system of
equations.

Global parameters. In the following discussion pu is the extrapolation order of the unfolding
and L = 2qu is the number of iterates used to compute any new iterate. As far as the
computation of the frequency is concerned, pr and N = 2qr are the extrapolation order and
the total number of unfolded iterates used to perform the refinement, respectively. As global
variables, we precompute the following quantities:

• To perform the unfolding we compute the combinatorial numbers
(Lj+k−1

k

)
for j =

0 . . . pu and k = 1, . . . , pu, where Lj = 2qu−pu+j. To refine the frequency we need(Nj+pr
pr+1

)
for j = 0, . . . , pr, where Nj = 2qr−pr+j.

• We compute the extrapolation coefficients c
(m)
j given by (20) both for the unfolding of

the signal and the refinement of the frequency, that is, for m = pu−1, j = 0, . . . , pu−1,
and for m = pr, j = 0, . . . , pr. To reduce the number of products in the evaluation
of each unfolded iterate, we also introduce the scaled coefficients (see explanations
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below):

c̃
(pu−1)
j = c

(pu−1)
j

(
Lj + pu − 1

pu

)−1

, j = 0, . . . , pu − 1.

• To perform the full process we require the complex exponentials eimω0 for m =
0, . . . , 2qu + 2qr − 1, where ω0 is the approximation to the frequency. We do not
precompute all these values but only the exponential eiω0 . The remaining values are
computed later by means of trigonometrical recurrences.

Unfolded iterates. Given a quasi-periodic sequence {zn} and an approximation ω0 of one of
the frequencies, let us describe an efficient way to implement the computation of the unfolded

iterates of order pu introduced in Definition 2.11. To compute each new iterate z
(2qu ,ω0,pu)
n

we use L = 2qu consecutive iterates zl of the original signal for l ∈ {n, . . . , n + L − 1}.
Since definition of z

(2qu ,ω0,pu)
n in (19) involves only the values of Z(L,ω0,pu)

n for L = Lj, with

j = 0, . . . , pu− 1, we can try to avoid the computation of Z(L,ω0,pu)
n for L 	= Lj . But note that

if we use the definition of Z(Lj ,ω0,p)
n by the recursive sums in (17), then it involves the sum of

Z(l,ω0,p−1)
n for any l = 1, . . . , Lj . To compute the unfolded sequence {z(2qu ,ω0,pu)

n }, we proceed
as follows:

• To compute the first unfolded iterate z
(2q ,ω0,pu)
1 , we compute the recursive sumsZ(Lj ,ω0,k)

1

for any j = 0, . . . , pu − 1 and k = 1, . . . , pu by using the recurrences in (17) directly

(i.e., by computing Z(l,ω0,k)
1 for any l = 1, . . . , 2qu and k = 1, . . . , pu).

• Assume that for some n ≥ 1 we know Z(Lj ,ω0,k)
n for any j = 0, . . . , pu − 1 and k =

1, . . . , pu. Then, to obtain Z(Lj ,ω0,k)
n+1 we do not have to compute the full recursive sums

involved in (17); we just have to update the previous n-ones as follows:6

Z(L,ω0,1)
n+1 = Z(L,ω0,1)

n + zL+ne
−i(L+n)ω0 − zne

−inω0 ,

Z(L,ω0,k)
n+1 = Z(L,ω0,k)

n +Z(L,ω0,k−1)
n+1 −

(
L+ k − 2

k − 1

)
zne

−inω0 , k = 2, . . . , pu.

• Once the recursive sums Z(Lj ,ω0,pu)
n have been computed for any j = 0, . . . , pu − 1,

then we also avoid the computation of the averaged sums Z̃(Lj ,ω0,pu)
n by simply using

the alternative formula

z(2
q ,ω0,pu)

n =

⎛⎝pu−1∑
j=0

c̃
(pu−1)
j Z(Lj ,ω0,pu)

n

⎞⎠ einω0 .

Refinement of the frequency. To compute a refinement of the target frequency, using the
unfolded signal obtained from the previous algorithm, we have to evaluate the lift of the

projection of the iterates on the circle. We compute xn = arg(z
(2qu ,ω0,pu)
n ), taking suitable

determinations of the argument so that xn is an increasing function of n. Using the values

of xn for n = 1, . . . , 2pr , we compute the recursive sums S
(m)
Nj

, introduced in Definition 2.13,

6Observe that these formulae perform especially quickly (in a computer) for pu = 2, since then
(
L+pu−2
pu−1

)
= L

and we work with values of L that are powers of two. Products by 2 correspond to shifts using binary arithmetic.
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for m = 0, . . . , pr and j = 0, . . . , pr, and then the corresponding averaged ones, S̃
(m)
Nj

. The
computation of these recursive sums is straightforward using the recurrent formulae, and it
requires only storing in memory a matrix array of (pr + 1) × (pr + 1) elements. Then, the
target frequency, say, ω1 � ω0, is approximated as

ω1 ≈ Θ(pr,qr) =

pr∑
j=0

c
(pr)
j S̃

(pr)
Nj

.

Let us take the following into consideration:
• According Proposition 2.14, the error e(pr ,qr) in the determination of ω1 by Θ(pr,qr)

behaves like |e(pr ,qr)| ≈ Cpr2
−(pr+1)qr . Then, we can try to estimate the value of

Cpr by means of two extrapolated values of order pr, say, Θ
(pr,qr) and Θ(pr ,qr−1). As

we expect Θ(pr,qr) to be closer to ω1 than Θ(pr ,qr−1), we estimate Cpr by considering
formula (28) for qr − 1 and then replacing ω1 by Θ(pr ,qr). We obtain the heuristic
estimate (see [36])

(42) |e(pr ,qr)| ≈ 2−(pr+1)ν|Θ(pr,qr) −Θ(pr ,qr−1)|,
where ν is a “safety parameter” to prevent the fact that Cpr can oscillate as a function
of qr. In previous works we have used the value ν = 10.

• Once the frequency ω1 is known, formula (29) allows computing its Fourier coefficient,
say, γ̂e1 , with high accuracy at a moderate cost. According to the notation of Propos-
ition 2.18, we must take k∗ = e1 and ω∗ = ω1. We observe that we can estimate the
committed error in the same way as for the frequency:

|e(k∗, pf , qf )| ≈ 2−pf ν|Γ(k∗,pf ,qf) − Γ(k∗,pf ,qf−1)|,
where pf and qf are the extrapolation parameters selected to approximate γ̂e1 .

• The computation of, at least, a rough approximation to γ̂e1 is highly recommended.
As we pointed out in Remark 2.19, this is a simple test to ensure the correctness of
the computed values ω1.
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nian system near an elliptic equilibrium point, with an application to the restricted three-body problem,
J. Differential Equations, 77 (1989), pp. 167–198.
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[15] A. González, R. de la Llave, and A. Haro, Singularity theory for non-twist KAM tori, Mem. Amer.
Math. Soc., to appear.
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