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Abstract 

In this paper we introduce a general methodology for computing (numerically) the normal form around a periodic orbit of 
an autonomous real analytic Hamiltonian system. The process follows two steps. First, we expand the Hamiltonian in suitable 
coordinates around the orbit and second, we perform a standard normal form scheme, based on the Lie series method. This 
scheme is carried out up to some finite order and, neglecting the remainder, we obtain an accurate description of the dynamics 
in a (small enough) neighbourhood of the orbit. In particular, we derive approximations of the invariant tori that generalize 
the elliptic directions of the periodic orbit. On the other hand, bounding the remainder one obtains lower estimates tk~r the 
diffusion time around the orbit. 

This procedure is applied to an elliptic periodic orbit of the spatial restricted three-body problem (RTBP). The selected 
orbit belongs to the Lyapunov family associated to the vertical oscillation of the equilibrium point Ls. The mass parameter t~ 
has been chosen such that L5 is unstable but the periodic orbit is still stable. This allows to show the existence of regions of 
effective stability near L5 for values of/~ larger than the Routh critical value. The computations have been done using formal 
expansions with numerical coefficients. Copyright © 1998 Elsevier Science B.V. 

PACS: 02.30.Hq: 02.40.Vh; 02.60.-x; 02.60.Cb 
Kevwords: Normal forms: Algebraic manipulators: Effective stability: Invariant tori 

1. Introduct ion 

Normal  forms are a standard tool in Hamil tonian  mechanics  to study the dynamics  in a neighbourhood of  

invariant objects like equi l ibr ium points, periodic orbits or invariant tori. Usually,  these normal forms are obtained 

as divergent series, but their asymptotic character is what  makes them useful. From a theoretical point  of  view, they 

provide nonl inear  approximat ions  to the dynamics  in a ne ighbourhood of the invariant object, that allows to obtain 
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information about the real solutions of  the system by taking the normal form up to a suitable finite order. In several 
cases, the remainder turns out to be exponentially small with respect to some parameters (see [7,16,20,24,30]). This 

is the basis to derive the classical Nekhoroshev estimates (see [3,6,18,22,23,26]). Moreover, although those series 
are usually divergent on open sets, it is still possible in some cases to prove convergence on special sets with empty 

interior (Cantor-like sets). This is the basis of KAM theory (see [ 1,6,25]). 
From a more practical point of view, normal forms can be used as a computational method to obtain very accurate 

approximations to the dynamics in a neighbourhood of the selected invariant object. They have been applied, for 
instance, to compute invariant manifolds (see [ 13,31 ]), invariant tori (see [ 12,15,32]) or to produce estimates on the 

diffusion time near linearly stable invariant objects (see [9,14,29]). This numerical approach is the one taken along 
this paper, that can be considered a numerical application of [16]. Before the formulation of the methodology, let 

us mention some related results that can be found in the literature. 

Let us consider an analytic Hamiltonian H with I degrees of freedom, having an elliptic equilibrium point at the 
origin. Under generic conditions of non-resonance and non-degeneracy, KAM theory ensures that there is plenty 
of / -dimensional  invariant toil around the point. If  / is 2, the point is nonlinearly stable (the two-dimensional tori 

split the three-dimensional energy levels H = h in two-connected components), but in the general case 1 > 2 
it is widely accepted that some diffusion can take place. In this case, the use of  normal forms allows to produce 
lower bounds on this diffusion time, that are exponentially large with the distance to the origin. This gives rise to 
the so-called effective stability, i.e., even in the cases when the system is not stable it looks like it were (i.e., the 

time needed to observe the instability is very long, usually longer than the expected lifetime of the studied physical 

system). 
The stability of  the Trojan asteroids is a classical example of this kind. A first model for this problem is provided 

by the spatial restricted three-body problem (RTBP), where the problem boils down to estimate the speed of diffusion 

around an elliptic equilibrium point of  a three degrees of freedom autonomous Hamiltonian system. In order to 
produce good estimates, it is necessary to compute numerically the normal form around the point, up to some finite 
order (see [29], and also [5] for a slightly different approach). This allows to derive much better estimates than the 

ones obtained by only using purely theoretical methods. Up to now, none of these methods have been able to prove 
the effective stability of  any Trojan asteroid for the spatial RTBP model. Recently (see [10]), it has been shown the 
effective stability of  the projection of some Trojan asteroids into the planar RTBP. 

These techniques have also been extended to consider time-dependent periodic perturbations, in a very natural 
way: in a first step one computes the periodic orbit that replaces the equilibrium point and, by means of a translation, 
one puts it at the origin. Now, a single linear (and periodic with respect to the time) change of variables removes 

the time dependence at first order, and then, the methodology above can be extended without major problems (see 
[12,14,32]). 

In this paper we will focus on the problem of computing the normal form around a linearly stable periodic orbit of 
an autonomous analytic Hamiltonian system with three degrees of  freedom. One can think that the problem can be 
solved in the same way we have mentioned for periodically perturbed Hamiltonian systems, i.e., to bring the orbit 
at the origin and to apply a Floquet transformation. The main difficulty of  this method comes from the following 
fact: due to the symplectic structure of  the problem, the monodromy matrix around the periodic orbit has, at least, 
two eigenvalues equal to 1. This implies that the reduced Floquet matrix is going to have two zero eigenvalues, and 
this does not allow to continue with the normal form process. 

For this reason, here we have taken a different approach. As we are going to work around a non-degenerate elliptic 
periodic orbit, we expect that the monodromy matrix has the following structure (may be after a linear change of 
variables): a two-dimensional Jordan box with two eigenvalues 1, plus two couples of conjugate eigenvalues of 
modulus 1, all different. Under some generical conditions of non-resonance and non-degeneracy, we have that: (a) 
the Jordan box spans, in the complete system, a one-parametric family of elliptic periodic orbits, (b) each couple 
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of conjugate eigenvalues spans a Cantorian family of  two-dimensional elliptic invariant tori. and (c) if we consider 

the excitation coming from both elliptic directions, we obtain a Cantorian family of  three-dimensional invariant lori 

(see [4,8,16,27] for the proofs of these facts). Hence, we will use suitable coordinates for this structure: we will 

introduce an angular variable (0) as coordinate along the initial orbit, and a symplectically conjugate action variable 

(1). For the normal directions we will simply apply the procedure used for the examples mentioned above: we will 
translate the orbit to the origin and we will perform a complex Floquet change to remove the dependence on the 

angle of the variational equations restricted to the normal directions of  the orbit, and to put them in diagonal form 

(by means of  a complex change of coordinates). Denoting by ~o0 the frequency of the selected periodic orbit and by 
o~1.2 the two normal frequencies, the Hamiltonian will take the form 

H(O, q, I, p) = cool + icolqtpl + i~o2q2P2 + " "  

with the periodic orbit given by I = 0, q = p : 0. This is suitable to start the normal form process. 

These ideas have been applied to a concrete example coming from the RTBE The selected periodic orbit belongs 

to the Lyapunov family associated to the vertical oscillation of the equilibrium point Ls. The mass parameter t~ 

is chosen large enough such that L5 is unstable, but not too large in order to have the selected orbit normally 

elliptic (see Section 3.2). The first changes of variables are computed taking advantage of  the particularities of this 

concrete model, but they can be extended to similar problems. The normal form is then computed by a standard 

recurrent procedure (based on Lie series) up to order 16. From the normal form we can easily obtain (approximate) 

periodic orbits (belonging to the previously mentioned Lyapunov family) as well as invariant tori of dimensions 

2 and 3 that, as has been mentioned before, generalize the linear oscillations around the orbit. Moreover, bound- 

ing the remainder of this approximate normal form allows to derive bounds on the diffusion time around the 
orbit. 

The computations have been done using formal expansions for the involved series, but with numerical coefficients. 

The algebraic manipulators needed have been written from scratch by the authors, using C. 

To end this section, we comment how this paper is organized. In Section 2 we present a general (and tbrmal) 

formulation of  the normal form methodology, that is directly adapted to the case of a linearly stable periodic orbit of 

a Hamiltonian system with three degrees of  freedom, but that can be used (slightly modified) in some other different 

contexts (as the study of systems with more than three degrees of freedom, or around periodic orbits with some 

hyperbolic directions). This formulation has as a reference point the objective to obtain bounds fl~r the diffusion 

speed around the orbit. Section 3 contains the application to the RTBP. 

2. Methodology 

We consider a real analytic autonomous Hamiltonian system with three degrees of  freedom given by 

H =_ H ( X ,  Y, Z,  Px ,  PY, Pz),  I) 

where X, Y and Z are the positions and Px,  PY and Pz the conjugate momenta. Let ( f (O) ,  g(O)) be a 27r- 

periodic parametrization of  an elliptic periodic orbit of  the system, with period 27r/~o0. Here f = ( f l ,  .f~, .f3) and 

g = (,~l, g2, g3) are real analytic functions with the normalization .f~(0) = 0. Now we will assume the following 
condition (that will be satisfied by the selected example). 

Condition C: The projection of the orbit into the coordinates (Z, Pz) is a simple curve close to a circle. 
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Note that this may not be directly satisfied by a generic example. The reason we have used it is that it simplifies 

the computations. In cases when it is not satisfied one should try to introduce changes of  variables in order to obtain 

such condition. For instance, this is always possible if we are dealing with Lyapunov orbits not too far from the 

equilibrium point. Condition C implies that one can write 

f3(0) = A sin (0) + j~(0), g3(0) ----- A cos (0) + £'3(0), (2) 

where If3(0)l and 1~3(0)[ are small on the set IIm(0)l _< p for some p > 0 (this will be stated rigorously in 
Section 2.2). Moreover, without loss of  generality, we can assume A > 0. Then the function 

,4(0) = (f~(0)) 2 + (g;(0)) 2 (3) 

is always positive and "close" to the non-zero constant A 2. The non-vanishing character of  A is necessary for 

technical reasons. It is used in Section 2.1 to define the (canonical) transformation (16). Thus, Condition C is 
needed to guarantee the diffeomorphic character of this transformation. 

Before continuing with the formal description of  the methodology, let us give some notation to be used in the 

next sections. As it has been mentioned before, we will introduce a new set of variables (0, q, I, p) to describe a 

neighbourhood of  the periodic orbit. For functions depending on these variables, we will use the following notations. 

If f(O, q, I, p) is a given analytic function, we expand it as 

f(O, q, I, p) = Z fkJ'm(O)Ikqlpm" (4) 
kJ,m 

being 3'k.t.m (0) analytic and 2zr-periodic functions, that can also be expanded as 

fk,l,m (0) = Z fk,l,m,s e x p ( i s 0 ) ,  (5) 
s 

where i = v / ~ ]  . In those sums, the indices k, 1, m and s range on N, N 2, N 2 and 7/, respectively. We also introduce 

the following definition of degree for a monomial fk,l.m (o)Ikqlp m, tO be used along the paper: 

deg(Ikqlp m) ----- 2k + Illl + Imll, (6) 

where 1o11 = Y~j [aj I. The reason for counting twice the degree of  I will be clearer in Section 2.5. 

Now, let us assume that f ( 0 ,  q, 1, p) is defined on the complex domain 

D(p,  R) = {(0, q, I, p) c C6: IIm(0)l < p, I11 _< Ro, Iqil -< Rj, EPjl <_ Rj+2, j = 1,2}, (7) 

where R = (Ro, Rl, R2, R3, R4). Then we introduce the norms 

II.fk,z,mllp= sup I.fk,l.m(0)l, (8) 
tlm(O)l<_6 

and 

[[f[[o,R = sup [f(O,q,l,p)t.  (9) 
D(p,R) 

We note that the explicit computation of  these norms for a given function can be difficult, but they can be bounded 
by the norms 

Ifk,l,mlp = ~ Ifkj.m,,I exp (Islp), (10) 
s 
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and 

.e nk  r,l  n / ,  r,m rim, I,flp. = ~ I . Ik . l .mlptXotX 1 r~fr~ 3 r~ 4~,  ( l l )  R 
k.l .m 

that are easier to control. Moreover, using standard Cauchy estimates on f ,  we have for the coefficients of  expansion 

(4) that 

II.fllp.e 
II.[Z./.,, lip < , (12) 

- Ro R',' 

and, ifO < Po < P, that 

a.tLz,m p po _< IlA-J.mpo lip (13) 

2.1. Adapted coordinates 

The initial system of (Cartesian) coordinates (X, Y, Z, Px,  PY, Pz)  is not a suitable system of reference to 

describe the dynamics around the periodic orbit. As it has been mentioned in Section 1, the natural system of 

reference should contain an angular variable describing the orbit. Hence, we want to replace the coordinates of  

(1) by a new system of canonical coordinates (0, q, I, p) = (0, ql, q2, I, Pl, P2), by means of a real analytic 

transformation, depending on 0 in a 2zr-periodic way. The change has to satisfy that the periodic orbit corresponds 

to the curveq = p = 0 a n d l = 0 .  

To construct this change, we take advantage on the hypothesis that A is different from zero. To give this trans- 

formation explicitly, let us start by defining the function 

~ 0  i" - c s ( # )  = g3( ).h (0) g~'(O)J~(O) 
g ( o )  2 

which is small i f  Condition C holds (note that cr(O) _= 0 i f  the projection of the orbit into the coordinates (Z, Pz) 

is a circle). Let (~(0, s) be the only solution of 

s = c~(0, s) + ½~(0)~(0,  s) 2 

such that e~(O, 0) = 0. Then if we denote by F the function 

2 

g(q .  O, p, I) = I + Z ( g j ( O ) q j  - f j ( O ) p j ) ,  
j = l  

the change is given by 

X = .fl(O) + ql, Px = gl(O) + Pl,  

g'~(o) 
Z = .f~(O) - ~ or(O, F(q,  O, p, 1)), A(O) 

14) 

15) 

Y = .f2(0) + q2, Py = g2(0) + P2. 

j;(o) 
Pz = g3(0) + ~ o t ( 0 ,  F(q,  O, p, 1)). 

/a(~) 

16) 

Now we are going to prove that this is a canonical transformation and, in Section 2.2, we will show that if [.~3[ and 

I,~31 (see (2)) are small enough, then (16) is a diffeomorphism from a complex domain in the variables (0, q, 1, p) 

to a (complex) neighbourhood of the periodic orbit. 

Lemma 1. The transformation (16) is symplectic. 



202 A. Jorba, J. Villanueva/Physica D 114 (1998) 197-229 

Proof Let us consider the (formal) generating function S(O, ql,  q2, Px,  PY, Pz) given by 

S = So(O) + (f l  (0) + ql ) ( I x  - gl (0)) + (f2(0) + qz)(PY - g2(0)) 

q-SI(O)(Pz  - g3(0)) + S2(O)(Pz - g3(0)) 2, 

with 

S'o(O) = f l  (O)g'l CO) + f2(O)g'2(O) + f3(O)g~(O), 

g~(O) 
Sj (0)  = f 3 ( 0 ) ,  $ 2 ( 0 )  - 2J~(0 )"  

Then it is easy to see that (16) is obtained from the relations 

aS OS OS OS 
I = - - ,  Pl = , p2 = X - -  , Y - -  

O0 Oql Oq2 ' 0 Px 

aS OS 
Z =  

OPy'  OPz" 

Note that, in principle, this is only a formal construction (as $2(0) has singularities), but we remark that the 

transformation (16) is well defined around the whole periodic orbit. A more rigorous (and much more tedious) 

verification, without any singularity, can be obtained by directly checking the symplectic character of the differential 

of  the change. [] 

For further uses, let us denote by f ' ( q ,  p, 0, I)  the transformation 

f :  ( q , p , O , l )  --+ (X, Y , Z ,  Px,  PY, Pz).  (17) 

2.2. Bounds on the domain o f  definition of  the adapted coordinates 

Now we are going to give conditions to ensure the diffeomorphic character of  the canonical transformation (16) 

in a neighbourhood of the periodic orbit. These conditions have to be explicit enough to be applied in a practical 

example. More concretely, what we want to show is that if f3 and g3 are small enough, then the transformation 

.T of  (17) is invertible from a complex neighbourhood of Im(0) = 0, I = 0, q = 0 and p = 0, to a complex 

neighbourhood of  the periodic orbit. 

The main difficulty is the presence of  the angular variable 0. It turns the study of the injectivity of  (16) into a 

"global" problem (we want injectivity around the whole periodic orbit), instead of the classical local formulation 
(injectivity around a fixed point). 

To check this global injectivity, we will use the following construction. First, we note that for a fixed 0 the 

correspondence (q, p) ~ (X~ Y, I x ,  PY) is clearly bijective. Hence, to check the diffeomorphic character of f ,  

what we have to prove is that the correspondence (0, F) ~-~ (Z, Pz) is also injective. For this purpose, we consider 
an auxiliary transformation of  the form 

(O, fi) w-* (x ,y ) ,  x = f ( O ) - g ' ( O ) f l ,  y = g ( O ) +  f ' (O)f l  (18) 

with f ( 0 )  = A sin(0) + f (O)  and g(O) = A cos(0) + oa(0), where A is a positive number, and f ,  ~ are arbitrary 
real analytic functions, 2r-periodic on 0. We note that replacing oe/A by fl in the expressions of Z and Pz, we have 

that the correspondence (0, fi) ~ (Z, Pz) is analogous to (18). We will show that, if f and ~ are small (enough) 
functions, and we consider values of  0 in a complex neighbourhod of 71 and of  fl in a complex neighbourhood of  
/3 = 0, both small enough, then (18) is injective. This result is contained in the next proposition. 

Proposition 1. With the notations given above, we consider fixed values of  0 < R/~ < 1 and 0 < p < 1. Assuming 

the l" Ip norms (see (10)) of f ,  g, f ' ,  g',  f "  and ~," small enough (condition depending only on A and R/~), then 
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we can define positive values 30(R~, p) and & (R~, p) such that. if ~0 > &, the transformation (18) is inlective on 

IIm 0l _< p and Ifil _< Rfi. 

The proof of this proposition is contained in Section 4. 

Remark I. Admissible values of ~0 and 6j are explicitly constructed during the proof of  Proposition 1. They verify 

that ~1 -+ 0 and that &) is bounded away from zero, when the J " J, norms displayed above go to zero. 

Remark 2. Of course, Proposition 1 is the one which motivates Condition C on the initial periodic orbit. Without 

this assumption, to invert (18) can be very difficult. 

Then, assuming .f3 and ~3 small enough, we deduce from this result that the correspondence (~. fi) ~ (Z, Pz) 

is injective if IIm(0)l _< p and Jill -< Rt~ for some small p > 0 and Rt~ > 0. 
The next step is to invert the correspondence (0, .) w-, ce(0, -) of (14). By writing explicitly the solution ce(O, s) of 

this quadratic equation, we have that it is well defined if 21s11~7(0)1 < 1. Moreover, if we take a fixed 0, and values 

so :~ s] with the previous restriction, we deduce from (14) that ce(0, so) ~ ce(O. sj ). As we are also interested in the 

size ofce, we remark that if 2Jsllcr(0)l < 1, then we have 

1 
jce(O, s)J < - - ( I  - (1 - 2[sllcr(O)l)J/=). 

ler(0)l 

This bound is an increasing function of  [a (0)1 and Is l. 
Finally, from all these remarks, we deduce that if we consider values for (0, q, 1. p) belonging to 23(p, R), with 

all the components of the vector R small enough such that 

IF(q,O,p,l)l  < sup (19) 
Ilm(Oll<_p 

and 

Ice(O, F(q, O, p, l))J 
< R/~, (20) 

1,6(0)1 

then we can guarantee that the transformation b e of  (17) is a diffeomorphism from this domain to a neighbourhood 

of the periodic orbit. 

2.3. Floquet tran,~h)rmation 

If we rewrite the Hamiltonian (1) in the adapted coordinates (16), it takes the form 

H(O.q , l ,p )=ho+~ool  +-~(q ,pT)A(O) + Z Hi(O,q,I.p),  
P .j>3 

(21) 

where we keep, for simplicity, the name H for the transformed Hamiltonian. Here h0 is the energy level of the 

periodic orbit, A(O) is a symmetric matrix (2rr-periodic on 0) and the terms Hj are homogeneous polynomials 

of  degree j (see (6)). The next step is to remove the angular dependence of A on O, i.e., to reduce the normal 
variational equations of the orbit to constant coefficients. So, we will perform a canonical change of variables, linear 
with respect to (q, p) and depending 2zr-periodically on O, such that it reduces A to constant coefficients (i.e., a 
Floquet transformation). As the initial Hamiltonian is real, we would like to use a real Floquet transformation. This 

is not possible in general (it is well known that one can be forced to double the period to obtain a real change) but 
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it can be done in some particular situations. In the case we are considering (reducibility around a periodic orbit 

of  a Hamiltonian system), the change can be selected to be real if, for instance, the projection of the monodromy 

matrix associated to the orbit into their normal directions diagonalizes without any negative eigenvalue. Note that 

this holds on any elliptic periodic orbit under the assumption of different normal eigenvalues (for a description of 

the construction of  the Floquet reduced matrix in the Hamiltonian case, in a generic context, we refer to [2 1 ]). 

2.3.1. The variational flow 
Let qJ(t) be the variational matrix, ~ (0 )  = Idr, of the periodic orbit for the initial Hamiltonian system (l). 

Then q~(t) = (D.T'(0, 0, coot, 0)) -1 ~(t)DU(O, 0, 0, 0) is the variational matrix of the orbit for the Hamiltonian 

system (21), i.e., for the system expressed in the variables (q, p, 0, 1). We note that the variational equations in 

these variables are given by 

2 0 OpiH 

J4a 
2 

45 = 0 -OqlH ~, (22) 

o2qn o2pn 0 O2, H 

0 0 0 0 

where the matrix of  this linear system is evaluated on the periodic orbit, O(t) = coot, I (t) = 0 and p(t) = q(t) = 
0. Here 2 OuvH denotes the matrix of  partial derivatives (O2H/OujOVk)j.k, and J4 is the matrix of the canonical 

2-form of C 4. Let 45(t) be the four-dimensional matrix obtained by taking the first four rows and columns of 

q~ (t) (it corresponds to the variational flow in the normal directions of  the periodic orbit). If we use the notation 
q5 = O(q, p, O, l)/8(q °, pO, 0o, io), we can identify 45 -- O(q, p)/O(q °, pO). Then we obtain from (22) that 

~ = J4A(coot)45 + ( OptH ) O l 
-OZq IH (o, ot.0.0.0) O(q°' pO)" 

Moreover, from the last row of  the matrix of  (22), we have that (d/dt)(Ol/O(q °, p0)) = 0, and hence, from the 

initial conditions for q~ at t = 0, we deduce that (Ol/O(q °, p°))(t) = 0. So, the matrix q5 is the solution of the 

linear periodic system 

= J4A(coOt)45, 45(0) = Id4.  (23) 

As we are interested in a numerical implementation of this method, we remark that it is not difficult to check that 

D.T(O, O, mot, O) = 

o o o f ;  o 

0 1 0 0 f '  2 0 
I I ! t I / I I , t  I 

--g2g3/A --g3/A --gig3~ A f lg3/A f2g3/A ]3 
0 0 1 0 g'l 0 

0 0 0 1 g'2 0 

gtlf~/A g~2f~/A --f~]~/A --f~f~/A g~3 f~/A 

being all the components of  the matrix evaluated on 0 = coot. Moreover, we also remark that, to compute the matrix 
(DSr(0, 0, coot, 0)) - l  , we can use that it is symplectic with respect to the 2-form J6, 
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2.3.2. The change o f  variables 

Now, let us introduce C = ~ (2rr /cool  the monodromy matrix of the normal variational equations (23). From the 

assumed linearly stable character of the initial orbit, we have that C has four different eigenvalues of modulus 1, 

i.e., eigenvalues of the form exp(i~j)  and e x p ( - i a j ) ,  for j = 1,2, with ~ej c JR. To compute them, we can use that 

(as C is a symplectic matrix) the characteristic polynomial of C takes the form Q()v) = ;v 4 - a;v 3 + bYv 2 - -  a)v q- I, 

being a = trl (C) (the trace of C), and b = tr2(C) (i.e., the sum of the main minors of order 2 of C). From these 

expressions, we obtain the following relations: 

a = 2cos  (Otl)+ 2cos  (~2), b = 2 + 4 cos (oel) cos (oe2). 

Hence, cos  (O!l) and cos (oe2) are the solutions for c of the quadratic equation 4c 2 - 2 a c +  b - 2 = 0. Let 

w ti) = u (.i) + iv if) be eigenvectors of C associated to the eigenvalues exp (i~j)  for j = 1,2. From the symplectic 

character of C with respect to J4, we have that w/I)T J4w (2! = u, (I)T J4ff, t2) = 0, where the bar denotes the complex 

conjugation. Moreover, from the non-degenerate character of  J4, we also have that w(l)TJ4,~/J) ~ 0 (in fact, this is 

a pure imaginary number). Hence, if we introduce C the matrix that has as columns the v e c t o r s  tt I I ) ,  u (2), v (11 and 

v/2), then c T J 4 C  takes the form 

0 D )  

- D  0 

with D = diag(dj ,  d 2 ) ,  dJ = u(JITJ4vIJ),  , j = l,  2, both different from zero. We can assume dj > 0 (otherwise we 

only have to change oej by -o t j ,  which means that v t j) is replaced by - v  t j l ,  changing the sign of dj). So, we can 

replace u I.i) and v i) by u(J) / , / -d  7 and v ( J ) / x / ~ ,  and then one has that c T J 4 c  = J4 (i.e., C is a symplectic matrix). 

Before continuing, let us introduce the following matrices: 

a'2j(O) = 27r / s"2,(O) = \27r f 

0 cos ---:-'027r 0 sin \27r / 

and 

a"2j -(22) 
£ 2 =  -Y22 X2~ " 

Then, using this notation, what we have by construction is that C ICC = £2(27r) _= £2". From here we deduce 

that, taking .AA = C~2C - I ,  with 

( 0) s) 
= - - , ~ *  0 ' oe2 ' 

we have exp(Jg[) = C. A direct verification shows, from the symplectic character of C, that J4,k4 is a symmetric 

matrix. Then we have that the matrix B(O) defined as 

1 = (24) 

is symplectic and 2rr-periodic on 0. The symplectic character of  B is clear, and the tact that it is 2rr-periodic can 

be checked showing that B satisfies the linear differential system 

B' C - I  ~M B 1 = - - -  B J 4 A ,  
2re co() 
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and that by construction we have B(0) = B(2Jr). Then we use the matrix B to define the following canonical 

transformation: 

1 

The canonical character of  (25) is equivalent to the following equalities: if we put fT = (qW pT) and z T = (x T, yT), 

then we have to check that {~', f} = J4, {f, I} = 0, {f, 0} = 0 and {0, I} = 1. If f(O, x, ~, y) and g(O, x, ~, y) are 

functions taking vectorial values, we define the matrix of Poisson brackets {f, g} as 

{f, gl = Of j 4 ( O g ~ T  Of (Og~  T Of (Og~  T 

These equalities are easily verified using the symplectic character of  B(O) and the explicit expressions 

O_f_~ _B(O)_I, Off_ B(O)_IB,(O)B(O) lz" 
Oz O0 

OI O_~__~ =0,  - -  = - z T  J4B'(O)B(O) -I 
O~ Oz 

(this symplectic character implies that JB'(O)B(O)-l is also a symmetric matrix) and O I/O~ = 1, that are computed 
from (25). 

2.3.3. The reduced Hamiltonian 
Inserting (25) into the Hamiltonian (21), we obtain (we keep the name H)  

~_ 092, o 2 
H(O,x,~,y) = ho + ~oo~e + ( x 2 + y 2 ) + ~ - t x ~ + Y 2 ) + E H j ( O , x , ~ , y ) ,  (26) 

j > 3  

being ogj = o t ' j / T ,  j = 1,2. Note that after this change the quadratic part of (26) is reduced to constant coefficients. 

2.4. Complexification of the Hamiltonian 

With the Hamiltonian (26) we have a good system of coordinates to start computing the normal form. Nevertheless, 

to solve in a simpler form the different homological equations that will appear, it is much better to put the quadratic 

part of  the Hamiltonian in diagonal form. For this purpose, we introduce new (complex) variables 

xj = (Qj + iPj)/~/2, yj = (iQ i + Pj)/~v/2. j = 1,2. (27) 

We note that these relations define a canonical change that transforms the Hamiltonian (26) into 

H(O, Q, ~, P) = ho + o9o~ + icol Q1Pl + iw2Q2P2 + Z Hi(O" Q' ~' P)' (28) 
j > 3  

keeping again the name H. This is the expression of the Hamiltonian that we will use to start the nonlinear part of  

the normal form. Note that the image of  the real domain for xj and yj in the complex variables Qj and Pj is given 
by the relation/oj = i Qj. Hence, if this property is preserved during the normal form computation, we will be able 
to return to a real analytic Hamiltonian by means of the inverse of  the change (27). 

Returning to the complexified Hamiltonian (28), we change the previous notation to a more suitable one to 
describe the normal form. We write (28) as 

H(°)(O, q, I, p) = ho + cool + iwlqlp, + iw2q2P2 + E H) °)(0' q '  I, p). (29) 
j>_3 
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We note that this Hamiltonian has the following symmetry coming from the complexification (see [29]): if we 

expand H C°) as f in (4) and (5), we have 

~. (()) :l/l~+lml~ , (0) l'Lk.t.,,,.~' = nj.k.,,,.t. . (30) 

2.5. Computing the m~rmal form 

The objective of this section is to describe how to put the Hamiltonian (29) in normal form up to finite order, by 

using a canonical change of variables (27r-periodic on 0). We will construct this change as a composition of time 

one flows associated to suitable Hamiltonians (generating functions) G i. They are selected to remove, in recursive 

form, the non-resonant terms of  degree j .  So, we will compute G3, G4 . . . . .  G,,, such that 

H ('' 2) = H(°) o ~rLIG~ o .  .. o d p t G _ ' _ ' l ( O , q , l , p ) = h o + w o l + i w l q l p l  +iw~q~p~_ _ _ 

H (. 2)t 0 M( , -2) t~  , + N ( " ) ( l ' i q l l ~ l ' i q 2 P  2 ) +  ,,+l , , q , l . p ) + . ,  + 2 , , , . q . l , p ) + . . .  (31) 

where @~ means the flow time t associated to the Hamiltonian system G. Here N °') is in normal form up to order 

n, i.e., only contains exactly resonant terms (unavoidable resonances) of degree not larger than n. 

Before describing how to obtain this normal form, let us mention two important properties of  the Poisson bracket. 

1. If f and g only contain monomials of degree r and s, respectively, then {f, ,~} only contains monomials of degree 

r + s  - 2 .  

2. If the expansions of f and g satisfy the symmetry (30), {f, g} too. 

The last property will guarantee that, after the normal form process, the inverse transformation of (27) will 

transform the final Hamiltonian into a real analytic one. 

2.5. I. A general step 

Let us describe one step of this normal form process. For this purpose, we take the Hamiltonian (31  ), and we 

compute G , + l  by imposing that the expression 

H(. 2) {(o01 + iwlql/71 + ico2q2P2, G,+I}  + n-- I  

only contains exactly resonant terms. Then, doing for G,+n and H ~'' 2) the same expansions as in (4) and (5). we n + l  

formally obtain 

] (.-2) 
l n + l , k , / , m , s  

X,+t.k.l.,,,.s = i(l - r e ) T o )  + iscoo" 

being co T = (wl, ¢02), provided that the denominators do not vanish. The well-defined character of G,+I is ensured 

asking the denominators that do not correspond to trivial resonances to satisfy a suitable Diophantine condition (see 

[16]). to guarantee the convergence of  the generating function G , + l .  The exactly resonant monomials correspond 

to tn = / and s = 0, and they cannot be removed (they are the only ones present in the normal form). Moreover, 

we remark that the coefficients gn+l.k.l.m.s satisfy the symmetry (30). Finally, as the selection of the coefficients 

,~,,+t,k,zJ,0 is free. in a practical implementation we will take g,+j,k.i,/.O = 0, to have minimal norm for G , + j  and 
d'~ Gn+ I to keep the symmetry (30). Then, applying the transformation ~ t= l  on the Hamiltonian H 0~-21, w e  obtain 

H ~''-2~ o m  G''+l = H ('' 2 ) + { H ( n - 2 ) . G , , + I } ÷  ~-.{{H ( ' ' - 2 ) , G . + I } , G , , + I } + ' ' '  H 0' 1) 
~ t  = I 

that is in normal form up to order n + 1, and it also satisfies the symmetry (30). 
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2.5.2. Normal form transformation 
Given a fixed N > 3, if we perform N - 3 normal form steps, we obtain a Hamiltonian of the form 

7~(0, q, 1, p) ------ H ( x - 3 )  = iV ' (1 ,  iqlPl ,  iqzp2) + ~ ( 0 ,  q, I, p), (32) 

where ./V" is in normal form up to order N - 1, and 7~ is a remainder of order N. The transformation q.,(N-3) that 

brings Hamiltonian (29) into its normal form (32) is given by 

II/(N-3) --- ,:PG31 ©. . .  o @ / ~ - '  (O, q, I, p), (33) 

and its inverse transformation is 

- -  - - G : ,  ( k / . t ( U - 3 ) )  1 = ~t=--laSGN-I © . . . © q ~ / 3  1 = d I s t 2 G N  I © . . .  © , : ib t=l_  " 

The expressions for these changes of  variables can be obtained by the Lie series method, in the same way it has 

been done to transform the Hamiltonian. 

2.6. The normal form 

Let us consider the normal form N" of  (32). In order to go back to real coordinates we apply the change 

qj ---- ( x j  - -  iyj)/x/2, pj ---- (--ixj + yj)/x/2, j = 1,2, (34) 

as it has been mentioned in Section 2.4. Then N" takes the form N'(10, l l ,  12), where the actions 

l o = l ,  lj =iq jp /  = ½(x f + y ~ ) ,  j =  1,2, (35) 

are first integrals of  the Hamiltonian equations of N'. Moreover, as the changes of variables used for the normal 

form computation preserve the symmetry (30), we have that N'(10, Ii ,  12) is a real analytic function (in fact, N" is a 
polynomial of  degree [½N]). Then if we put w/(lo, lj, 12) =- OAf/OIj, j = 0, 1,2, the solutions of  the Hamiltonian 

equations of .M are explicitly given by 

O(t) =coot +0  °, xj(t) = .  22~° sin (co°t + 0 ° ) ,  
V - ' J  (36) 

,0(,) = , 0  °, =  /5  0 0cos(coo, +0o), 

for j = 1,2, where co ° - coj(l °. I °, 1°). 

2.6.1. Invariant tori 
From the normal form obtained in Section 2.6, it is easy to produce approximations to periodic orbits and 

invariant tori of  dimensions 2 and 3, as well as approximations of their intrinsic and normal frequencies. They are 

obtained neglecting the remainder of  the Hamiltonian and selecting values for the actions in a sufficiently small 
neighbourhood of  the periodic orbit. 

More concretely, if we put I ° = 0, j = 1, 2, in (36), we have parametrized by I ° a one-parameter family of 

periodic orbits (that contains the initial one for 1 ° = 0). By putting I ° = 0, we obtain a two-parameter family of two- 
dimensional tori, parametrized by I O and I O. We have a symmetric situation swapping I 0 by 10. If  we use the three 

parameters simultaneously, I ° j = 0, 1,2, we describe in (36) a three-parameter family of three-dimensional tori. 

If  we send these tori along the different normal form transformations (see Section 2.5.2), complexified coordi- 
nates (Section 2.4), the Floquet transformation (Section 2.3) and the adapted coordinates (Section 2. l), we obtain 
approximations of  periodic orbits and invariant toil for the initial system (1). 
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Similar ideas can be used, for example,  in the case of periodic orbits with some hyperbolic directions to compute 

approximations of hyperbolic tori and the corresponding stable and unstable manifolds. The main difference with 

the case we are actually dealing with appears in the Floquet transformation, where it is necessary to take into account 

the hyperbolic eigenvalues. We recall (see Section 2.3) that in some cases these hyperbolic directions can be an 

obstruction for the determination of a real Floquet transformation. 

2.6.2. Effective stability 
Normal form computations are also useful to derive bounds on the diffusion speed near some invariant objects. 

It is well known that, in Hamiltonian systems with more than two degrees of freedom, linear stability does not 

imply stability (see, for instance, [2] for a first description of a model for this instability), but accurate bounds on 

the diffusion velocity show that it must be very slow (see references in Section 1 ). This leads to the introduction of 

the concept of  effective stability (see [9]): An object is called a-s table  (~ > 1) up to time T, if there exists r > 0 

such that any solution starting at distance r of  the invariant object remains at a distance not greater than c~r up to, 

at least, time T. 

This kind of stability can be obtained from the normal form we have constructed here. One only needs to derive 

good estimates for the remainder of the normal form (this is the part of the Hamiltonian that can produce the diffusion) 

to derive the desired estimates. Next sections are devoted to describe how these estimates can be obtained. 

2.7. Bounds on the domain of convergence r~/'the normal ~rm 

Now, we will estimate the size of the region of effective stability around the periodic orbit. To determine this 

region we use the following criteria: we identify the region of slow diffusion with the domain around the orbit where 

we can prove that the normal form up to order "large enough" (in a practical implementation, this is usually the 

largest order one can reach within the computer limitations) is convergent with a sufficiently small remainder. 

To implement the previous approach, we will give a method to bound the domain where the changes that 

introduce the normal form coordinates (see Section 2.5.2) are convergent. For this purpose we consider, as in 

Section 2.5.2, a generic (analytic) generating function G (0, q, 1, p). Then if one puts @G (0 (0), q (0), 1 (0), p(0))  = 

(0 (t), q (t), 1 (t), p (t)) for the time t flow associated to the Hamiltonian equation s of G, one can write 

! 

O(t) = 0(0) + .~-f(O(s), q(s), l(s) ,  p(s)) ds, (37) 

0 
t 

l ( l ) = l ( O ) -  - ~ ( O ( s ) , q ( s ) , l ( s ) , p ( s ) ) d s ~  (38) 

0 
t 

p( t )}  \p(O)}  + J4 \ O ( q , p ) }  (O(s ) ,q ( s ) , l ( s ) , p ( s ) )ds .  (39) 

0 

To estimate the region where the transformation ~ = l  is defined, we use the norm II • [[p,R introduced in (9). Hence, 

it is not difficult to deduce from the integral expressions (37)-(39) that if one puts 

O_~i p,O~,R~O, O G , fiJ = O~pj 
PO = , ~0 ~- ~ p IOI.RiO) p (O).R~OI OG p~o~ R/o, c ~ . j + 2  = - -  Oqj (40) 
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R(O) for j = 1,2, and one assumes Po < plO) and 6j < - j  , j = 0 . . . . .  4, then ~P~l is well defined from 79(p(o) _ 

Po, R (o) _ 6) to 79 ( p (o), R (o)), where 6 = (6o . . . . .  64) ( see (7) for the deft nition of 79 (., .)). The proof can be found 

in [6]. 

2.8. Bounds on the diffusion speed 

To apply the ideas described along Section 2 to a practical example, we modify the normal form method introduced 

in Section 2.5 to adapt it to the standard implementation of normal forms in a computer, where it is usual to work 

with (truncated) power series stored using the standard definition of  degree of a monomial,  instead of the adapted 

one made in (6). 

To avoid confusions, in what follows the word "degree" will refer to the adapted degree defined in (6), while 

"standard degree" will refer to the usual degree for monomials. Hence, instead of using generating functions Gj  that 

are homogeneous polynomials  of  degree j ,  we will use generating functions that are homogeneous polynomials  of  

standard degree j .  With this formulation the remainder 7~ of (32) will begin with terms of standard degree N. As 

the normal form is independent of the process used to compute it, the only difficulty that we find if we do not use 

the adapted definition of  degree is of  technical character: if we work with the standard degree, and we perform the 

Poisson bracket of  two monomial of  degree r and s, we lose the homogeneity of  the Poisson bracket, and the result 

contains terms of  degree r + s - 1 and r + s - 2. Note that, although this is not very nice for theoretical purposes, 

it is not a problem for a computational scheme. 2 

We use the criteria given in Section 2.7 to compute the effective stability region: we are interested in obtaining 

a domain where the canonical transformation tp/U-3) of  (33) is convergent. To this end, we define (for technical 

reasons) G =-- G3 + G4 + ' "  • + G N - 3 .  Then, given an initial domain D(p (°), R (°~) (small enough) where we expect 

~ (U-3)  to be convergent, we compute/9o and the vector 6 given by (40), using the definition of G previously done, 

but replacing the norm I] • lip,, R~0~ by I " Ip~o~ R, , .  It is not difficult to check (using the bounds given in Section 2.7 

on any transformation G j ,  j = N - 3, N - 2 . . . . .  3) that ~(U-3)  is convergent from 79(p, R) to 79(p ~°), R(°)), 
where p = p(0) _ P0 and R =- R ~°1 - & provided that the initial domain is small enough such that p > 0 and 

Rj > O , j = O  . . . . .  4. 

To bound the diffusion speed on 79(p, R), we assume that we know M > 0 such that IIH(°)llplOlR,), <_ M (i.e., 

a bound for the norm of  the Hamiltonian used to begin the normal form computations). So, for the Hamiltonian 

of (32) we also have that I[~Hp.R < M. 

Then, what we are going to do is to take arbitrary initial data in 79(0, R), with the restriction that these points 

correspond to a representation of real points expressed in the complexified variables introduced in (27), and to 

estimate the time that the solution of  the Hamiltonian equations corresponding to ~ needs to increase the distance 

to the initial periodic orbit in a given amount, at least, until this solution leaves 79(0, R). In fact, we are going to 

produce bounds for this time as a function of  the initial and final distance to the periodic orbit. 

For this purpose, we consider the canonical equations for (1, q, p)  related to ~ .  From (32), and using the notation 

for I0, Ii and 12 introduced in (35), we have: 

ON'. ~7-¢ 
0j = 5~ ] , q j  + - - ,  (41) 

OAf. 0 n  
. . . .  , (42) PJ Olj lpi Oqj 

2 In fact, it is also possible to perform all the computations using the adapted degree, with a similar amount of work. 
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for j = 1, 2. and 

OA r ~T£ 07-4 
~) - -  - -  ( 4 3 )  

O0 O0 a0 

where we recall that)V" ~ .V'(I0, iqi Pl, iq2P2). We do not consider the "diffusion" in the 0-direction, as it does not 
increase the distance from the initial periodic orbit. From (41)-(43). one obtains 

1o - -  = "1o(0,  q .  I ,  p ) ,  ( 4 4 )  

( 0 ~  a7-¢ . ) = [ j ( 0 .  q l ,p) ,  j = l  2. [i = i Pi -- ~)qj ql ' " 
t45) 

We remark that, to bound (44) and (45), we do not have explicit bounds for the remainder "/¢, but we recall that it 

begins with terms of standard degree N. As we know a bound M for the transformed Hamiltonian 7-/in the domain 

7)(0, R), we can compute (using Cauchy estimates) a bound for the remainder of  its Taylor series up to standard 
degree N - 1, i.e., a bound for T¢. 

We use this idea to bound the right-hand sides of(44) and (45). To do that. we define R{] = Ro, R~ = min{ R t. R3} 

and R,* = rain{ Re. R4}, and we consider real points (0, x. I. y), using the variables (xj, 31i) introduced in (34) such 

that t l0l < R{] and !i < (R~ ')2- From definition (34), we note that the set of real points (xj. yi) such that !J < ll°~ 

contained in the complex set {Iqj l, IPj I -< ¢/)0)},  j = 1.2. Then, applying the Cauchy estimates given in (12) is 

and (13) to the coefficients of the Taylor expansion of [o and ii, J = 1,2. we deduce the bounds 

1 M I Io I "°  (v/-[7) m' +,,,3 (vq~_),,,2 +,,,~ liol_<- 
P,,,E~jsA,,d,> N (R~)m°(R~)m'+"3(R*) m2+m4 

M IIol ' ' °  (x/~-)'"' +'''3 (x/77_)'"-' +,,,a 
Ifil-< Z (m i + m j + 2 )  (R~),,,,,(R~),,,,+.,3(R.),,,2+,,,4 

mC~J5.lm[i >-N 

Ml lol'"o( ~qT)m'+'"' ( v/7~D'"2+ma 
= ~ 2ml j = I, 2. 

,,,~,js.iml, > N (R~)m°(R~)'"'+'"~( R*)''e+'''4 

(46) 

(47) 

being in = (mo. m l . . . . .  ms) in these sums. To bound (46) and (47) uniformly, we define 

3 = 3(lo, ll,12) =__ max{ II°l x /~  v/~- ] 
R~" R~'  R~ " 

(48) 

We note that ~ is an estimate for the distance to the initial periodic orbit. When 10, 11 and 12 move as a function of 

t, we can also consider ~ = 6(t). Then, from the definition o f &  we can bound, for 6 < 1, 

Ig l<-  
- -  p - -  p ( l  _ ~ ) N + 5 '  

mc~5.]m'it ~N 

(49) 

and 

I/L I _  < 2 M  ~ ml61ml~<2M(4+N ) ~N - -  5 ( I - -  ~ ) N + 5 "  j = 1 , 2 .  ( 5 0 )  

mEb,~ 5 , Imll >N 
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To bound the sums (49) and (50), we have used Lemma 2, that is stated at the end of this section. Then, if we assume 

II01, 11 and 12 to be increasing functions of  t (this is the worst case to bound the diffusion), we have 

d 

dt 

+g 21/o11/ol 26 M ( 4 ; N )  6 N 8 N+I 

< (R(~)2 < - - 7 - -  - -  - R 0 p ( 1 - - ~ N + 5  ~ - A ( I _  6)N+5' 

where 

A - -  * 
R o p 4 

and 

with 

d 

7i 
lj 

(R )2 
< 2M ( 4 ; N )  6 N 
-- (~-'S~)2 ( ]  ~-~N+5 ~ Oj 

8N 

(1 - 6) N+5 

2M (4  ; N ) .  
Bj_ (R;)2 

Putting B = max{Bi, B2}, we deduce the following bound for the speed of 6: 

d 6N 
(82 ) < max{A& B}(1 - 8) N+5 

for 0 < 6 < 1. Then the problem of bounding the stability time can be solved in the following form: we take 
initial data corresponding to real coordinate points (0, x, I, y) such that the corresponding lj are bounded by/j(0), 

j = 0, 1,2. Let us assume that 80 -- 8(I0 (°), I~ °), I~ 0)) < 1. Given 61,6o < 8, < 1, we want a lower bound for the 
time T(8o, 81) needed for the value of 6 along the trajectory to go from 80 to 81. For this purpose, we take as initial 
condition 8(0) = 6o, and we integrate 

A 8 N 
,~ - (51) 

2 (1 - 6) N+5,  

o r  

B 8 N - I  
,~ - ( 5 2 )  

2 (1 - 8) u+5,  

depending on the current value of 6. Let us explain the method. We define 8" = B/A, and hence, if 60 > 6", we 
use Eq. (51) for 3. If 60 < 6", we use (52) for 0 < t _< T*, where T* is the value of t for which the bound of 6(t) 
obtained by integrating (52) reaches 6*. Then, for t > T*, we use the bound (51) (of course, it can happen that 
8" > 1). For (51), the necessary time At to move from 6i to 6./ is given by 

2 f (1 - - 8 )  N+5 At=  U da 
& 

A i=0 j -- N + 1 
/ ~ N -  I 

ii 2 [N  + 5 \  N 1 5! ' ( - -1)  
4 - A  ~ N - I )  - a, ' log (6) 

and using (52), this time is 
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3/ 

2 f (1 --~N~)N+51 At = -~ d3 

= - B  ,=(, J ( - 1 ) J  j - N + 2  

i~N 2 

213 

ii 
To end this section, we formulate and prove the result used to sum the bounds  for the diffusion speed in (49) and 

(50). For this purpose, we define c,,,/ = #{m c N"" Imll = l}, i.e., the number  of monomia ls  in n variables of 

degree / .  This  number  is given by 

( n + / - l )  
Cn. I ~ 

n -  1 

Lemma 2. For any 0 _< R < 1, we have the fol lowing bounds:  

- n - 1 (1 - R) N+n" 
m c ~:']" , 1,1111 >N I>N 

n + N - - 1  
(ii) ~ mlRIml '  = Z Z J c " - I ' I - ' R '  - < n (1 _ - ~ N + , ,  " 

m6~j ~,lmll>N I>N j=0 
being, in both cases, m = (ml . . . . .  m,7). 

Proof We define f ( x )  = ( 1 - x ) - "  = ~-~4>_0 c,,.1 x/. Then part (i) is obtained bounding  the remainder  of the Taylor 

expansion up to degree N - 1 of f around x = 0, evaluated at x = R. To do that, we remark that differentiating f 

j times, we have f l J l ( x )  = n (n  + l) . . -  0l + j - 1)(1 - x ) - " - J  and. hence, 

_ _  ( n + N -  l )  R ) _ N  . f I N l ( x )  < ( 1 -  

N! - N 

for ever}, 0 < x _< R. To prove (ii), we use that 

/ (n+, ,) 
Z j c n - I . I - i  = = Cn+l.l-I. 

tl 
j =0 

that is easily proved by induction.  Finally, using the bound  (i), we obtain 

n + N - I  
Z Z jCn I./ j R '  = Z C n + l , l - I g l  : g Z c n + l ' l g l  < [] -- n (1 -- R) N+''' 
/>¥ j=0 l>N I>>N-I 

3. Application to the spatial RTBP 

Here we present  an application of the method of Section 2 to a concrete example coming  from the RTBR As it 

will be explained in the fol lowing sections, we have taken an elliptic periodic orbit of  the RTBE we have computed 

(numerical ly)  the normal  form (up to order 16) and we have bounded  the corresponding remainder.  This normal  

form has been used to compute invariant  tori (of d imens ion  1, 2 and 3) near the periodic orbit, and the bounds  on 

the remainder  have been used to estimate the corresponding rate of diffusion. 
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3.1. The restricted three-body problem 

Let us consider two bodies (usually called primaries) revolving in circular orbits around their common centre of 

masses, under the action of  Newton's law. With this, we can write the equations of  motion of a third-infinitesimal 

particle moving under the gravitational attraction of the primaries, but without affecting them. The study of the 

motion of  this third particle is the so-called RTBP (see [33]). To simplify the equations, the units of length, time 

and mass are chosen such that the sum of masses of  the primaries, the distance between them, and the gravitational 

constant are all equal to 1. With these normalized units, the angular velocity of the primaries around their centre of 

masses is also equal to 1. A usual system of reference (called synodical system) is the following: the origin is taken 

at the centre of mass of the two primaries, the x-axis is given by the line defined by the two primaries and oriented 

from the smaller primary to the largest one, the z-axis has the direction of the angular momentum of the motion of 

the primaries, and the y-axis is taken in order to have a positively oriented system of reference. If we suppose that 

the masses of  the primaries are # and 1 - 1~t, with 0 < /J < ½, we have that the primaries are located (in the synodic 

system) at the points (~ - 1,0, 0) and (it, 0, 0), respectively. In this reference, the Hamiltonian for the motion of 

the third particle is 

1 ~ ~ ~ 1 - kt  t .t  ( 5 3 )  
H(x ,  y, z, Px, Py, P:) = -~(P~ + P~ + P~) + YPx - xpy rl r2" 

being the momenta px = ~ - y ,  py = 9 + x  andp :  = £ w i t h r ~  = ( x - k t ) 2 + y 2 + z 2  andr  2 = ( x - ~ + l ) 2 + y 2 + z 2 .  

The parameter/z is usually called the mass parameter of  the system. Note that the (x, y) plane is invariant by the 

flow. The restriction of this Hamiltonian to this plane is the so-called planar RTBP, while (53) is usually called 

spatial RTBP. From now on, we will simply use RTBP to refer to the spatial problem. 

This system has five equilibrium points: three of them are on the x-axis (usually called collinear points, or L I, L2 

and L3) and the other two are forming an equilateral triangle with the primaries (and are usually called triangular 

points, or L4 and Ls). The points L4 and Ls are given in the phase space by 

and + , .  0. vS. -½ + , .  0). 

3.2. The vertical family o f  periodic orbits of L5 

In what follows we will focus on the L5 point, but the results are obviously true for L4, due to the symmetries of  

the problem. 

The linearized system around L5 always has a vertical oscillation with frequency 1. Then the vertical family of 

periodic orbits is the Lyapunov family associated to this normal frequency (for a proof of the existence of these 

families, see [28]). To study the linear stability of these orbits, we recall that the eigenvalues of the linearized 

vectorfield at L5 are given by +i  (the ones responsible of  the vertical oscillation), and by 

-I-~/- ½ + ½ x/1 - 27/~(1 - / ~ ) ,  

that are the ones of the planar RTBP. All of  them are purely imaginary and different if 0 < /z < #R -- ½(1 -- 

~/23/27) ~ 0.03852 (this is the so-called Routh critical value). For/z = /ZR, the planar frequencies collide and this 

fact produces a bifurcation in the linear stability and L5 becomes unstable for/ZR < /z < ½. Note that, if/z ¢ /ZR, 
the linear character of  the vertical family is the same as Ls, at least for small vertical amplitudes. 

Now, we want to continue the vertical family of periodic orbits by increasing the amplitude. To do that, we identity 
the point L5 with the periodic orbit of zero amplitude and period 2zr. Hence, the monodromy matrix of  this orbit is 

given by the exponential matrix of 2zr times the differential matrix of  the RTBP vectorfield at Ls. For any periodic 
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Fig. 1. Left: Some curves of change of the linear character of the orbits of the vertical family of Ls. The variables in the plots are l~ 
(horizontal axis) and the value of ~ (vertical axis) when x = 0. Excluding the bifurcation curves, the normal eigenvalues of the periodic 
orbit are all different and can be described, according to the region, as follows: ( 1 ) two couples of conjugate eigenvalues of modulus 1 : 
(2) two conjugate eigenvalues outside ~1 and the corresponding inverse ones; (3) two couples of positive eigenvalues y, I /v ;  (4) two 
conjugate eigenvalues of modulus 1 and a couple of positive eigenvalues V, I / y ,  at least for moderate values of 2. Right: The upper curve 
with a more suitable scale for the ~ variable. 

orbit of the vertical family, its monodromy matrix has, of course, a pair of  eigenvalues 1, plus other four eigenvalues 

that generalize the planar ones of L5 to the vertical periodic orbits. As it has been mentioned in Section 2.3, the 
linear stability condition for these periodic orbits is that these four eigenvalues are all different and of  modulus I. 
Returning to the case/ j  = /JR, we have for the orbit of zero amplitude that these four eigenvalues collapse to two 

double eigenvalues in the complex unity circle. This resonance can be continued (numerically) with respect to 
and the amplitude of the orbit (in fact, it can be continued with respect to any regular parameter in the family). The 
curve corresponding to this resonance is displayed in Fig. 1. The variables plotted are/j and the vertical velocity 

(5) of the orbit when it cuts the hyperplane z = 0 in the positive direction. Note that, for values o f / j  slightly larger 
than ~JR, L5 is unstable but, if we "go up" in the vertical family, we find (linearly) stable orbits after crossing the 

above-mentioned bifurcation. 

3.2.1. The selected periodic orbit 
For the application of the methods exposed, we have selected a periodic orbit of  the vertical family of L5 for the 

mass parameter/j = 0.04 (that is larger than/JR), and with ~. = 0.24999973950378. This is a linearly stable orbit 
(the corresponding pair (/j, ~.) belongs to region 1 in Fig. 1, see Section 3.6 for more details), but its proximity to 

resonance will produce small domains of convergence for the normal form. 
The reasons for selecting this orbit are the following. The vertical family of  the RTBP has its own interest, since 

it is the skeleton that organizes the dynamics of some physically relevant problems (see [12,31,32]), and the tools 

used here can be useful to deal with those problems. On the other hand, this example allows to show (numerically) 
the existence of regions of  effective stability near L4.5 for/j  > /JR- Finally, the example has not been artificially 
"'cooked" to simplify computations so it is a good problem to test the effectivity of these techniques. 

3.3. Expansion ~f the Hamiltonian of the RTBP 

Let us denote by 2Jr/~0 the period of the selected orbit. The next step is to perform the different changes 
of coordinates introduced in Section 2, and to compute the explicit expansion of the Hamiltonian expressed 
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in these adapted coordinates (to obtain the Hamiltonian H (°) of  (29), to start the computation of the normal 

form). 

For this purpose, we proceed in the following form. First, we write (X, Y, Z, Px,  PY, Pz)  for the initial coordinates 

w i t h o r i g i n a t L s : X = x + l - g , Y = y - /  /-~, Z = z, px  = px + ½x/3, Pr = p.,. + ½ _ bt and Pz = pz. Then 

we assume that ( f (0 ) ,  g(O)) is a 2rr-periodic parametrization of  the periodic orbit, expressed in these coordinates. 

We note that, for orbits of this family with moderate amplitudes, the expression (./~)2 + (g~/w0)2 is close to a 

constant. More concretely, if we introduce the new coordinates ( = v ,~dZ and Pc = P z / ~ ,  the expressions for 

the new .f13 and g3 take the form (2), with the function A of  (3) close to constant. If we rewrite the Hamiltonian (53) 

in these new variables, but keeping for simplicity the notation Z, Pz,  then we can expand the Hamiltonian (53) as 

X 2 1 Z 2 
5 Y  2 -- a X Y  + - - -  l ( p 2 + e  2 + c o O v 2 z ) + Y P X _ X p Y +  8 8 2wO H=-~ - - - -  

k>3 ? g  (l -- //) -- k>3 27"O ] g '  (54) 

where we have skipped the constant term of this expansion, 1 ( - 3  + be --/ ,2),  that corresponds to the energy level of  

Ls. Here, a = - 3 v/3(l - 2/x), r o = X 2 + y2 + Z2/o)o and Pk denotes the Legendre polynomial of degree k. This 

expression comes from the expansion of  the Hamiltonian of the RTBP around the point L5 (see, for instance, [5,291). 

To expand (54) we can use the recurrence of the Legendre polynomial. This recurrence is given by Po(x) = 1, 

P j (x )  = x and Pk+l(x) = [(2k + l ) / (k  + l ) l xPk(x )  - [k/(k  + l)]Pk l(x), fo rk  >_ 1, and hence, if we define 

\ 2r0 ] '  
R~ O) = r(~ Pk ( X -_ x/rSY ] 

2ro ] ' 

we have 

Thus, 

R0 ~0) 1, R I 0 )  X - x,/3Y and R; 1) 1 ~(11 - X  - ~'-3Y 
= 2 = ' K I  - -  2 

l ~ ( j  ) 2k + l R(J) R(j) k n(j) 9 
-- t~k- 1 r6 • .k+, -£7_1 , k k -l (55) 

for k > 1 and j = 0, 1. Then the method used to expand the Hamiltonian (54) expressed in the adapted variables 
introduced to perform the normal form is the following: to compute the composition of the change (16) adapted to 

the periodic orbit (that we assume well-defined for our concrete orbit, fact that can be tested using the methodology 

described in Section 2.2), with the Floquet transformation (25) and the complexification (27), and then, to insert this 

change into the recurrences (55). This method seems to be an efficient way to obtain the desired expansion of the 

Hamiltonian (54) (see [11,12,14,32]). We remark that, to compute the changes (16) and (25) we only need to know 

the explicit expression of the periodic orbit and the variational matrix of  the orbit for the initial Hamiltonian (53). 

3.4. Bounds on the norm o f  the Hamiltonian 

First note that the expansion of  the Hamiltonian in (54) is done around Ls, and not around the periodic orbit. 
Hence, it is easy to check that this expansion only converges if r0 < 1 (the distance from L5 to the primaries, that are 
the singularities of  the Hamiltonian (53)). This implies that, when we introduce the adapted system of coordinates, 
and we replace X, Y and Z by their expressions in terms of the new coordinates, we need to control the value of  r0 as 
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a function of the allowed range for the new variables, not only to ensure convergence of (54), but also to bound the 

supremum norm of  H.  The control of  this norm, necessary to obtain the estimates for the diffusion time provided 

by Section 2.& can be done by looking at the explicit  expressions of the adapted coordinates of (16), the Floquet 

transformation (25), and the complexification (27), and then, computing the norms of the different expansions of 

the change, as a function of the size of the given domain for the new variables. Then we can bound the norm of the 

Hamiltonian using the following lemma. 

Lemma 3. Let A > 0 and let {P~}k>0 be a sequence of positive numbers that satisfy 

2 k + l  k 
P/,-+I < - - P k P I  + P k - I A ,  

- k + l  

for k > 1. We assume that for certain N we have [Pj [ <_ ~'j for j = 1, N - I, N,  and we define 

h --~ m a x  
PN I 

Then, if h < 1 we have 

h 2 

_< i, _< ; N - ,  1 _  
k > N + l  k > N + l  

Prm~f. See [5]. [] 

f rJ(i), We remark that the recurrence for the {Pk}k>_0 in Lemma 3 is the same obtained taking norms on the i n  k ~k>0 

in the recurrence (55). Hence, with this lemma we can bound the norm of the Hamiltonian (using expansion (54)) 

as well as the remainder of the expansion when we deal with a finite number of  terms. 

3.5. Nmneri( 'al  implementat ion 

In this section, we describe the algorithm used to perform a computer implementation of the methodology 

introduced in Section 2 to the case of the RTBE 

Of course, computer assisted works have many inconvenients from a theoretical point of view. First, we have 

the obvious problem that the arithmetic is not exact, i.e., we can only store finite decimal representations for the 

numerical coefficients, with errors that are propagated with the successive operations. Moreover, we can only deal 

with truncated expansions for the Taylor and Fourier series. Without losing the formal approach, these problems can 

be solved, for example, using intervalar arithmetic for the numerical coefficients, and storing for every truncated 

expansion a bound for the remainder. This methodology allows to do a rigorous computer assisted proof (see, for 

example, [ 17]). 

If one is only interested in obtaining numerical estimations for the region of effective stability, but based in a 

rigorous approach, one only needs to look at the most significative terms in the control of  this diffusion, ignoring 

the errors on the computer arithmetic as well as the higher order truncations. Nevertheless, the final result is, if we 

really work with all the significative terms, "the same" as in the rigorous approach. As we mentioned in Section I. 

this is the approach taken in this paper. 
Then, in our software we select certain degree N,  and we only work with coefficients (that are 27r-periodic 

functions on 0) of  monomials of  standard degree less than or equal to N. It means that we store for every monomial 

ql ly,, i k, with k + I/[1 + Iml~ _< N, a truncated Fourier expansion on 0 for the 27r-periodic coefficient. For each 
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(complex) Fourier coefficient we store a finite decimal approximation, using the standard double precision of the 

computer. As it has been mentioned before, we have used this software with N = 16, and taking the largest order 
in the Fourier expansion as 18. 

When working with finite approximations, we remark that in some cases the Taylor truncations can be done such 

that they involve terms with order larger than the one of  the normal form, and also, from the analytic character of  

the Hamiltonian, we have that the coefficients of the Fourier expansions decrease exponentially fast with the order 

of the harmonic. So, if we take a "sufficiently" large number of terms, they give the most significative contribution. 

With this formulation, we can follow all the theoretical steps of  Section 2, bounding (when necessary) the 

supremum norms (8) and (9) by the norms (10) and (11), evaluated using the truncated expansions. 

Hence, after computing a periodic orbit of  the Hamiltonian system (53), computation that can be done with high 

precision, we perform a Fourier analysis of  this orbit and of  the matrix B(O) (see (24)). With these Fourier analyses 

we compute the Floquet transformation (25), that composed with the complexification (27) allows to compute the 

function F of  (15) expressed in the complexified Floquet variables. Then we solve, up to degree N, Eq. (14) for 

~(0, s) after substituting s = F. This can be done by means of  an iterative scheme. It allows to compute a truncate 
approximation of  the canonical change (16) written in the complexified variables (27). 

Thus, if we insert this transformation into the Hamiltonian (54), we obtain a Hamiltonian like (29), suitable to 

compute the normal form. To do this expansion, we use recurrences (55) up to some finite "large" order. We remark 

that, if we compute a reduced number of terms in these recurrences, we cannot ensure that the remainder of  this 

expansion only contains terms of "higher order" of  the Taylor expansion around the orbit (we recall that this Taylor 

expansion is done around Ls, not around the orbit). This fact implies that, if one wants to justify that working close 

to the periodic orbit one has small remainder, one needs to take a sufficiently large number of terms in recurrences 

(55). As it has been mentioned in Section 3.4, we can use Lemma 3 to estimate the error in this truncation. For 
instance, in this concrete application we have considered the recurrences for R~. °) and R~ I) for k _< 30. 

At this point, we have an approximation to the Hamiltonian (expressed in the Floquet complexified variables) given 

by a polynomial of  degree N, with 2rr-periodic coefficients on 0. Those coefficients are given by a trigonometric 

polynomial of certain finite degree. To continue with the computations, we take this expression for the Hamiltonian 
as "exact" up to degree N. 

We apply to this Hamiltonian the normal form scheme of Section 2.5. To this end, we choose the formula- 

tion explained in Section 2.8, i.e., we remove in an increasing form the non-integrable terms of standard degree 

3, 4 . . . . .  N - 1. Then the final product of  these computations is an explicit expression of the normal form up to 

standard degree N - 1, and of  the generating functions used to put the Hamiltonian in this reduced form. As in 

the practical implementation we do not take into consideration the errors due to the arithmetic or to the truncated 
Fourier expansions, we take this normal form and the generating functions as correct up to standard degree N. Note 

that the use of  standard degree instead of  the adapted one forces us to remove some extra monomials. This does not 
affect the final results since it does not introduce extra small divisors. 

3.6. Results in a concrete example 

We start computing the vertical family of  periodic orbits for/~ = 0.04. To do that, we look for fixed points of 

the return map generated by the Poincar6 section z = 0, and we obtain a curve of  fixed points in this hyperplane. 

Hence, after we pass the stability bifurcation plotted in Fig. 1, and as it has been mentioned in Section 3.2.1, we 
take the orbit with ~. = 0.24999973950378. The initial conditions, period and normal frequencies of this orbit, are 
given in Table 1. 

Then we implement the normal form methodology of  Section 2 for a generic linearly stable orbit of the RTBP 
around Ls, and we particularize the computations on the orbit previously chosen. For this purpose, we work with 
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Table 1 
lnitial conditions of the chosen periodic orbit (T is the period, and the non-trivial eigenvalues of the monodromy matrix are exp (icx i i). 
j = l . 2 )  

x = -4.6699078035506E - 01 p.~ = -8.3479753472510E - 01 T = 6.2860040080466E + 00 
v = 8.6161129973745E - 01 p.~ = -4.5245436628470E - 01 c~ 1 = - 1.5906656537706E + 00 
- = 0.0000000000000E + 00 p: = 2.4999973950378E - 01 u2 = 2.0827433614129E + ()0 

truncated power series, up to standard degree 16, and with trigonometric polynomials of degree 18. Hence, after 

we write the Hamiltonian in the adapted Floquet complexified variables (i.e., it takes the form (29)), the normal 

form is computed up to standard degree 16 as a composition of time one flows associated to generating functions 

of standard degrees ranging from 2 to 16. 

The lollowing sections are devoted to show some of the results obtained, 

3.6.1. Explicit normal form 
To illustrate the results obtained, we begin giving the first terms of the normal form. To do that, we write this 

normal form as 

~'~(Io, 11,12) = Z c,, t O'''°''ltl t 2"''~-, (56) 
t tE~ 3 

where tl = (no, Ill, n2), being 10 the conjugate action of the angular variable, and Ii ,  12 the actions related to the 

normal directions. Then, the coefficients c,, are displayed in Table 2 up to In I] _< 5. 

The term co.o.o corresponds to the energy level of the orbit in the RTBE ¢'1,0,0 is the frequency of the periodic 

orbit, wo = 27r/T, and we recall (see Section 2.3) that co.].o = c~I/T, co,o,l = ~2 /T .  The coefficient c2.0.0 is 

responsible, at first order, for the variation of the intrinsic frequency of the periodic orbits of the vertical family 

around the initial one, with respect to the action I0. We notice that this coefficient is non-zero, but very small. It 

implies that this family is close to degenerate, and hence, these orbits are very sensitive to external perturbations 

(see [32]~. 

3.6.2. Eff~ective stability estimates 
The next step is to derive a domain where this normal form is convergent. To this end, we take D(p I°t, R l°)) 

as initial domain for the complexified Floquet adapted variables (the ones corresponding to the Hamiltonian (29)), 

~00 10) = 4 x 10 -4, j = 1,2, 3, 4 (these are suitable values with p~0) = 5 x 10 2, R ) = 6.5 x 10 -6 and Rj 

for the following computations). Then we transform this domain, by means of the complexification (27) and the 

Floquet change (25), to the variables (0, q, I, p) introduced by the canonical transformation (16), and we derive (by 
(I) 

bounding the components of these transformations) the upper bounds R~) 1) = 9.860 x 10 6 R i = 1.405 x 10 2, 

= = ~,~l) = 9.856 x 10 3 for the new domain. On this domain, it is not pit~ 9.681 × 10 -3 , R ~]) 6.804 × 10 -3 and , ,4  " ' 2  3 
difficult to check that (19) holds, and to obtain the bound Rfi = 2.243700 × 10 -2 tbr expression (20). We note that 

Condition C "holds" for the chosen orbit, being A = 0.24997269973138. To be more concrete, working with their 

truncated expansions, we have that ]f[p~o~/A and [~,]p~0~/A are of order 1.32 × 10 -4 and 3.94 × 10 -4, respectively. 

Then, if we implement numerically the proof of Proposition 1, we obtain, t'or the current values of R~ and plo~, the 

estimates 6o = 0.9534070 and 61 = 9.268077 × 10 4. As 60 > 61, we can ensure that the adapted coordinates 

introduced by (16) are well defined on 79(p (°), R ~ l)). Moreover, we can also obtain (by bounding the components of 

the transformation (16)) bounds on the size of the initial (complex) domain expressed in the (synodical) coordinates 

of the RTBP. For instance, we have a bound for r0 (the distance to Ls, see Section 3.3) of order 0.274 (that is smaller 

than 1 ). Moreover, if we apply Lemma 3 to these estimates, with N = 30, we deduce that a bound for the remainder 
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Table 2 
Coefficients 
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of the normal form around the chosen orbit up to degree 5 

t l  0 n I ?'t2 Cn n 0 n I n 2  L'll 

0 0 0 3.1711731232826E - 02 1 I 2 
1 0 0 9.9955159098477E - 01 1 0 3 
0 1 0 -2.5304878134574E - 01 0 4 0 
0 0 1 3.3133026303306E - 01 0 3 1 
2 0 0 -7.0859697825372E - 03 0 2 2 
1 1 0 2.3478089323297E + 00 0 1 3 
1 0 l 2.4987325794935E ÷ 00 0 0 4 
0 2 0 3.4191968670886E + 01 5 0 0 
0 1 1 1.7971538686655E + 02 4 I 0 
0 0 2 1.0746686943742E + 02 4 0 1 
3 0 0 -2.9818564507226E - 0 4  3 2 0 
2 1 0 -7.5837990768925E + 01 3 1 I 
2 0 1 -7.6071254704866E ÷ 01 3 0 2 
1 2 0 -4.7677125147462E ÷ 03 2 3 0 
1 1 1 -2.1421850390614E ÷ 04 2 2 I 
1 0 2 6.7515756251597E + 04 2 1 2 
0 3 0 -7.4659623111031E ÷ 04 2 0 3 
0 2 1 -6.3172367666144E ÷ 05 1 4 0 
0 1 2 4.6984775497921E + 06 1 3 1 
0 0 3 5.9645218154701E + 06 1 2 2 
4 0 0 1.6457077712551E - 03 1 1 3 
3 1 0 4.7022354565522E ÷ 03 1 0 4 
3 0 1 4.7023240428548E + 03 0 5 0 
2 2 0 6.1094869452539E ÷ 05 0 4 1 
2 I 1 2.6789828013636E ÷ 06 0 3 2 
2 0 2 9.7881388815580E + 07 0 2 3 
1 3 0 2.4411036457491E + 07 0 I 4 
1 2 1 2.0413328166880E ÷ 08 0 0 5 

1.4105921461850E + l0 
1.9115193141014E + l0 
3.1019518891717E + 08 
3.9719490345200E + 09 
5.1997957166042E + 11 
1.3724278167916E + 12 
9.5691903432773E + 11 
2.9159565344568E - 04 

-3.6482217605065E + 05 
-3.6482213649665E + 05 
-7.7052083427990E + 07 
-3.3246157003473E + 08 

1.2824159132491E + II 
-5.4646830243379E + 09 
-4.5024287618939E + 10 

2.7062943714641E + 13 
4.3769913512343E + 13 

-1.6048510841303E + 11 
-2.0244801390392E ÷ 12 

1.9419810553267E + 15 
6.2181555081344E + 15 
5.0013972630049E + 15 

-1.6820405782961E + 12 
-2.9167436015449E ÷ 13 

4.7472462592019E ÷ 16 
2.2456543810360E + 17 
3.5758554369748E ÷ 17 
1.9045367836910E ÷ 17 

o f  e x p a n s i o n  (54) is 6 .82 x 10 -17. T he  va lue  N = 30 has  been  se lec ted  because  this  is the n u m b e r  o f  Legendre  

p o l y n o m i a l s  t aken  to pe r f o r m  a numer i ca l  i m p l e m e n t a t i o n  o f  r ecur rences  (55). 

Now, we use  the m e t h o d  desc r ibed  in Sec t ion  2.7 to deduce  a d o m a i n  whe re  we can prove  conve rgence  o f  the 

no rma l  fo rm t r ans fo rma t ion  up  to degrees  10, 12, 14 and  16. O f  course ,  if  we increase  the o rder  of  the no rma l  

fo rm this  d o m a i n  shr inks ,  but,  as we do  not  find a very  s t rong r e sonance  for  these  orders ,  it r ema ins  pract ica l ly  

cons tan t .  It is g iven  by  79(p, R) ,  wi th  p = 4 .038  x 10 -2 ,  Ro = 6 .238 x 10 -6 ,  RI = R3 = 1.793 x 10 - 4  and  

R2 = R4 = 1.349 x 10 -4 .  Resul ts  on  the t ime  needed  to leave this  d o m a i n  are p lo t ted  in Fig. 3. To c o m p u t e  those  

es t imates ,  we use  aga in  L e m m a  3 to b o u n d  the n o r m  of  the H a m i l t o n i a n  (54) in the cons ide red  domain ,  and  we 

ob ta in  the va lue  9 x 10 -2 .  

It is in te res t ing  to c o m p a r e  these  resul ts  wi th  the  s tabi l i ty  region ob ta ined  us ing  di rec t  numer i ca l  in tegrat ion.  

Thus ,  we have  taken  the Po incar6  sec t ion  z = 0, and  we have  se lec ted  a m e s h  o f  po in t s  for  the x and  y var iables .  

T h e n  we have  used  as init ial  cond i t ion  for  a numer i ca l  in tegra t ion  the  poin ts  g iven  by  the (x, y)  values  of  the mesh  

and  the va lues  2,  5' and  ~ c o r r e s p o n d i n g  to the se lec ted  per iod ic  orb i t  (see Table  1). If, af ter  1 0 0 0 0  revolu t ions  o f  

the p r imar ies ,  the orb i t  does  not  go  away, we cons ide r  tha t  the init ial  po in t  is ins ide  the region of  stability. The  

cr i ter ia  to dec ide  i f  a po in t  goes  away  is to c h e c k  if, at some  m o m e n t ,  y b e c o m e s  negat ive  ( this  heur is t ic  cr i ter ia  has  

been  p rev ious ly  used in [ 12,19,34],  and  see also [31 ] for  a s l igh t  modif ica t ion) .  The  poin ts  c o r r e s p o n d i n g  to init ial  

cond i t ions  o f  s table  orbi ts  have  been  p lo t t ed  in Fig. 2. Moreover ,  we have  tr ied to use  the no rma l  form compu ta t i on  

to d e t e r m i n e  w h i c h  poin ts  of  the m e s h  above  c o r r e s p o n d  to the region of  effect ive  s tabi l i ty  computed .  To this  end,  
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Fig. 2. Left: Surviving points of the numerical integration. Right: Points of the left plot for which the coordinates of the normal form up 
to order 16 belong to 79(0. R). 
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Fig. 3. Estimates on the time needed to leave the domain "D(O, R) (see Section 3.6.2). These curves correspond, frorn bottom to top, to 
normal forms of orders 10, I2, 14 and 16, respectively. The horizontal axis is lOg l0 a0 (see (48)) for the initial condition, and the vertical 
axis is a lower bound for the time (in adimensional units of the RTBP) needed to reach a = 1, also in logl0 scale. 

we have  send  all the init ial  cond i t ions  t h r ough  the c h a n g e s  of  var iab les  to reach  the normal  form coord ina te s  (of  

course,  i f  a po in t  in the m e s h  is ou ts ide  the conve r gence  d o m a i n  of  these  t r an s fo rma t ions  we a s sume  that  it is 

uns table) .  T h e n  it is easy  to check  if  th is  po in t  is ins ide the d o m a i n  o f  ef fec t ive  stability. So, we have  also plot ted 

those  points  in Fig. 2. Note  tha t  the reg ion  ob ta ined  f rom the  normal  fo rm c o m p u t a t i o n s  is abou t  200  t imes  smal l e r  

than the one  found  by  di rec t  numer ica l  s imula t ions .  This  is due to the local cha rac te r  of  normal  forms.  
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continuation method, but in the normal form are trivial to obtain putting 11 = 12 = 0, and using 10 as a parameter in the family. Here. 
we plot the projections (x, y) (left) and (x, z) (right) of the orbits corresponding to 10 from - 8  x 10 -3  to 8 × 10 -3  with step 10 -3 .  We 
recall that the orbit with 10 = 0 is the initial one. 
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Fig. 5. These figures correspond to a 2D torus near the periodic orbit, given by 10 = 11 = 0 and 12 = 1 × 10 -6 ,  and plotted up to time 
5000. Left: (x, y) projection of the Poincar6 section z = 0 of the torus. Right: (x, y) projection of the same orbit, plotting a point every 0.1 
units of  time. The intrinsic frequencies of  this torus (with the determination given by the truncated normal form) are w 0 = 0.9995541833 
and t.o 2 = 0.3315682317.  The normal one is ~o I = -0 .2528624981 .  The error in the determination of this torus (see Section 3.6.3) 
computed by comparing points in the RTBP is (up to time 10000)  of order 1 × 10 -6 .  The errors on the actions h), 11 and 12, up to the 
same time, are of order 1.5 × 10 -12,  1.2 × 10 -20 and 3.4 × 10 -12,  respectively. 

3.6.3. Invariant tori gallery 
Here (Figs. 4 -7)  we present some invariant tori of  the truncated normal form (see Section 2.6.1) translated by the 

different changes of  variables, and plotted in the initial coordinates of the RTBE We also give numerical values for 
the intrinsic and normal frequencies of  the computed toil. 

Finally, we explain how to estimate the error on the determination of  these toil. If we neglect the errors on the 
different compositions and of  the numerical integrator, we can assume that it is entirely due to the truncated normal 
form. If we take an initial condition expressed in the coordinates of  the truncated normal form, we can explicitly 
compute the intrinsic frequencies of  the corresponding invariant torus, and hence, it can be easily integrated up to 
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Fig. 6. Like Fig. 5, but for a torus in the other family around the initial orbit: / 0 = / 2 = 0. and 11 = 1 × 10 -5.  The intrinsic frequencies 
of this Iorus are coo = 0.9995746152 and ~o I = -0 .2523861773,  and the normal one is ~o 2 = 0.3330679465. The errors for this torus are 
of order 2 x 10 -6  (in the RTBP), 3.9 x 10 - I °  (for I0), 2.2 x 10 -11 (for 11 ) and 7.7 x 10 -14 (for 12). 
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Fig. 7. Like Fig. 5, but now tbr a 3D torus. It is obtained by putting /0 = 0 and 11 -- 12 --- 1 x 10 (~. The left plot is obtained by 
integrating up to time 40 000. The right one up to time 5000 (a point is plotted every 0. l units of time ). The intrinsic frequencies of this 
torus are ~on = 0.9995565341, ~o I -- 0.2527934779 and oJ 2 = 0.3317656274. The errors lor this torus (up to time 20 000) are of order 
1.7 x l0 -5  (in the RTBP), 3.7 x 10 -12 (for 10), 3.7 x 10 -12 (for I I) and 2.8 x 10 -II  (for/2). 

t ime  Tr by  the f l o w  o f  this  truncated  no r ma l  form.  T h e n ,  i f  w e  send  the init ial  and  final po in t s  to the c o r r e s p o n d i n g  

c o o r d i n a t e s  o f  the  RTBP,  and  w e  trans form the init ial  o n e  by  the f l o w  o f  the R T B P  up to t ime  Tr, w e  can c o m p a r e  

both the final po ints .  I f  there w e r e  no  error in the d e t e r m i n a t i o n  o f  the torus,  both po in t s  s h o u l d  c o i n c i d e .  T h e i r  

d i f f erence  is  an e s t i m a t e  for  the error in the d e t e r m i n a t i o n  o f  the torus.  

N o t e  that i f  w e  per form this  n u m e r i c a l  integrat ion  for  very long  t ime  spans ,  w e  w i l l  have  an extra source  o f  

error, c o m i n g  f rom the f inite  p r e c i s i o n  in the  intr ins ic  f requenc ie s :  w h e n  w e  integrate  the torus in the normal  form 

coord ina te s ,  the product  o f  these  f r e q u e n c i e s  w i t h  Tr m o d u l u s  27r is  c o n s i d e r e d ,  T h i s  operat ion  acts  as a Bernou l l i  

shift  on the  s ign i f i ca t ive  d ig i t s  o f  the f r e q u e n c i e s  as  w e  increase  Tr, desp i te  the prec i s ion  o f  the init ial  c o n d i t i o n  on 

the torus.  

To o v e r c o m e  this  p r o b l e m ,  an a l ternat ive  m e t h o d  is to c o m p a r e  the ac t ions  10, I i ,  12 ( see  (35 )  and (56) ) .  T h i s  is 

d o n e  by  tak ing  an init ial  c o n d i t i o n  in the no r ma l  form c o o r d i n a t e s ,  to s end  it to the R T B P  coord ina te s ,  to integrate 
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numerically this initial condition, and to send the final point back to the normal form coordinates. Then we can 
estimate the error by comparing the values of the actions of the initial and final points (see Figs. 5-7). 

3.7. Software 

The software used has been developed by the authors in C language, and it is specially adapted to the problem. 
It consists, roughly speaking, in an algebraic manipulator to perform the basic operations (sums, products, Poisson 

brackets, etc.) for homogeneous polynomials in five variables, having as coefficients trigonometric polynomials of 
some finite (and fixed) order. This strategy improves, in several orders of magnitude, the efficiency (both in speed 
and memory) obtained by using commercial algebraic manipulators. 

To give an idea of the complexity of the computations, we can mention that the total number of (complex) 
coefficients for the initial expansion of the Hamiltonian (up to degree 16 and using harmonics of order less than 

or equal to 18) is of 752 913. Note that we have a similar figure for the expansion of the change for each variable. 
Moreover, as it has been mentioned in Section 3.5, to obtain an accurate expression for the expansion around the 
orbit one needs to consider the power expansion of the Hamiltonian around L5 up to degree 30, that implies to handle 

3 764 565 complex coefficients. The maximum amount of computer memory used (the quantity of memory needed 
depends on the concrete part of the computation, and this maximum is reached when expanding the Hamiltonian of 

the RTBP in the initial adapted variables) is of 57 Megs. (in fact, only 23 Megs. are needed to compute the normal 

form). The total computer time used to expand the initial Hamiltonian is of 34.5 h, and the time needed to obtain 
the normal form is of 208 h. These computations have been done in a workstation HP 9000 model 712. 

4. Proof of  Proposition 1 

In this section we prove Proposition 1 (see Section 2.2), used to bound the domain of definition of the adapted 
system of coordinates introduced by (16). 

To this end, to work with the transformation (18) we introduce 

F(O, fl) = ~(0) + if(O) + (f'(o) - i~'(O))~ _ Fo(O) + F1 (0)¢I, 
a(o,/3) = ~(0) - if(0) + (f'(0) + i~'(0))/~ - Go(O) + GL(O)~. 

With these notations, we can write the relations 

y+ix=Aexp( iO)( l+[~)+F(O,[3) ,  y - i x = A e x p ( - i O ) ( l + [ 3 ) + G ( O , [ 4 ) .  (57) 

Before continuing the proof, let us introduce some additional notations. To deal with the different 27r-periodic 

functions on 0, we introduce a new variable ~" ---- exp (i0), that overcomes the difficulty of the identification 
modulus 27r of the variable 0. Hence, given h(O), a 2rr-periodic analytic function on 0, we have that the Fourier 
expansion of h, 

h(O) =- Z hk exp (ik0), 
k6Z 

becomes in this new variable a Laurent expansion, 

h ( ¢ ) = Z h k ~  k. 
k62  
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Moreover, if h converges on a complex strip of  width p, then h converges on the complex annulus A ( R  c ) --- {¢ E 

C: (R e ) -  J < 1¢ ] < R e }, with R¢ = exp (p). To work with this Laurent expansion, we introduce the norm 

Ih[R = ~ Ihk lR Ikl 
kcS 

The notation ] • IR for this norm can be confusing, because it is the same one used for the norm I " I~, defined in 

(10), but we remark clearly that IhlR¢ = Ihlf,. For further uses of  this norm, we note its multiplicative character: 

lh<l)t¢°~lk < IhtJ~lRIhlO)lR. Moreover,  we have the following bounds related to the ] - IR norm. 

Lemma 4. With the notations given above, and for any (1 ,  ¢2 E A ( R ) ,  R > 1, we have: 

( i )  ]h((2)- h ( ¢ l ) ]  < I h ' l a l ¢ 2 -  ( l l .  

(ii) [h((2) - h ( ( l )  - h ' (O  )(C2 - (I)l  < ~1 [h"lR[(2 -- ¢112. 

Proqfi 
(i) We take k E 7/\{0}. I l k  > 0: 

C} - Ck k-~ - 1 = ( (2  --  ¢ 1 ) ( ¢ k  I + ¢ 2  -¢1 + ' ' "  + ¢ ~  I ) ,  

and hence, I¢~ - ¢~1 -< kR k 11(2 - ~J I. Analogously,  if/,- < O: 

¢~ _ Ck = C ~ ' k ( ' - k  k ~ t 
_ t _ q  q - - ¢ ; k ) = C ~ ( ~ ( ( J - - C 2 ) ( ¢ j - k - ~ + ¢  t - C 2 + ' ' + ¢ ~  ~ I 

- -  ((1 --  ¢21(¢k¢1 - I  + ¢ k + 1 ( - 2  --1 - k  
- _ . J + + ¢ 2  ¢1 ), 

and then we have ]¢~ - (~] _< [k[R Ikl+l ](2 - ¢1 [. From here the result follows immediately. 

(ii) In this case, for k > I, we have 

¢~ _ ¢k _ kCk J 

k - "  k "~ =--(¢2--¢1)(¢~ I + (  2 - (1  +' ' ' -1-¢2~" 1 - + ( l  - k ) ( ¢  I)  

2 k 2 k - 3  k " 
= ( ¢ 2 - - ( I )  (¢2 + 2 ¢  2 -¢1 - ] - ' ' ' - 1 - (  k -  I ) ¢ 1 - - ) .  

and then, l ¢ ~ - ( ~ - k / ; ' ~  - 1 ( ¢ 2 - ¢ 1 ) 1 _ < ( 1 + 2 + . . . + ( k -  l ) )R  k 2= ½ ( k -  I)kR k 2. i f k  < 0 ,  w e h a v e  

ck __ ~-~ __ k c k - I  ck  I ( k ( ¢  k+ l  __ k¢2k+l  _ 1 ( ( 2 - ¢ 1 ) =  I - I + ( k -  1 ) ( 1 ¢ 2  k)  
¢ k l~ 

----(~ I ¢ } ( ¢ 1 - ( 2 ) ( ( / k - t - ¢ 2 ¢ / 4 - 1  + ' " +  2 '~1 +/,%,-/ ') 
k - 2  - I  = ¢~-1¢~( (  1 _ ¢2)2(¢~k -I + 2(2(1 + " "  + ( - / , ) ( 2  k ) 

"~ 9 k = ( ¢ 1 - - ¢ 2 ) ' ( ¢ 1  -¢2 + 2 ( ( - 3 ( ~  +1 + " ' + ( - k ) ( ~  I(.21), 

andthen,  l ¢ ~ - ( ~ - k ¢ ~  1 (¢2-¢ j )1  < ½ ( - k ) ( - k +  l )Rlk i+2]¢ ' t - - (212= ~ k ( k -  I )RI t l+21¢~-(2]  2.Hence, 
the bound is proved. [] 

To use this new notation, we introduce the function /~((,/4) by the identity [~((,/4) - F(O,/4). Similarly, we 

define ,g'o, FJ, (~, (~0 and (}l as a functions of  ( and/4. 
Then, to study the injectivity of  (18), we take points ((0,/4o) and (¢1./41) for which we assume we have the same 

image for x and y by the action of  the transformation 

(¢,/4) ~ (x, y), (58) 
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induced by (18). We will prove that, if f and ~ are small enough, this is only possible if (to, rio) = (tl, I3] ), at least 
if we take complex values for t and/3 close enough to Itl = 1 and I3 = 0. To check that we deduce from (57) the 
equalities 

Ato(1 +/30) + ~'(to, rio) = Atl(1 +/31) + £'(tt, f i l l  
(59) 

Ato-1 ( 1 +/30) + G(to,/30) = A t l l (1  + ill) + G(tl,/31), 

and from here, we have 

A ( I  + f lo ) ( to  - t ] )  + Ato(flo -/31) = A ( t l  - to ) ( f l l  - / 3 0 )  + / ~ ' o ( t ] )  - /~o(to) + F I  ( t l ) f l ]  - F I  ( to)r io ,  

A ( l  + flo)(~71 - to)  + Ato(fio - f l ] )  = t o t ]  ( (~O( t l )  - G o ( t o )  + (~1 ( t ] ) f i ]  - (~J ( to) f lo ) ,  

expressions that can be written in the following form: 

( A ( l + f l o )  A t o ) ( t o - t j  ) 
- A ( I  + / 3 0 )  Ato /30 /3] 

P~(to)(tJ - to) + P((to)/3o(t] - to) + P] (,to)(/3~ - /30) 

= ( t 2 d ~ ( t o ) ( t ,  - to) + to2(d](to)(/3, - /3o)  + d ]  ( to)(t ,  - to)/3o)) 

+ R i + A(fil  -- flo)(t] - to) 
Rd  

(60) 

being 

k k = P o ( t ] ) - F o ( t o )  - Fg(to)(t~ - t o ) + ( P ] ( t ~ ) - ~ ' ] ( t o ) - P ; ( t o ) ( ~ !  - to) ) /30 

+ ( P ] ( t ] )  - ~'~(to))(/31 - /3o),  (61) 

and 

R~ = tO(tl - to )2d; ( to)  -[- tO(tl - ~o)(dl  (tl)(/31 - ,~o) ~- dll ( to)( t l  - to)/3o) 

-]-tg((~l (~1) - (~1 (to))(/31 - /30)  -[- tOtl ((~O(tl) - (~o(to) - (~;( to)( t l  - to)) 

+ t0t~ (d l  ( t ] )  - d~ (to) - d'] (to)(t~ - to))/3o. (62) 

From (60), we obtain 

1 1 

( t o - t l ) = 2 A ( l + f l o ) 2 A ( l + f i o ) / 3 0  /31 1 1 

2At0 2Ato (, 1 

+ 2A(1 +/3o) 2A(l +/3o) 
1 1 

2Ato 2Ato 

( Pg(¢o) + F((¢o)/3o 
2 ^ i  ~~d;(¢o) + to G~ (to)/3o Co~d, (Co) J /30 

R d fll flo + N. 

(63) 

At this point, we proceed taking the domain for t and/3 given in the statement of the proposition, where we expect 
the transformation (58) to be injective. In what follows we describe how to test if this assumption holds. We recall 
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that in this statement we are assuming f and ~, well-defined in a complex strip of width p, for certain p > 0, i.e., if 
IIm(0)l < p. In consequence, F0, (~0, FI and (~1 are analytic on .A(R<). With respect to/3, we consider complex 
values with 1/31 < R#. Then we want to check the injectivity of  the transformation in the domain generated by fixed 

values of 8 and R#. 
For this purpose, we use Lemma 4 to bound the expressions [¢# and/~d of (61 ) and (62) in the annulus A(R~- ). 

This can be done bounding the l" IRe norm of the ('-functions/~o,/~'('),/3o', Go, GI) and G'(I" Then we obtain bounds 

for the components of N, N T = (NI, N2), of the form 

INil <- Ns.ol¢l -~ol2 + 2Nj, l l ¢ l -  ¢o11#1-#ol, j = 1,2. 

that holds if ~'o. ~'i E ,A(R~-) and I/3ol, 1/31l _< R#. Using these estimates, we obtain from (63), 

l(o-(Jl+ I#o-/3~I _~ - -  
l - M ,  

((Ni.o + N2.o)l~i - ~7ol 2 + 2(Nl.1 + N2. i)l(TI - t,'oll/31 - /3o[) ,  (64) 

where M.,  that we assume satisfies M.  < 1, is a bound (in the considered domain) for the matrix norm of M 

induced by the vectorial norm [ • I I of  C 2. Then, for the admissible values of  ((j./3j),  j = 0, 1, for which (64) holds, 

we have that either (~'0./30) = (~'1,/31) or 

I - -  M ,  
max{N1,0 + N2.0, 2(Ni.i  + N2,1)}. (65) 

From (65) we deduce the local injectivity of (58). The maximum value allowed for I(l - ~'0l defines 8o(R#, p) on 
the statement of  Proposition 1. To deduce global injectivity, we write (59) in the following form: 

~'o - (I  2(1  + #o ) ( /31  - # o ) ( ( 1  - (o )  

1 
/30 - -  /31 - -  ~0 (/Jl - -  / 3 0 ) ( ~ 1  - -  ~'0) : 

1 1 

2A(I +/30) 2A(1 +/30) ( /~(~'1, ill) - /'(~'o, rio) ) = S. 

= I 1 \ ~'o~1 (C)(~'),/31) - G(~o./30)) 
7 

2A(o 2A(0 

(66) 

If the components of  S are bounded by SI and S2 when (0, ~'1 c ,A(R c) and 1/301, I/3~1 ~ R#, then we have from 

(66): 

t~'¢)-~ql I 2 ( 1 -  - /3ol  < _ S ~ ,  1#~-/301 1 - ~ - I ~ ' ~ - ~ o l  <_S2. (67) 

From that, we deduce that the pairs (~'o, #o) and (/;h,/71) in the considered domain, with the same image by (58), 

are necessarily close. As we have ]/31 -/301 _< 2R#, we deduce from (67) that it is necessary to take 

S i  

1 - R # / ( I  - R # )  

where if R# < ½, we have 61 > 0. Assuming 81 smaller than the value of 3o that guarantee local injectivity in (65), 

we have global injectivity for ~ E .A(R~-) and 1/31 <_ R#, i.e., in terms of 0, if Ilm(0)l _< p. 
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