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Abstract
We study elliptic lower dimensional invariant tori of Hamiltonian systems via
parametrizations. The method is based on solving iteratively the functional
equations that stand for invariance and reducibility. In contrast with classical
methods, we do not assume that the system is close to an integrable one nor
that it is written in action-angle variables. We only require an approximation of
an invariant torus with a fixed vector of basic frequencies and a basis along the
torus that approximately reduces the normal variational equations to constant
coefficients. We want to highlight that this approach presents many advantages
compared with methods which are built in terms of canonical transformations,
e.g., it produces simpler and more constructive proofs that lead to more efficient
numerical algorithms for the computation of these objects. Such numerical
algorithms are suitable to be adapted in order to perform computer assisted
proofs.

Mathematics Subject Classification: 37J40

1. Introduction

Persistence of quasi-periodic solutions has been a subject of remarkable importance in
dynamical systems for a long time. Roughly speaking, KAM theory—named after Kolmogorov
[42], Arnold [1] and Moser [50]—deals with the effect of small perturbations on dynamical
systems (typically Hamiltonian) which admit invariant tori carrying quasi-periodic motion.
Nowadays, KAM theory is a vast area of research that involves a large collection of methods
and applications to a wide set of contexts: Hamiltonian systems, reversible systems, volume-
preserving systems, symplectic maps, PDEs and lattices, just to mention a few. We refer
to [2, 4, 10, 16, 60] for different surveys or tutorials that collect many aspects of the theory and
cover a large amount of bibliography.
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In this work we are concerned with lower dimensional (isotropic) tori of Hamiltonian
systems. Let us consider a real analytic Hamiltonian system with n degrees of freedom
having an invariant torus of dimension r < n, carrying quasi-periodic dynamics with a vector
of basic frequencies ω ∈ R

r . The variational equations around such a torus correspond
to a 2n-dimensional linear quasi-periodic system with a vector of frequencies ω. For this
linear system we have 2r trivial directions (i.e. zero eigenvalues of the reduced matrix of the
system restricted to these directions) associated with the tangent directions of the torus and
the symplectic conjugate ones (these trivial directions are usually referred to as the central
directions of the torus). If the remaining 2(n − r) directions (normal directions of the torus)
are hyperbolic, we say that the torus is hyperbolic1 or whiskered. Hyperbolic tori are very
robust under perturbations [19, 24, 27, 32, 45]. For example, if we consider a perturbation of
the system depending analytically on external parameters, one can establish, under suitable
conditions, the existence of an analytic (with respect to these parameters) family of hyperbolic
tori having the same basic frequencies. In the above setting, if the torus possesses some
elliptic (oscillatory) normal directions we say that it is elliptic or partially elliptic. In this
case the situation is completely different, since we have to take into account combinations
between basic and normal frequencies in the small divisors that appear in the construction of
these tori (the corresponding non-resonance conditions are usually referred to as Melnikov
conditions [47, 48]). As a consequence, families of elliptic or partially elliptic invariant tori
with fixed basic frequencies ω cannot be continuous in general, but they turn out to be Cantorian
with respect to parameters. First rigorous proofs of existence of elliptic tori were given in [54]
for r = n − 1 and in [21, 44] for r < n. We refer also to [9–11, 28, 35, 39, 40, 57, 59, 69, 71]
as interesting contributions covering different points of view.

The main source of difficulty in the presence of elliptic normal directions is the so-called
lack of parameters problem [10, 54, 68]. Basically, since we have only as many internal
parameters (‘actions’) as the number of basic frequencies of the torus, we cannot simultaneously
control the normal ones, so we cannot prevent them from ‘falling into resonance’. This is
equivalent to say that, for a given Hamiltonian system, we cannot construct a torus with a
fixed set of basic and normal frequencies because there are not enough parameters. The
previous fact leads to the exclusion of a small set of these internal parameters in order to
avoid resonances involving normal frequencies. To control the measure of the set of excluded
parameters, typically one assumes that the normal frequencies ‘move’ as a function of the
internal parameters. Another possibility to overcome the lack of parameters problem is to
apply the so-called Broer–Huitema–Takens theory (see [11]). This consists in adding as many
(external) parameters as needed to control simultaneously the values of both basic and normal
frequencies (this process is referred to as unfolding). With this setting, we can prove that—
under small perturbations—there exist invariant tori for a nearly full-measure Cantor set of
parameters. The C∞-Whitney smoothness of this construction is also established. Finally, in
order to ensure the existence of invariant tori for the original system (free of parameters), one
can apply the so-called Herman’s method. Indeed, external parameters can be eliminated—
under very weak non-degeneracy conditions—by means of an appropriate technical result
concerning the Diophantine approximation on submanifolds (see [10, 64, 66–69]).

Another issue linked to the persistence of lower dimensional invariant tori is the reducibility
of the normal variational equations (at least in the elliptic directions). This is usually asked
to simplify the study of the linearized equations involved. To control the small divisors of the
cohomological equations that appear in the construction of the reduced matrix, it is typical

1 As it is customary in the Hamiltonian context, the term ‘hyperbolic torus’ is not used in the sense of the general
theory of normally hyperbolic invariant manifolds. We refer to [3] for a detailed discussion of this definition in the
Hamiltonian setting.
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to consider second Melnikov conditions [47, 48]. Other approaches for studying persistence
of invariant tori in the elliptic context, without second Melnikov conditions, are discussed in
remark 3.10.

Classical methods for studying the persistence of lower dimensional tori are based on
canonical transformations performed on the Hamiltonian function. These methods typically
deal with a perturbative setting, i.e. the problem is written as a perturbation of an ‘integrable’
Hamiltonian (in the sense that it has a continuous family of reducible invariant tori). They
also take advantage of the existence of action-angle-like coordinates for the unperturbed
Hamiltonian system. These coordinates play an important role in solving the cohomological
equations involved in the iterative KAM process. They also allow us to guarantee (at every
step) the isotropic character of the approximately invariant tori, thus simplifying a lot of details.
However, classical approaches present some shortcomings, mainly due to the fact that they
only allow us to face perturbative problems. For example:

• In many practical applications (design of space missions [25, 26], study of models in
Celestial Mechanics [15], Molecular Dynamics [58, 70] or Plasma-Beam Physics [49],
just to mention a few) we have to consider non-perturbative systems. We can obtain
approximately invariant tori for these systems by means of numerical computations
or asymptotic expansions, but in general we cannot apply classical results to prove
the existence of these objects. In some cases it is possible to identify an integrable
approximation of the system but the remaining part cannot be considered as an arbitrarily
small perturbation.

• Even if we are studying a concrete perturbative problem, sometimes it is very complicated
to establish action-angle variables for the unperturbed Hamiltonian. In some cases action-
angle variables are not explicit, become singular or introduce problems of regularity (for
example, when we approach a separatrix). Although in many contexts this shortcoming has
been solved by means of several techniques (see for example [20, 31, 56] for a construction
in the case of an integrable Hamiltonian and [12, 41] for a construction around a particular
object), it introduces more technical difficulties in the problem.

• From the computational viewpoint, methods based on transformations are sometimes
inefficient and quite expensive. This is a serious difficulty when implementing numerical
methods or computer assisted proofs based on them.

An alternative to the classical approach are the so-called parametrization methods. They
consist in performing an iterative scheme, without using canonical transformations, to solve the
invariance equation of the torus. This scheme is carried out by adding a small function to the
previous approximation of the torus. This function is obtained by solving (approximately) the
linearized invariance equation around the approximated torus (the Newton method). We point
out that the geometry of the problem plays an important role in the study of these equations.
This approach is suitable for obtaining invariant tori of Hamiltonian systems using neither
action-angle variables nor a perturbative setting. Such geometric approach—also referred to
as KAM theory without action-angle variables—was introduced in [17] for Lagrangian tori and
extended in [24] to hyperbolic lower dimensional tori, following long-time developed ideas
(relevant work can be found in [15, 35, 52, 53, 63, 65, 72]). Roughly speaking, the insight of
these methods is summarized in the following quote from [35]:

“...near approximate solutions of certain equations satisfying certain non-degeneracy
assumptions, we can find true solutions defined on a large set.”

The aim of this paper is to adapt parametrization methods to study normally elliptic
tori without using action-angle variables and in a non-perturbative setting. Concretely, we
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assume that we have a 1-parameter family of Hamiltonian systems for which we know a
1-parameter family of approximately invariant lower dimensional elliptic tori—all of them
with the same vector of basic frequencies—and also approximations of the vectors of normal
frequencies and the normal directions associated with these frequencies (i.e. a basis of the
normal directions along each torus that approximately reduces the normal variational equations
to constant coefficients). Under suitable hypotheses of non-resonance and non-degeneracy,
we show that for a Cantorian subset of parameters there exists a true elliptic torus close to the
approximate one, having the same basic frequencies and slightly modified normal frequencies.
This Cantorian set has a large relative Lebesgue measure. The scheme to deal with reducibility
of the normal directions of these tori is the main contribution of this paper, and it consists in
performing suitable (small) corrections in the normal directions at each step of the iterative
procedure. We emphasize that both the preceding works [17, 24] devoted to parametrization
methods considered invariant tori for individual systems (rather than parametric families of
systems). In this paper we introduce an external parameter to enjoy at least a partial control
over the normal frequencies, thus avoiding normal-internal resonances.

The setting of the paper has been selected in order to simplify some technical aspects of the
result—both in the assumptions and in the proof—thus highlighting the geometric construction
of the paper. We point out that all the basic ideas linked to parametrization methods, without
using action-angle variables, for reducible lower dimensional tori are present in our approach.
In section 3 we discuss several extensions and generalizations that can be tackled with the
method presented in this paper.

Parametrization methods are computationally oriented in the sense that they can be
implemented numerically, thus obtaining very efficient algorithms for the computation of
invariant tori. For example, if we approximate a torus using N Fourier modes, such methods
allow us to compute the object with a cost of order O(N log N) in time and O(N) in memory
(see remark 3.11). This is another advantage of our approach in contrast with classical
methods based on transformation theory. The reader interested in such algorithms is referred
to [18] for the implementation of the ideas in [17, 24] for Lagrangian and whiskered tori (see
also [13] for the case of lattices and twist maps) and to [36] for the implementation of the ideas
of [38] for reducible elliptic and hyperbolic tori for quasi-periodic skew-product maps (in this
case, which corresponds to quasi-periodic perturbations of equilibrium points for flows, the
geometric part discussed in this paper is not required).

Finally, we observe that in the presence of hyperbolic directions one can approach the
problem by combining techniques in [24] (for studying hyperbolic directions) together with
those introduced here (for studying elliptic directions). Indeed, the methodology presented
in this work can be adapted to deal with invariant tori with reducible hyperbolic directions,
but this assumption is quite restrictive (see [29]) in the hyperbolic context (reducibility is not
required in [24]).

The paper is organized as follows. In section 2 we provide some notations, definitions
and background of the problem. In section 3 we state the main result of this paper and we
discuss several extensions and generalizations of the method presented. A motivating sketch
of the construction performed in the proof of this result is given in section 4, together with a
detailed description of some geometric properties of elliptic lower dimensional invariant tori
of Hamiltonian systems. Next, in section 5 we perform one step of the iterative method to
correct both an approximation of an elliptic invariant torus and a basis along this torus that
approximately reduces the normal variational equations to constant coefficients. The new
errors in invariance and reducibility are quadratic in terms of the previous ones. Finally, the
main result is proved in section 6.
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2. General background

In this section we introduce some notation and, in order to help the reader, we recall the basic
terminology and concepts related to the problem. Thus, after setting the notation used in the
paper in section 2.1, we provide the basic definitions regarding lower dimensional invariant
tori of Hamiltonian systems (section 2.2) and their normal behaviour (section 2.3).

2.1. Basic notations

Given a real or complex scalar function f of several variables, we denote by Df its Jacobian
matrix. If f is scalar, we also use the notation grad f = Df � for the gradient vector and
hess f = D2f the Hessian matrix.

For any complex number z ∈ C we denote z∗ ∈ C its complex conjugate number and
Re(z), Im(z) the real and imaginary parts of z, respectively. We extend these notations to
complex vectors and matrices. Note that if N is a matrix with complex entries then N∗ is the
matrix with complex conjugate entries without transposing.

Given a complex vector v ∈ C
l we denote by diag(v) ∈ Ml×l(C) the diagonal matrix

having the components of v in the diagonal. Moreover, given Z ∈ Ml×l(C), we denote by
diag(Z) ∈ Ml×l(C) the diagonal matrix having the same diagonal entries as Z.

For any k ∈ Z
r , we denote |k|1 = |k1| + · · · + |kr |. Given a vector x ∈ C

l , we set
|x| = supj=1,...,l |xj | for the supremum norm and we extend the notation to the induced norm
for complex matrices. Furthermore, given an analytic function f , with bounded derivatives in
a complex domain U ⊂ C

l , and m ∈ N we introduce the Cm-norm for f as

‖f ‖Cm, U = sup
k∈(N∪{0})l
0�|k|1�m

sup
z∈U

|Dkf (z)|.

We denote by T
r = R

r/(2πZ)r the real r-dimensional torus, with r � 1. We use the
| · |-norm introduced above to define the complex strip around T

r of width ρ > 0 as

�(ρ) = {θ ∈ C
r/(2πZ)r : |Im(θ)| � ρ}.

Accordingly, we will consider the Banach space of analytic functions f : �(ρ) → C equipped
with the norm

‖f ‖ρ = sup
θ∈�(ρ)

|f (θ)|.

Similarly, if f takes values in C
l , we set ‖f ‖ρ = |(‖f1‖ρ, . . . , ‖fl‖ρ)|. If f is a matrix-valued

function, we extend ‖f ‖ρ by computing the | · |-norm of the constant matrix defined by the
‖·‖ρ-norms of the entries of f . We observe that if the matrix product is defined then this space
is a Banach algebra and we have ‖f1f2‖ρ � ‖f1‖ρ‖f2‖ρ . In addition, we can use Cauchy
estimates ∥∥∥∥ ∂f

∂θj

∥∥∥∥
ρ−δ

� ‖f ‖ρ

δ
, j = 1, . . . , r.

For any function f analytic on T
r and taking values in C, C

l or in a space of complex
matrices, we denote its Fourier series as

f (θ) =
∑
k∈Zn

f̂kei〈k,θ〉, f̂k = 1

(2π)r

∫
Tr

f (θ)e−i〈k,θ〉 dθ

and its average as [f ]Tr = f̂0. We also set f̃ (θ) = f (θ) − [f ]Tr . Moreover, we have the
following bounds:

|[f ]Tr | � ‖f ‖ρ, ‖f̃ ‖ρ � 2‖f ‖ρ, |f̂k| � ‖f ‖ρe−ρ|k|1 .
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Now, we introduce some notation regarding Lipschitz regularity. Assume that f (µ) is a
function defined for µ ∈ I ⊂ R—the subset I may not be an interval—taking values in C, C

l

or Ml1×l2(C). We say that f is Lipschitz with respect to µ on the set I if

LipI (f ) = sup
µ1,µ2∈I

µ1 �=µ2

|f (µ2) − f (µ1)|
|µ2 − µ1| < ∞.

The value LipI (f ) is called the Lipschitz constant of f on I . For these functions we define
‖f ‖I = supµ∈I |f (µ)|. Similarly, if we have a family µ ∈ I ⊂ R �→ fµ, where fµ is a
function on T

r taking values in C, C
l or Ml1×l2(C), we extend the previous notations as

LipI,ρ(f ) = sup
µ1,µ2∈I

µ1 �=µ2

‖fµ2 − fµ1‖ρ

|µ2 − µ1| , ‖f ‖I,ρ = sup
µ∈I

‖fµ‖ρ.

Analogously, given a family µ ∈ I ⊂ R �→ fµ, where fµ is an analytic function with bounded
derivatives in a complex domain U ⊂ C

l , we introduce for m ∈ N

LipI,Cm,U (f ) = sup
µ1,µ2∈I

µ1 �=µ2

‖fµ1 − fµ2‖Cm,U

|µ1 − µ2| , ‖f ‖I,Cm, U = sup
µ∈I

‖fµ‖Cm, U .

Finally, we say that f is Lipschitz from below with respect to µ on the set I if

lipI (f ) = inf
µ1,µ2∈I

µ1 �=µ2

|f (µ2) − f (µ1)|
|µ2 − µ1| > 0.

In this work we are concerned with Hamiltonian systems in R
2n with respect to the standard

symplectic form �0, given by �0(ξ, η) = ξ�Jnη where

Jn =
(

0 Idn

−Idn 0

)
is the canonical skew-symmetric matrix. We extend the notation above to write Jj for any
1 � j � n, and Idj for any 1 � j � 2n. For the sake of simplicity, we denote J = Jn and
Id = Id2n.

Finally, given matrix-valued functions A : T
r → M2n×la (C) and B : T

r → M2n×lb (C),
we set the notations GA,B(θ) = A(θ)�B(θ), �A,B(θ) = A(θ)�JB(θ), GA(θ) = GA,A(θ)

and �A(θ) = �A,A(θ).

2.2. Invariant and approximately invariant tori

Given a Hamiltonian function h : U ⊂ R
2n → R, we study the existence of lower dimensional

quasi-periodic invariant tori for the Hamiltonian vector field Xh(x) = Jgrad h(x).

Definition 2.1. For any integer 1 � r � n, T ⊂ U is an r-dimensional invariant torus
carrying conditionally periodic motion with basic frequencies ω ∈ R

r for Xh, if T is invariant
under the flow of Xh and there exists a parametrization given by an embedding τ : T

r → U

such that T = τ(Tr ), making the following diagram commute

T
r

T
r

T T

�
Tt,ω

�

τ

�

τ

�
φt |T

(1)
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where Tt,ω(θ) = θ + ωt is the (parallel) flow of the constant vector field

Lω = ω1
∂

∂θ1
+ · · · + ωr

∂

∂θr

and φt is the flow of Xh. In addition, if ω is non-resonant, i.e.

〈k, ω〉 �= 0, ∀k ∈ Z
r\{0}, (2)

then we say that T is an r-dimensional quasi-periodic torus.

The fact that T = τ(Tr ) and diagram (1) commutes is equivalent to that the embedding
τ satisfies

Lωτ(θ) = Xh(τ(θ)). (3)

If ω ∈ R
r is non-resonant, then the quasi-periodic function z(t) = τ(ωt + θ0) is an integral

curve of Xh for any θ0 ∈ T
r that fills densely T .

By means of τ we can pull-back to T
r both the restrictions to T of the standard metric

and the symplectic structure, obtaining the following matrix representations:

GDτ (θ) = Dτ(θ)�Dτ(θ), �Dτ (θ) = Dτ(θ)�JDτ(θ), θ ∈ T
r .

Remark 2.2. We note that as τ is embedding we have rank(Dτ(θ)) = r for every θ ∈ T
r ,

so it turns out that det GDτ (θ) �= 0 for every θ ∈ T
r . Moreover, the average [�Dτ ]Tr is zero

since the symplectic form is exact. Indeed, if we write τ(θ) = (x(θ), y(θ)) then we have
�Dτ (θ) = Dα(θ) − Dα(θ)�, where α(θ) = Dx(θ)�y(θ) and, by definition, [Dα]Tr = 0.

Next we state a version of a classical lemma—see for example [10, 51]—which says that
any quasi-periodic torus of a locally Hamiltonian vector field is isotropic provided that the
symplectic form is exact.

Lemma 2.3. Let h : U ⊂ R
2n → R be a Hamiltonian function and T an r-dimensional

invariant torus for Xh of non-resonant frequencies ω. Then the submanifold T is isotropic,
i.e. �Dτ (θ) = 0 for every θ ∈ T

r . In particular, if r = n then T is Lagrangian.

Remark 2.4. In the text there appear many functions depending on θ ∈ T
r . In order to

simplify the notation sometimes we omit the dependence on θ—eventually we even omit the
fact that some functions are evaluated at τ(θ) if there is no source of confusion.

Proof of lemma 2.3. Here we adapt a proof given in [17] that will be useful later on. First,
we compute

Lω(�Dτ ) = Lω(Dτ�JDτ) = [D(Lωτ)]�JDτ + Dτ�JD(Lωτ)

= [Jhess h(τ)Dτ ]�JDτ + Dτ�JJhess h(τ)Dτ = 0,

where we used that D ◦ Lω = Lω ◦ D, the hypothesis Lωτ(θ) = Xh(τ(θ)) and the properties
J� = −J and J 2 = −Id. Then, since ω is non-resonant, the fact that the derivative Lω

vanishes implies that �Dτ = [�Dτ ]Tr . From remark 2.2 we conclude that �Dτ = 0. �
Finally, we set the idea of parametrization of an approximately invariant torus. Essentially,

we measure how far to commute in diagram (1).

Definition 2.5. Given a Hamiltonian h : U ⊂ R
2n → R and an integer 1 � r � n, we say that

T ⊂ U is an r-dimensional approximately quasi-periodic invariant torus with non-resonant
basic frequencies ω ∈ R

r for Xh provided that there exists an embedding τ : T
r → U , such

that T = τ(Tr ), satisfying

Lωτ(θ) = Jgrad h(τ(θ)) + e(θ),

where e : T
r → R

2n is ‘small’ in a suitable norm.
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Among the conditions needed to find a true invariant torus around an approximately
invariant one, we are concerned with Diophantine conditions on the vector of basic frequencies.

Definition 2.6. We say that ω ∈ R
r satisfies Diophantine conditions of (γ, ν)-type, for γ > 0

and ν > r − 1, if

|〈k, ω〉| � γ

|k|ν1
, ∀k ∈ Z

r\{0}. (4)

It is well known that if we consider a fixed ν then, for almost every ω ∈ R
r , there is γ > 0

for which (4) is fulfilled (see [46]).

2.3. Linear normal behaviour of invariant tori

In order to study the behaviour of the solutions in a neighbourhood of an r-dimensional quasi-
periodic invariant torus of basic frequencies ω—parametrized by τ—it is usual to consider the
variational equations around the torus,

Lωξ(θ) = Jhess h(τ(θ))ξ(θ). (5)

If r = 1 system (5) is 2π/ω-periodic. Then, following Floquet’s theorem, there exists a
linear periodic change of variables that reduces the system to constant coefficients. If r > 1,
then we consider reducibility to constant coefficients (in the sense of Lyapunov–Perron) as
follows.

Definition 2.7. We say that the invariant torus T in definition 2.1 is reducible if there exists
a linear change of coordinates ξ = M(θ)η, defined for θ ∈ T

r , such that the variational
equations (5) turn out to be Lωη(θ) = Bη(θ), where B ∈ M2n×2n(C).

This property is equivalent to the fact that M satisfies the differential equation

LωM(θ) = Jhess h(τ(θ))M(θ) − M(θ)B. (6)

In the Lagrangian case r = n such transformation exists, under regularity assumptions,
providedω satisfies (4)—see [17]. Indeed, we can take derivatives at both sides of the invariance
equation (3), thus obtaining

LωDτ(θ) = Jhess h(τ(θ))Dτ(θ).

Then, the matrix M(θ) can be given by the columns of Dτ(θ) and JDτ(θ)G−1
Dτ (θ) +

Dτ(θ)C(θ), where C(θ) is a suitable n×n matrix—obtained by solving certain cohomological
equation. The reduced matrix turns out to be of the form

B =
(

0 BC

0 0

)
,

where BC ∈ Mn×n(R) is symmetric. The 2n zero eigenvalues correspond to the tangent
directions to the torus together with their symplectic conjugate ones, meanwhile the matrix BC

controls the variation of the frequencies of the torus—the twist condition reads det BC �= 0—
when moving the ‘actions’ of the system.

In the lower dimensional case 1 < r < n we cannot guarantee, in general, reducibility
to constant coefficients (we refer to [33, 34, 61]). Nevertheless, if we consider a family of
quasi-periodic linear perturbations of a linear system with constant coefficients then, under
some generic hypotheses of non-resonance and non-degeneracy, we can state the reducibility
of a large subfamily. On the one hand, if we restrict M(θ) to the space of close-to-the-
identity matrices, then we can prove that the reducible subfamily is Cantorian and has a large
Lebesgue measure (we refer to [37, 38]). On the other hand, considering a more general
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class of matrices (see ideas introduced in [22, 23, 43, 55]) reducibility can be extended to a
full-measure subfamily (this was conjectured in [23] and proved in [30]).

If system (5) is reducible, then the geometry of the problem allows us to choose the matrix
B with the following block structure:

B =
 0 BC 0

0 0 0
0 0 BN

 ,

where BC ∈ Mr×r (R) is symmetric (it plays the same ‘twist’ role as in the Lagrangian case),
and BN ∈ M2(n−r)×2(n−r)(C) can be written as BN = Jn−rS, where S is also symmetric. The
matrix BN gives the normal linear behaviour of the torus. The real parts of the eigenvalues of
BN correspond to Lyapunov exponents and their imaginary parts to normal frequencies. As
discussed in the introduction, in this work we are interested in the normally elliptic case, in
which all the eigenvalues of BN have a vanishing real part, i.e.

spec(BN) = {iλ1, . . . , iλn−r , −iλ1, . . . ,−iλn−r},
where λj ∈ R\{0} are the normal frequencies. Throughout the paper we assume that they have
different modulii.

In order to simplify the resolution of the obtained cohomological equations, it is convenient
to put the matrix BN in diagonal form. In the classical KAM approach—using symplectic
transformations and action-angle variables adapted to the torus—this is possible with a complex
canonical change of coordinates. This transformation casts the initial real Hamiltonian into a
complex one, having some symmetries. As these symmetries are preserved by the canonical
transformations performed along these classical proofs, the final Hamiltonian can be made real
and thus the obtained tori are real. In this paper we perform this complexification by selecting
a complex matrix function N : T

r → M2n×(n−r)(C) associated with the eigenfunctions of
eigenvalues iλ1, . . . , iλn−r . It is clear that the real and imaginary parts of these vectors span
the associated real normal subspace at any point of the torus. Indeed, from equation (6), the
matrix function N satisfies

LωN(θ) = Jhess h(τ(θ))N(θ) − N(θ)�,

where � = diag(iλ) = diag(iλ1, . . . , iλn−r ). Then, together with these vectors, we resort to
the use of the complex conjugate ones, which clearly satisfy

LωN∗(θ) = Jhess h(τ(θ))N∗(θ) + N∗(θ)�,

to span a basis of the complexified normal space along the torus (this is guaranteed by the
conditions det GN,N∗ �= 0 on T

r ).
As we have pointed out in the introduction, to face the resolution of the cohomological

equations standing for invariance and reducibility, we assume additional non-resonance
conditions apart from (2).

Definition 2.8. We say that the normal frequencies λ ∈ R
n−r are non-resonant with respect to

ω ∈ R
r if

〈k, ω〉 + λi �= 0, ∀k ∈ Z
r , i = 1, . . . , n − r, (7)

and

〈k, ω〉 + λi ± λj �= 0, ∀k ∈ Z
r\{0}, i, j = 1, . . . , n − r. (8)

Conditions (7) and (8) are referred to as first and second Melnikov conditions, respectively
(see [47, 48]).
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In the spirit of definition 2.5, we introduce the idea of approximate reducibility as follows.

Definition 2.9. We say that the approximately invariant torus T in definition 2.5 is
approximately elliptic if there exists a map N : T

r → M2n×(n−r)(C) and normal frequencies
λ ∈ R

n−r , which are non-resonant with respect to ω, satisfying

LωN(θ) = Jhess h(τ(θ))N(θ) − N(θ)� + R(θ),

where � = diag(iλ), det GN,N∗ �= 0 on T
r and R : T

r → M2n×(n−r)(C) is ‘small’ in a suitable
norm.

In order to avoid the effect of the small divisors associated with (7) and (8), we assume
additional Diophantine conditions.

Definition 2.10. Let us consider non-resonant basic and normal frequencies (ω, λ) ∈ R
r ×

R
n−r and constants γ > 0 and ν > r − 1. We say that λ satisfies Diophantine conditions of

(γ, ν)-type with respect to ω if

|〈k, ω〉 + λi | � γ

|k|ν1
, |〈k, ω〉 + λi ± λj | � γ

|k|ν1
, (9)

∀k ∈ Z
r\{0} and i, j = 1, . . . , n − r .

3. Statement of the main result

In this section we state the main result of the paper. We consider a 1-parameter family of
Hamiltonian systems for which we know a family of parametrizations of approximately (with
small error) elliptic lower dimensional invariant tori, all with the same basic frequencies.
Then, under certain non-degeneracy conditions, we use the parameter to control the normal
frequencies in order to prove that there exists a large set of parameters for which we have
a true elliptic invariant torus close to the approximate one. We emphasize that we do not
assume that the system is given in action-angle-like coordinates nor that the Hamiltonians are
close-to-integrable ones.

Theorem 3.1. Let us consider a family of Hamiltonians µ ∈ I ⊂ R �→ hµ with hµ : U ⊂
R

2n → R, where I is a finite interval and U is an open set. Let ω ∈ R
r be a vector of basic

frequencies satisfying Diophantine conditions (4) of (γ̂ , ν̂)-type, with γ̂ > 0 and ν̂ > r − 1.
Assume that the following hypotheses hold:

H1 The functions hµ are real analytic and can be holomorphically extended to some complex
neighbourhood U of U . Moreover, we assume that ‖h‖I,C4, U � σ0.

H2 There exists a family of approximately invariant and elliptic tori of hµ in the sense of
definitions 2.5 and 2.9, i.e. we have families of embeddings µ ∈ I ⊂ R �→ τµ, matrix
functions µ ∈ I ⊂ R �→ Nµ and approximated normal eigenvalues �µ = diag(iλµ),
with λµ ∈ R

n−r , satisfying

Lωτµ(θ) = Jgrad hµ(τµ(θ)) + eµ(θ),

LωNµ(θ) = Jhess hµ(τµ(θ))Nµ(θ) − Nµ(θ)�µ + Rµ(θ),

for certain error functions eµ and Rµ, where τµ and Nµ are analytic and can be
holomorphically extended to �(ρ) for certain 0 < ρ < 1, satisfying τµ(�(ρ)) ⊂ U .
Assume also that we have constants σ1, σ2 such that

‖Dτ‖I,ρ, ‖N‖I,ρ, ‖G−1
Dτ‖I,ρ, ‖G−1

N,N∗‖I,ρ < σ1, dist(τµ(�(ρ)), ∂U) > σ2 > 0,

for every µ ∈ I , where ∂U stands for the boundary of U .
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H3 We have diag[�Nµ,N∗
µ
]Tr = iIdn−r for every µ ∈ I .

H4 The family of matrix functions

A1,µ(θ) = G−1
Dτµ

(θ)Dτµ(θ)�[T1,µ(θ) + T2,µ(θ) + T2,µ(θ)�]Dτµ(θ)G−1
Dτµ

(θ),

where

T1,µ(θ) = J�hess hµ(τµ(θ))J − hess hµ(τµ(θ)),

T2,µ(θ) = T1,µ(θ)J [Dτµ(θ)GDτµ
(θ)−1Dτµ(θ)� − Id] Re(iNµ(θ)N∗

µ(θ)�)

satisfies the non-degeneracy (twist) condition ‖[A1]−1
Tr ‖I < σ1.

H5 There exist constants σ3, σ4 such that for every µ ∈ I the approximated normal frequencies
λµ = (λ1,µ, . . . , λn−r,µ) satisfy

0 <
σ3

2
< |λi,µ| <

σ4

2
, 0 < σ3 < |λi,µ ± λj,µ|,

for i, j = 1, . . . , n − r , with i �= j .
H6 The objects hµ, τµ, Nµ and λµ are at least C1 with respect to µ, and we have∥∥∥∥ dh

dµ

∥∥∥∥
I,C3,U

,

∥∥∥∥ dτ

dµ

∥∥∥∥
I,ρ

,

∥∥∥∥dDτ

dµ

∥∥∥∥
I,ρ

,

∥∥∥∥dN

dµ

∥∥∥∥
I,ρ

,

∥∥∥∥dλi

dµ

∥∥∥∥
I

< σ5,

for i = 1, . . . , n − r . Moreover, we have the following separation conditions:

0 <
σ6

2
<

∣∣∣∣ d

dµ
λi,µ

∣∣∣∣ , 0 < σ6 <

∣∣∣∣ d

dµ
λi,µ ± d

dµ
λj,µ

∣∣∣∣ ,
for i, j = 1, . . . , n − r , with i �= j .

Under these assumptions there is a constant C1 such that, if

ε∗ = ‖e‖I,ρ + ‖R‖I,ρ +

∥∥∥∥ de

dµ

∥∥∥∥
I,ρ

+

∥∥∥∥dR

dµ

∥∥∥∥
I,ρ

satisfies ε∗ � C1γ
8
0 for a given γ0 � 1

2 min{1, γ̂ }, then there exists a Cantorian subset I(∞) ⊂ I

such that for every µ ∈ I(∞) the Hamiltonian hµ has an r-dimensional elliptic invariant torus
Tµ,(∞) with basic frequencies ω. The normal frequencies λµ,(∞) satisfy Diophantine conditions
of the form

|〈k, ω〉 + λi,µ,(∞)| � γ0

|k|ν1
, |〈k, ω〉 + λi,µ,(∞) ± λj,µ,(∞)| � γ0

|k|ν1
, ∀k ∈ Z

r\{0},

for ν > ν̂ and

‖λi,(∞) − λi‖I(∞)
� C2ε∗

γ 2
0

, (10)

for i, j = 1, . . . , n − r . The parametrizations τµ,(∞) and normal directions Nµ,(∞) satisfy

‖τ(∞) − τ‖I(∞),ρ/2 � C2ε∗
γ 2

0

, ‖N(∞) − N‖I(∞),ρ/2 � C2ε∗
γ 4

0

. (11)

Moreover, I(∞) has big relative Lebesgue measure

measR(I\I(∞)) � C3γ0. (12)

The constants C1, C2 and C3 depend on |ω|, ν, r , n, σ0, σ1, σ2, σ3, σ4, σ5 and σ6. The constant
C3 also depends on γ̂ , ν̂.
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Remark 3.2. We will see that, if ‖e‖I,ρ and ‖R‖I,ρ are small enough, then hypotheses H2 and
H5, together with suitable Diophantine conditions on ω and λ, imply that the matrix �N,N∗ is
pure imaginary, approximately constant and close to diagonal (see propositions 4.1 and 5.3 for
details). In order to follow our approach for constructing an approximately symplectic basis
along the torus, we assume that the average of this matrix is non-singular. According to this,
it is clear that we can assume (after a suitable choice of the sign of the components of λ and
scaling of the columns of N ) that diag[�N,N∗]Tr = iIdn−r , as it is done in hypothesis H3 of
theorem 3.1.

Remark 3.3. As it is customary in parametrization methods—we encourage the reader to
compare this result with those in [17, 24, 35]—the conditions of theorem 3.1 can be verified
using information provided by the initial approximations. This fact is useful in the validation
of numerical computations that consist in looking for trigonometric functions that satisfy
invariance and reducibility equations approximately. Concretely, let us assume that for a given
parameter µ0 ∈ I we have computed approximations τµ0 , Nµ0 and �µ0 satisfying the explicit
conditions of theorem 3.1 for certain ω ∈ R

r . Then, for most of the values of µ close to µ0,
there exists an elliptic quasi-periodic invariant torus nearby, whose normal frequencies are just
slightly changed.

Remark 3.4. Hypothesis H4 is called twist condition because when applying this result
in a perturbative setting it stands for the Kolmogorov non-degeneracy condition (see the
computations performed for Hamiltonian (13)). Observe that in the Lagrangian case the
function A1,µ reads as A1,µ = G−1

Dτµ
Dτ�

µ T1,µDτG−1
Dτµ

for the same matrix T1,µ, thus recovering
the condition in [17].

Remark 3.5. Let us assume that 0 ∈ I and that for µ = 0 we have a true elliptic quasi-periodic
invariant torus satisfying the Diophantine and non-degeneracy conditions of theorem 3.1. In
this case, it is expected that the measure of invariant tori nearby is larger than the one predicted
by theorem 3.1. Actually, it is known that the complementary set [−µ0, µ0]\I(∞) has measure
exponentially small when µ0 → 0 (see [39, 40]). To obtain such estimates we would need
to slightly modify some details of the proof performed here—but not the scheme—asking for
Diophantine conditions as those used in [38, 40] (which turn out to be exponentially small
in |k|1).

Remark 3.6. Theorem 3.1 can be extended to exact symplectic maps. Actually, the
parametrization approach in the context of maps is the main setting in [17, 24, 35]. To this
end, we should ‘translate’ the computations performed along the paper to the context of maps,
following the ‘dictionary’ of these references. Attention should be taken in order to adapt the
geometric conditions that we highlight in remarks 4.5 and 4.7, which are not true for maps,
but satisfied up to quadratic terms (this is enough for the convergence of the scheme).

Remark 3.7. It would also be interesting to extend the result in order to deal with symplectic
vector fields or symplectic maps. Let us recall that a vector field X on a symplectic manifold
with 2-form � is said to be symplectic (or locally Hamiltonian) if LX� = 0, i.e. if the 2-form
is preserved along the flow of X (symplectic vector fields that are not Hamiltonian can be found
for example in the context of magnetic fields). In this situation, the method of ‘translated torus’
should be adapted as it is done in [24] for the hyperbolic case. To this end, it must be taken
into account that the cohomology of the torus must be compatible with the cohomology class
of the contraction �(·, X).

Remark 3.8. The scheme of the proof of theorem 3.1 can also be used for proving the existence
of reducible tori having some hyperbolic directions, under the assumption of first and second
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Melnikov conditions. In this case, we need to adapt the geometrical ideas of the paper in order
to deal simultaneously with elliptic and hyperbolic directions. However, as hyperbolic tori are
known to exist beyond the breakdown of reducibility (see [29]), it is interesting to approach
the problem of partially elliptic tori by combining techniques in [24] (for studying hyperbolic
directions) together with those presented here (for studying elliptic directions).

Remark 3.9. The scheme can be also adapted to deal with the classical Broer–Huitema–Takens
approach (see [11]) explained in the introduction. On the one hand, this allows obtaining
C∞-Whitney regularity for the constructed tori, and on the other hand this permits to deal with
degenerate cases where the Kolmogorov condition does not hold. For example, if we have other
higher-order non-degeneracy conditions such as the so-called Rüssmann’s non-degeneracy
condition (see [67]). These ideas could also be used to deal with resonant situations as those
considered in [7, 8], where double frequencies and in some cases also vanishing frequencies
are allowed.

Remark 3.10. After the work in [5, 6, 23, 30, 71] it is known that second Melnikov conditions
are not necessary for proving existence of lower dimensional tori in the elliptic context. For
example, Bourgain approached the problem without using reducibility, thus avoiding to ask
for these non-resonance conditions. However, cumbersome multiscale analysis is required
to approximate the solution of truncated cohomological equations, thus leading to a process
which is not suitable for numerical implementations—at each step, one has to invert a large
matrix which has a huge computational cost. Nevertheless, asking for reducibility we end up
inverting a diagonal matrix in Fourier space (see remark 3.11). Another approach to avoid
second Melnikov conditions was proposed by Eliasson in [23] and consists in performing a far-
from-identity transformation when we have to deal with such resonant frequencies. Concretely,
if λ ∈ R

n−r does not satisfy second Melnikov conditions, then we can introduce new normal
frequencies λ̃j = λj − 〈mj, ω/2〉, and we can carefully choose the vectors mj ∈ Z

r in
such a way that second Melnikov conditions are satisfied (it is also necessary to work in
the covering 2T

r = R
r/(4πZ)r of the torus). In this paper we study reducible tori without

using Eliasson’s method (thus emphasizing the geometric ideas linked with parametrization
methods). We ask for second Melnikov conditions paying the price of excluding a small
set of invariant tori. Nevertheless, when numerically implementing this method, the use of
Elliasson’s transformation is very useful (this was used in [29] to continue elliptic tori beyond
their bifurcation to hyperbolic tori).

Remark 3.11. All the computations performed in the proof of theorem 3.1 can be implemented
very efficiently in a computer. For example, the solution of cohomological equations with
constant coefficients and the computation of derivatives like Dτ or Lωτ correspond to diagonal
operators in Fourier space. Other algebraic manipulations can be performed efficiently in
real space and there are very fast and robust fast Fourier transform algorithms that allow
passing from real (or complex) space to Fourier space (and ‘vice versa’). Accordingly, if
we approximate a torus using N Fourier modes, we can implement an algorithm to compute
the object with a cost of order O(N log N) in time and O(N) in memory. We refer to the
works [13, 18, 36] to analogous algorithms in several contexts. Therefore, this approach
presents significant advantages in contrast with methods which require to deal with full
matrices, since they represent a cost of O(N2) in memory and O(N3) in time (we refer for
example to [14]).

Although one of the main features of both the formulation and the proof of theorem 3.1
is that we do not require to write the problem in action-angle coordinates, we think that it
can be illustrative to express this result for a close-to-integrable system, in order to clarify the
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meaning of hypotheses H3 and H4 in this context. Indeed, let us consider the following family
of Hamiltonian systems written in action-angle-like coordinates (ϕ, y, z) ∈ T

r ×R
r ×R

2(n−r):

hµ(ϕ, y, z) = h0(y, z) + µf (ϕ, y, z) (13)

such that for y = 0, we have that z = 0 is an elliptic non-degenerate equilibrium for the system
h0(y, z). In particular, τ0(θ) = (θ, 0, 0) gives a parametrization of an invariant torus of h0

with basic frequencies ω = gradyh0(0, 0) ∈ R
r . By performing a suitable canonical change

of variables in order to eliminate crossed quadratic terms in (y, z), we can assume that

h0(y, z) = 〈ω, y〉 + 1
2 〈y, Ay〉 + 1

2 〈z, Bz〉 + O3(y, z)

close to (y, z) = (0, 0), where A and B are symmetric matrices, such that

spec(Jn−rB) = {iλ1, . . . , iλn−r , −iλ1, . . . ,−iλn−r}
are the normal eigenvalues of the torus T

r × {0} × {0}. The associated normal directions are
given by the real and imaginary parts of the matrix of eigenvectors satisfying Jn−rBN̂ = N̂�,
where � = diag(iλ) = diag(iλ1, . . . , iλn−r ). Using symplectic properties, we can select
the signs of the components of λ and the complex matrix N̂ in such a way that it satisfies
N̂�Jn−r N̂

∗ = iIdn−r .
Then, to apply theorem 3.1 to the family of Hamiltonians hµ given by (13), for small |µ|,

we consider the family of approximately elliptic and invariant tori τµ(θ) = τ0(θ) + O(µ) with
normal frequencies λµ = λ + O(µ) and normal vectors Nµ(θ)� = (0 0 N̂�) + O(µ), where
the terms O(µ) stand for the first order corrections in µ—they can be computed by means of
Lindstedt series or normal forms with respect to µ—that are needed in order to check that the
normal frequencies ‘move’ as a function of µ. This family satisfies

Lωτµ(θ) = Jgrad hµ(τµ(θ)) + O2(µ),

LωNµ(θ) = Jhess hµ(τµ(θ))Nµ(θ) − Nµ(θ)�µ + O2(µ),

and, for µ = 0, we have

Dτ0(θ) =
Idr

0
0

 , N0(θ) =
 0

0

N̂

 , G−1
Dτ0

(θ) = Idr , �N0,N
∗
0
(θ) = iIdn−r .

Moreover, it is not difficult to check that the matrix A1,µ(θ) in H4 at µ = 0 reads as
A1,0(θ) = −A, which implies that H4 is equivalent to the standard (Kolmogorov) non-
degeneracy condition for the unperturbed system.

4. Overview and heuristics of the method

In this section we outline the main ideas of the presented approach. Our aim is to emphasize
the geometric interpretation of our construction, thus highlighting the additional difficulties
with respect to the Lagrangian and normally hyperbolic cases. First, in section 4.1, we sketch
briefly the proof of theorem 3.1. Although some parts of the proof involve quite cumbersome
computations, the construction of the iterative procedure is fairly natural. In section 4.2 we
focus on the geometric properties of the invariant and elliptic case. These properties allow
us to obtain approximate solutions for the equations derived in section 4.1 associated with
approximately invariant and elliptic tori.
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4.1. Sketch of the proof

Let h : U ⊂ R
2n → R be a Hamiltonian function and let us suppose that T is an approximately

invariant and elliptic torus of basic frequencies ω ∈ R
r and normal ones λ ∈ R

n−r , satisfying
strong non-resonance conditions (4) and (9). The translation of definitions 2.5 and 2.9 into a
functional setting is

F(τ ) = e, G(τ, N, �) = R,

with � = diag(iλ), where we have introduced the following operators:

F(τ ) = Lωτ − Jgrad h(τ),

G(τ, N, �) = LωN − Jhess h(τ)N + N�.

Then, we look for an embedding τ̄ : T
r → U , normal directions N̄ : T

r → M2n×(n−r)(C)

and normal frequencies λ̄, satisfying

F(τ̄ ) = 0, G(τ̄ , N̄, �̄) = 0,

with �̄ = diag(iλ̄). Since these equations have a triangular structure, we approach first the
correction of the parametrization of the torus, i.e. we look for τ̄ = τ + �τ satisfying the above
expressions. We write the first equation as

F(τ + �τ) = e + Lω�τ − Jhess h(τ)�τ + O2(�τ ) = 0.

If we neglect terms O2(�τ ) we obtain the following linearized equation (the Newton method):

Lω�τ − Jhess h(τ)�τ = −e, (14)

which allows us to correct the invariance of the torus up to terms of second order in e. In a
similar way, we look for N̄ = N + �N and �̄ = � + �� such that

G(τ̄ , N̄, �̄) = R̂ + Lω�N − Jhess h(τ)�N + N�� + �N� + O2(�N, ��) = 0,

where

R̂ = R + Jhess h(τ)N − Jhess h(τ̄ )N (15)

includes both the error in reducibility and the one introduced when correcting the torus (which
is expected to be of order of the size of e). Hence, in order to apply one step of the Newton
method to correct reducibility, we have to solve the following linearized equation for �N

and ��:

Lω�N − Jhess h(τ)�N + N�� + �N� = −R̂. (16)

For convenience, once we fix τ , N and �, we define the following differential operators
(acting on vectors or matrices of 2n rows):

R(ξ) = Lωξ − Jhess h(τ)ξ, (17)

S(ξ, η) = R(ξ) + Nη + ξ�, (18)

so equations (14) and (16) are equivalent to invert R and S

R(�τ ) = −e, S(�N, ��) = −R̂. (19)

As it was done in [17], the main idea is to transform the linearized equation (14) into a
simpler linear equation. This is done using a suitable basis along the approximate torus. The
obtained equation can be approximately solved by means of the Fourier series. Indeed, an
approximate solution with an error of quadratic size in e and R is enough for the convergence
of the scheme—the Newton method still converges quadratically if we have a good enough
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approximation of the Jacobian matrix. Under suitable conditions of non-resonance and non-
degeneracy, iteration of this process leads to a quadratic scheme that allows us to overcome
the effect of the small divisors of the problem. The main contribution of this paper is to adapt
this construction (that we describe next in a more precise way) to deal with equations (14)
and (16) simultaneously.

Let us discuss the construction of the basis mentioned above. In the Lagrangian case we
only have to deal with equation (14) and the columns of the matrices Dτ and JDτG−1

Dτ give
us an approximately symplectic basis of R

2n at any point of the torus. Moreover, it turns out
that R(Dτ) = 0 + O(e) and R(JDτG−1

Dτ ) = DτA1 + O(e), where A1 : T
n → Mn×n(R) is

a symmetric matrix. Using this basis we can write the linearized equation (14) in ‘triangular
form’ with respect to the projections of �τ over Dτ and JDτG−1

Dτ , in such a way that the
problem is reduced to solve two cohomological equations with constant coefficients. However,
in the lower dimensional case the previous construction is not enough since we also have to
take into account the normal directions of the torus. As mentioned in the introduction, this
scheme has been recently adapted in [24] for the normally hyperbolic case, without requiring
reducibility of the normal variational equations. The main ingredient is that there exists a
splitting between the centre and the hyperbolic directions of the torus and we can reduce the
study of equation (14) to the projections according to this splitting. The dynamics on the
hyperbolic directions is characterized by asymptotic (geometric) growth conditions2—both in
the future and in the past—and the linearized equation (14) restricted to the centre subspace
follows as in the Lagrangian case (now the ambient space is R

2r ).
In the normally elliptic context, we ask for reducibility in order to express equation (14)

in a simple form. Hence, we solve simultaneously equation (16), thus obtaining a basis that
reduces the normal variational equations of the torus to constant coefficients up to a quadratic
error. In this case, the approximately (with an error of the order of the size of e and R)
symplectic basis is obtained by completing the columns of Dτ , N and iN∗ with the columns
of a suitably constructed matrix V : T

r → M2n×r (R). Basically, we take advantage of the fact
that V satisfies R(V ) = DτA1 modulo terms of order e and R, where A1 : T

r → Mr×r (R)

will be specified later on. Hence, we find approximately solutions for equations (19) in terms
of the constructed basis as follows:

�τ = Dτ�1 + V �2 + N�3 + iN∗�4,

�N = DτP1 + V P2 + NP3 + iN∗P4,

where {�i}, {Pi}, with i = 1, . . . , 4, are the solutions of cohomological equations (37)–(40)
and (42)–(45), respectively. The correction �� in the normal eigenvalues is determined from
the compatibility condition of these last equations.

Let us observe that in order to correct the reducibility of the torus we have to change
slightly the normal directions and the normal frequencies. Since the normal frequencies λ

are modified at each step of the process, we do not know in advance if they will satisfy the
required Diophantine conditions for all steps—unless we have enough parameters to control
the value of all of them simultaneously. To deal with this problem we require some control on
the change of these frequencies, in such a way that we can remove parameters that give rise
to resonant frequencies. Since at every step of the inductive process we are removing a dense
set of parameters, we have to work with sets of empty interior. This does not allow us to keep
any kind of smooth dependence (in the usual sense) with respect to the parameter.

There are several methods in the literature to deal with this problem. The first approach
was due to Arnold (see [1]) and it consists in working, at every step of the inductive procedure,

2 Concretely, the solutions for the equations projected into the hyperbolic directions are obtained by means of an
absolutely convergent power series. See details in [24].
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with a finite number of terms in the Fourier expansions (‘ultraviolet cut-off’). Then, since
we only need to deal with a finite number of resonances at every step, we can work on open
sets of parameters and keep the smooth dependence on these sets. Another possibility is
to consider Lipschitz parametric dependence and to check that this dependence is preserved
along the iterative procedure (this is the method used in [37–40]). Lipschitz regularity suffices
to control the measure of the resonant sets. In this paper we follow the Lipschitz approach
because it allows us to present the geometric construction in a clear way, assuming that we
have Diophantine conditions up to any order. Then, the technical details corresponding to the
Lipschitz regularity are performed separately in section 6.2.

4.2. Characterization of the invariant and reducible case

Our goal now is to formally ‘invert’ the linear operators R given by (17) and S given by (18)—
see propositions 4.4 and 4.6, respectively—when the corresponding torus T is invariant and
normally elliptic. In order to do this, first we characterize at a formal level some geometric
properties of lower dimensional elliptic invariant tori. Later on, the same construction provided
in this section will be used to study approximately invariant tori in order to solve equations
in (19) with a small error (controlled by the errors of invariance and reducibility).

All along this section we consider an r-dimensional normally elliptic quasi-periodic
invariant torus T for a Hamiltonian h of basic frequencies ω ∈ R

r and normal frequencies
λ ∈ R

n−r satisfying non-resonance conditions (2), (7) and (8), i.e. we have

Lωτ(θ) = Jgrad h(τ(θ)), (20)

LωN(θ) = Jhess h(τ(θ))N(θ) − N(θ)�, (21)

with � = diag(iλ). We assume also that the matrices GDτ (θ) and GN,N∗(θ) are invertible for
every θ ∈ T

r . Then, we claim (see the proof of proposition 4.1) that under these conditions
�N,N∗ is constant, pure imaginary and diagonal. If we assume that this matrix is non-singular,
then we can suppose that (see remark 3.2)

�N,N∗(θ) = iIdn−r . (22)

Proposition 4.1. Given T an invariant and elliptic torus as above, we define the matrix
functions

N1(θ) = N(θ), N2(θ) = iN∗(θ),

and the real matrix

V (θ) = JDτ(θ)G−1
Dτ (θ) + N1(θ)B1(θ) + N2(θ)B2(θ) + Dτ(θ)B3(θ), (23)

where

B1(θ) = GN2,Dτ (θ)G−1
Dτ (θ), (24)

B2(θ) = −GN1,Dτ (θ)G−1
Dτ (θ), (25)

B3(θ) = Re(GB2,B1(θ)). (26)

Then, the columns of the matrices Dτ(θ), V (θ), N1(θ) and N2(θ) form a symplectic basis for
any θ ∈ T

r , in the sense that the matrices �Dτ (θ), �V (θ), �Ni
(θ), �Dτ,Ni

(θ) and �Ni,V (θ)

vanish, for i = 1, 2, and

�N2,N1(θ) = Idn−r , �V,Dτ (θ) = Idr .
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Proof. To obtain the geometric properties associated with the matrices Dτ , N1 and N2 we
proceed as in the proof of lemma 2.3, where we proved that �Dτ = 0. Let us start studying
the matrix �N2,N1 by computing

Lω�N2,N1 = Lω(N�
2 JN1) = (LωN2)

�JN1 + N�
2 JLωN1

= (Jhess h(τ)N2 + N2�)�JN1 + N�
2 J (Jhess h(τ)N1 − N1�)

= �N�
2 JN1 − N�

2 JN1� = ��N2,N1 − �N2,N1�.

Then, if we expand �N2,N1 in Fourier series we obtain

(〈k, ω〉 − λi + λj )(�̂N2,N1)
(i,j)

k = 0,

where (�N2,N1)
(i,j) denotes the (i, j)th entry of �N2,N1 . Recalling the non-resonance

hypotheses 〈k, ω〉 − λi + λj �= 0 (if i �= j or k �= 0) we obtain that (�̂N2,N1)
(i,j)

k = 0,
for all k ∈ Z

r\{0}, and (�̂N2,N1)
(i,j)

0 = 0 if i �= j , so this matrix is constant and diagonal.
Moreover, ��

N2,N1
= �∗

N2,N1
so its entries are real. Finally, using hypothesis (22) we write

�N2,N1 = i�N∗,N = −i��
N,N∗ = Idn−r .

To prove that �N1 vanishes we compute

Lω�N1 = −��N1 − �N1�.

Now, the Fourier coefficients of �N1 satisfy

(〈k, ω〉 + λi + λj )(�̂N1)
(i,j)

k = 0,

so it turns out that all of them vanish (using the non-resonance conditions). Moreover, taking
derivatives at equation (20) we obtain

LωDτ = Jhess hDτ,

that together with equation (21), leads to

Lω�Dτ,N1 = −�Dτ,N1�.

This implies that �Dτ,N1 = 0, since the Fourier coefficients of the component functions satisfy

(〈k, ω〉 + λi)(�̂Dτ,N1)
(i,j)

k = 0.

Finally, it is easy to see that �N2 = −�∗
N1

and �Dτ,N2 = i�∗
Dτ,N1

, so these matrices also
vanish.

Next, we see that the columns of the (real) matrices Dτ , JDτG−1
Dτ , Re(N) and Im(N)

form an R-basis of R
2n. To this end, it suffices to check that the columns of Dτ , JDτG−1

Dτ ,
N1 and N2 are C-independent on C

2n. Thus, let us consider a linear combination

Dτa + JDτG−1
Dτb + N1c + N2d = 0,

for vector functions a, b : T
r → C

r and c, d : T
r → C

n−r . Multiplying by Dτ�, Dτ�J ,
N�

2 J and N�
1 J and using the geometric properties proved above, we obtain the following

system of equations:
GDτ 0 GDτ,N1 GDτ,N2

0 −Idr 0 0
0 −GN2,DτG

−1
Dτ Idn−r 0

0 −GN1,DτG
−1
Dτ 0 −Idn−r


︸ ︷︷ ︸

M1


a

b

c

d

 =


0
0
0
0

 , (27)

where det M1 = det GDτ �= 0, so we conclude that a = b = 0 and c = d = 0.
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To check that the matrix V is real, we use the expressions N∗
1 = −iN2 and B∗

1 = iB2.
Then, we compute N∗

1 B∗
1 = −i2N2B2 = N2B2, thus concluding that V ∗ = V .

Finally, the following computations are straightforward:

�Dτ,V = −Idr + �Dτ,N1B1 + �Dτ,N2B2 + �DτB3 = −Idr ,

�N1,V = −GN1,DτG
−1
Dτ + �N1B1 + �N1,N2B2 + �N1.DτB3

= −GN1,DτG
−1
Dτ − B2 = 0,

�N2,V = −GN2,DτG
−1
Dτ + B1 = 0,

�V = (G−1
DτDτ�J� + B�

1 N�
1 + B�

2 N�
2 + B�

3 Dτ�)JV

= G−1
DτGDτ,N1B1 + G−1

DτGN2,DτB2 + B3 − B�
3

= −GB2,B1 + GB1,B2 + B3 − B�
3

= iIm(GB1,B2 − GB2,B1) = 0.

In the last computation we used that V is real. �

Remark 4.2. Note that the matrix B3 can be taken modulo the addition of a symmetric real
matrix. This freedom can be used to ask for reducibility also in the ‘central directions’ of the
torus. Hence, instead of the matrix A1 that appears in lemma 4.3 we would obtain its average
[A1]Tr . Since this does not give us any significant advantage, we do not resort to this fact.

In the invariant and reducible case, we characterize the action of R on Dτ(θ), N1(θ) and
N2(θ) in a very simple way

R(Dτ(θ)) = 0, R(N1(θ)) = −N1(θ)�, R(N2(θ)) = N2(θ)�. (28)

The first expression follows immediately from equation (20)—invariance—and the other ones
from equation (21)—reducibility. Moreover, we have the following result for V (θ).

Lemma 4.3. Under the setting of proposition 4.1, we have that

R(V (θ)) = Dτ(θ)A1(θ),

where A1 : T
r → Mr×r (R) is given by the real symmetric matrix

A1(θ) = G−1
Dτ (θ)Dτ(θ)�[T1(θ) + T2(θ) + T2(θ)�]Dτ(θ)G−1

Dτ (θ), (29)

where

T1(θ) = J�hess h(τ(θ))J − hess h(τ(θ)), (30)

T2(θ) = T1J [Dτ(θ)GDτ (θ)−1Dτ(θ)� − Id] Re(N1(θ)N2(θ)�).

Proof. We only have to write the expression for R(V ) in terms of the previously constructed
symplectic basis

R(V ) = DτA1 + V A2 + N1A3 + N2A4, (31)

and then to show that A1 is given by (29) and A2 = A3 = A4 = 0. First, we use (23) and (28)
to express R(V ) as

R(V ) = R(JDτG−1
Dτ ) + N1(LωB1 − �B1) + N2(LωB2 + �B2) + DτLωB3.

Then, multiplying both sides of equation (31) by V �J , Dτ�J , N�
2 J , N�

1 J and using the
symplectic properties of the basis we obtain the following expressions:

A1 = LωB3 + V �JR(JDτG−1
Dτ ), (32)

A2 = −Dτ�JR(JDτG−1
Dτ ), (33)

A3 = LωB1 − �B1 + N�
2 JR(JDτG−1

Dτ ), (34)

A4 = LωB2 + �B2 − N�
1 JR(JDτG−1

Dτ ). (35)



1052 A Luque and J Villanueva

First, introducing B1 = GN2,DτG
−1
Dτ into equation (34), we obtain

A3 = Lω(N�
2 DτG−1

Dτ ) − �N�
2 DτG−1

Dτ + N�
2 JR(JDτG−1

Dτ )

= LωN�
2 DτG−1

Dτ + N�
2 Lω(DτG−1

Dτ ) − �N�
2 DτG−1

Dτ

+ N�
2 JLω(JDτG−1

Dτ ) + N�
2 hess hJDτG−1

Dτ

= (LωN2 − Jhess hN2︸ ︷︷ ︸
R(N2)

−N2�)�DτG−1
Dτ = 0,

where we used the property (28) for N2. Recalling that N2 = iN∗
1 we observe that A∗

3 = iA4

so we also have A4 = 0.
Now, we expand the expression for R(JDτG−1

Dτ ), obtaining

R(JDτG−1
Dτ ) = R(JDτ)G−1

Dτ + JDτLω(G−1
Dτ )

= −hess hDτG−1
Dτ − JDτG−1

Dτ (Dτ�Jhess h − Dτ�hess hJ )DτG−1
Dτ

− Jhess hJDτG−1
Dτ = (Idr + JDτG−1

DτDτ�J )T1DτG−1
Dτ ,

where we used expression (30) for T1. Then, on the one hand we have
Dτ�JR(JDτG−1

Dτ ) = 0—in combination with (33) this implies that A2 = 0—and on the
other hand we have

V �JR(JDτG−1
Dτ ) = (B�

3 Dτ� + B�
2 N�

2 + B�
1 N�

1 + G−1
DτDτ�J�)JR(JDτG−1

Dτ )

= −B�
2 (LωB1 − �B1) + B�

1 (LωB2 + �B2) + G−1
DτDτ�T1DτG−1

Dτ ,

where we have used equations (34) and (35) taking into account that A3 = A4 = 0. Finally,
we introduce this last expression into (32) and recall that B3 = Re(GB2,B1) in order to obtain

A1 = Re(Lω(B�
2 B1)) − B�

2 (LωB1 − �B1) + B�
1 (LωB2 + �B2) + G−1

DτDτ�T1DτG−1
Dτ

= Re(LωB�
2 B1 − B�

2 LωB1 + 2B�
2 �B1) + G−1

DτDτ�T1DτG−1
Dτ ,

where we used that (B�
1 (LωB2 + �B2))

∗ = −B�
2 (LωB1 − �B1). Now we replace B1 and B2

by equations (24) and (25) respectively, and we expand the expression for LωB1 and LωB2 as
follows (we also use that B1 = −iB∗

2 ):

LωB2 = −LωN�
1 DτG−1

Dτ − N�
1 Lω(DτG−1

Dτ )

= �N�
1 DτG−1

τ − N�
1 hess hJ�DτG−1

Dτ − N�
1 Lω(DτG−1

Dτ )

= −�B2 + N�
1 JT1DτG−1

Dτ − N�
1 DτLω(G−1

Dτ )

= −�B2 + N�
1 JT1DτG−1

Dτ − N�
1 DτG−1

DτDτ�JT1DτG−1
Dτ ,

LωB1 = �B1 − N�
2 JT1DτG−1

Dτ + N�
2 DτG−1

DτDτ�JT1DτG−1
Dτ .

From these expressions we observe that term 2B�
2 �B1 in A1 is cancelled. Finally, since

(N1N
�
2 )∗ = −N2N

�
1 = (−N1N

�
2 )�, it turns out that Re(N1N

�
2 ) = Re((−N1N

�
2 )�) so we

obtain expression (29) for A1. �

Now we have all the ingredients to formally invert the operator R.

Proposition 4.4. Under the setting of proposition 4.1, we assume that the matrix A1 given
in (29) satisfies the twist condition det[A1]Tr �= 0. Then, given a function e : T

r → R
2n

satisfying [Dτ�Je]Tr = 0, we obtain a formal solution for the equation

R(�τ (θ)) = Lω�τ − Jhess h(τ)�τ = −e(θ),

which is unique up to terms in ker(R) = {DτA : A ∈ Mr×r (R)}.
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Proof. We express the unknown �τ(θ) in terms of the constructed symplectic basis

�τ = Dτ�1 + V �2 + N1�3 + N2�4, (36)

expand R(�τ ) and project to compute the functions {�i}i=1,...,4. Concretely, we have

R(�τ ) = R(Dτ)�1 + R(V )�2 + R(N1)�3 + R(N2)�4

+ DτLω�1 + V Lω�2 + N1Lω�3 + N2Lω�4

= Dτ(Lω�1 + A1�2) + V Lω�2 + N1(Lω�3 − ��3) + N2(Lω�4 + ��4).

Multiplying both sides of this expression by V �J , Dτ�J , N�
2 J and N�

1 J , we obtain the
following four cohomological equations:

Lω�1 + A1�2 = −V �Je, (37)

Lω�2 = Dτ�Je, (38)

Lω�3 − ��3 = −N�
2 Je, (39)

Lω�4 + ��4 = N�
1 Je. (40)

As [Dτ�Je]Tr = 0, the solution of equation (38) is unique, up to an arbitrary average
[�2]Tr , provided that the non-resonance condition (2) holds. Then, using the non-degeneracy
condition det[A1]Tr �= 0, we choose

[�2]Tr = [A1]−1
Tr ([−V �Je]Tr − [Ã1�̃2]Tr ) (41)

in such a way that [A1�2 +V �Je]Tr = 0 so we have a unique solution for �1 up to the freedom
of fixing [�1]Tr . Actually, it is easy to check that (39) and (40) have a unique solution for �3

and �4 provided that the non-resonance condition (9) is fulfilled. Moreover, since e is a real
function, we conclude that �∗

3 = i�4 and this allows us to guarantee that expression (36) is
also real. �

Remark 4.5. Later on—see computations in (93)—we show that if τ also parametrizes an
approximately invariant torus and e is the error of invariance, then the compatibility condition
[Dτ�Je]Tr = 0 is automatically fulfilled.

Proposition 4.6. Under the setting of proposition 4.1, given a function R̂ : T
r �→

M2n×(n−r)(C), we obtain a solution for the equation

S(�N, ��) = R(�N) + N�� + �N� = −R̂,

which is unique for �� and for �N up to terms in ker(S) = {ND : D = diag(d), d ∈ C
n−r}.

Proof. As before, we write the solution �N of this equation in terms of the symplectic basis as

�N = DτP1 + V P2 + N1P3 + N2P4.

Then, we compute the action of S on the pair (�N, ��), thus obtaining

S(�N, ��) = R(�N) + N1�� + �N�

= R(Dτ)P1 + R(V )P2 + R(N1)P3 + R(N2)P4

+ DτLωP1 + V LωP2 + N1LωP3 + N2LωP4 + N1��

+ DτP1� + V P2� + N1P3� + N2P4�

= Dτ(LωP1 + P1� + A1P2) + V (LωP2 + P2�)

+ N1(LωP3 + P3� − �P3 + ��) + N2(LωP4 + P4� + �P4) = R̂.
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If we multiply this expression by V �J , Dτ�J , N�
2 J and N�

1 J , we end up with the
following four cohomological equations:

LωP1 + P1� + A1P2 = −V �J R̂, (42)

LωP2 + P2� = Dτ�J R̂, (43)

LωP3 + P3� − �P3 = −N�
2 J R̂ − ��, (44)

LωP4 + P4� + �P4 = N�
1 J R̂. (45)

Let us observe that, under the assumed non-resonance conditions (7) and (8), the only
unavoidable resonances are those in the diagonal of the average of equation (44), so we require
that the diagonal of the average of the right-hand side of this equation vanishes. This is
attained by fixing the correction of the normal eigenvalues �� = −diag[N�

2 J R̂]Tr . Therefore,
we obtain unique solutions for P1, P2, P3, P4 and ��—modulo terms in diag[P3]Tr —of this
system of equations. �

Remark 4.7. We will see that if R̂ corresponds to the error in reducibility, as defined in
equation (15), then the geometry imposes that the correction �� is a pure imaginary diagonal
matrix, thus preserving the elliptic normal behaviour—see computations in (96).

5. One step of the Newton method

In this section we perform one step of the Newton method to correct an approximately invariant
and elliptic torus. To this end, we follow the scheme presented in section 4.2 for the case of a
true elliptic invariant torus. The main difficulty is that we have to handle with ‘noise’ introduced
by the approximately invariant and reducible character.

Proposition 5.1. Let us consider a Hamiltonian h : U ⊂ R
2n → R, where U is an open set,

and a vector of basic frequencies ω ∈ R
r . Let us assume that the following hypotheses hold:

H1 The Hamiltonian h is real analytic and can be holomorphically extended to some complex
neighbourhood U of U . Moreover, we assume that ‖h‖C3, U � σ0.

H2 There exists an approximately invariant and elliptic torus in the sense of definitions 2.5
and 2.9, i.e. we have an embedding τ , a matrix function N and approximated normal
eigenvalues � = diag(iλ), with λ ∈ R

n−r , satisfying

Lωτ(θ) = Jgrad h(τ(θ)) + e(θ), (46)

LωN(θ) = Jhess h(τ(θ))N(θ) − N(θ)� + R(θ), (47)

for certain error functions e and R, where the functions τ and N are analytic and can
be holomorphically extended to �(ρ) for certain 0 < ρ < 1, satisfying τ(�(ρ)) ⊂ U .
Assume also that we have constants σ1, σ2 such that

‖Dτ‖ρ, ‖N‖ρ, ‖G−1
Dτ‖ρ, ‖G−1

N,N∗‖ρ < σ1, dist(τ (�(ρ)), ∂U) > σ2 > 0.

H3 We have diag[�N,N∗]Tr = iIdn−r .
H4 The real symmetric matrix A1 given by

A1(θ) = G−1
Dτ (θ)Dτ(θ)�[T1(θ) + T2(θ) + T2(θ)�]Dτ(θ)G−1

Dτ (θ), (48)

where

T1(θ) = J�hess h(τ(θ))J − hess h(τ(θ)), (49)

T2(θ) = T1(θ)J [Dτ(θ)GDτ (θ)−1Dτ(θ)� − Id] Re(iN(θ)N∗(θ)�), (50)

satisfies the non-degeneracy (twist) condition |[A1]−1
Tr | < σ1.
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H5 There exist constants σ3, σ4 such that the approximated normal frequencies satisfy

0 <
σ3

2
< |λi | <

σ4

2
, 0 < σ3 < |λi ± λj |,

for i, j = 1, . . . , n − r , with i �= j .
H6 The basic frequencies ω ∈ R

r and the normal frequencies λ ∈ R
n−r satisfy Diophantine

conditions (4) and (9) of (γ, ν)-type, for certain 0 < γ < 1 and ν > r − 1.

Then, there exists a constant ᾱ > 1 depending on ν, r , n, |ω|, σ0, σ1, σ2, σ3 and σ4 such
that if the following bounds are satisfied:

ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
< min{1, σ1 − σ ∗}, (51)

dist(τ (�(ρ)), ∂U) − ᾱ

γ 2δ2ν
‖e‖ρ > σ2, (52)

min
i �=j

|λi ± λj | − ᾱ

γ 2δ2ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
> σ3, (53)

min
i

|λi | − ᾱ

γ 2δ2ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
>

σ3

2
, (54)

max
i

|λi | +
ᾱ

γ 2δ2ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
<

σ4

2
, (55)

where

σ ∗ = max
{
‖Dτ‖ρ, ‖N‖ρ, ‖G−1

Dτ‖ρ, ‖G−1
N,N∗‖ρ, |[A1]−1

Tr |
}
,

for some 0 < δ < ρ/4, then we have an approximately invariant and elliptic torus T̄ for Xh

of the same basic frequencies ω. This means that we have an embedding τ̄ = τ + �τ , with
τ̄ (Tr ) = T̄ , a matrix function N̄ = N + �N , which are analytic in �(ρ − 2δ) and �(ρ − 4δ),
respectively, and approximated normal eigenvalues �̄ = diag(iλ̄) = � + ��, with λ̄ ∈ R

n−r ,
such that

Lωτ̄ (θ) = Jgrad h(τ̄ (θ)) + ē(θ),

LωN̄(θ) = Jhess h(τ̄ (θ))N̄(θ) − N̄(θ)�̄ + R̄(θ).

In addition, the following estimates hold:

‖�τ‖ρ−2δ � ᾱ

γ 2δ2ν
‖e‖ρ, (56)

‖ē‖ρ−3δ � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
‖e‖ρ, (57)

|��| � ᾱ

γ 2δ2ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
, (58)

‖�N‖ρ−4δ � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
, (59)

‖R̄‖ρ−4δ � ᾱ

γ 8δ8ν−2

(‖e‖ρ

δ
+ ‖R‖ρ

)2

, (60)

‖G−1
Dτ̄ − G−1

Dτ‖ρ−3δ � ᾱ

γ 2δ2ν+1
‖e‖ρ, (61)

‖G−1
N̄,N̄∗ − G−1

N,N∗‖ρ−4δ � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
, (62)

|[Ā1]−1
Tr − [A1]−1

Tr | � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
. (63)
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Furthermore, the new objects satisfy the following conditions:

dist(τ̄ (�(ρ − 2δ)), ∂U) > σ2,
σ3

2
< |λ̄j | <

σ4

2
, σ3 < |λ̄i ± λ̄j |, (64)

for i, j = 1, . . . , n − r , with i �= j , and

max
{
‖Dτ̄‖ρ−3δ, ‖N̄‖ρ−4δ, ‖G−1

Dτ̄‖ρ−3δ, ‖G−1
N̄,N̄∗‖ρ−4δ, |[Ā1]−1

Tr |
}

< σ1, (65)

where Ā1 corresponds to formulae (48), (49) and (50) for τ̄ and N̄ . Moreover, the columns of
N̄ are normalized in such a way that diag[�N̄,N̄∗ ]Tr = iIdn−r .

To prove this result, we first construct an approximately symplectic basis along the torus
following the ideas of section 4.2. This is done in proposition 5.3. The geometric properties
of this basis allow us to approximately invert the operators R and S—given by (17) and (18),
respectively—as it is required to obtain the iterative result of proposition 5.1. Basically, it
turns out that the solutions of the cohomological equations derived in section 4.2 are enough
to get the desired result. Before that, we state the following standard result that allows us to
control the small divisors.

Lemma 5.2 (Rüssmann estimates). Let g : T
r → C be an analytic function on �(ρ) and

bounded in the closure. Given ω ∈ R
r\{0} and d ∈ R\{0} we consider the sets of complex

numbers {d0
k }k∈Zr\{0}, {d1

k }k∈Zr given by d0
k = 〈k, ω〉, d1

k = 〈k, ω〉 + d, satisfying

|d0
k |, |d1

k | � γ /|k|ν1, ∀k ∈ Z
r\{0}

for certain γ > 0 and ν > r − 1. Then, the functions f 0 and f 1 whose Fourier coefficients
are given by

f̂ 0
k = ĝk/d

0
k , k ∈ Z

r\{0}, f̂ 0
0 = 0,

f̂ 1
k = ĝk/d

1
k , k ∈ Z

r ,

satisfy

‖f 0‖ρ−δ � α0

γ δν
‖g‖ρ, ‖f 1‖ρ−δ �

(
1

|d| +
α0

γ δν

)
‖g‖ρ,

for any δ ∈ (0, min{1, ρ}), where α0 � 1 is a constant depending on r and ν.

Proof. We can control the functions f̃ i(θ) = f i(θ) − [f i]Tr as

‖f̃ i‖ρ−δ �
∑

k∈Zr\{0}

|ĝk|
|di

k|
e|k|1(ρ−δ) �

( ∑
k∈Zr\{0}

|ĝk|2e2|k|1ρ
)1/2( ∑

k∈Zr\{0}

1

|di
k|2

e−2|k|1δ
)1/2

,

for i = 0, 1, where we used Cauchy–Schwarz inequality. On the one hand, it is not difficult
to see—using Bessel’s inequality, see details in [62]—that the first term can be bounded by∑

k∈Zr\{0}
|ĝk|2e2|k|1ρ � 2r‖g̃‖2

ρ,

and on the other hand, the second term is controlled by estimating the sum∑
k∈Zr\{0}

1

|di
k|2

e−2|k|1δ =
∞∑
l=1

( ∑
k∈Z

r\{0}
|k|1�l

1

|di
k|2

)
(e−2lδ − e−2(l+1)δ). (66)

Now, we study in detail the case of d1
k (the case of d0

k is analogous). First, we observe that the
divisors d1

k = 〈k, ω〉 + d satisfy dk1 �= dk2 if k1 �= k2. Then, given l ∈ N, we define

Dl = {k ∈ Z
r\{0} : |k|1 � l and d1

k > 0}
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and we sort the divisors according to 0 < dk1 < · · · < dk#Dl
with kj ∈ Dl , for j = 1, . . . , #Dl .

Then, we observe that (since |kj − kj−1| � 2l)

d1
kj

− d1
kj−1

= |〈kj − kj−1, ω〉| � d0
2l,min, (67)

where we have introduced the notation

di
l,min = min

k∈Z
r\{0}

|k|1�l

|di
k|.

From expression (67) we obtain recursively

d1
kj

= d1
kj−1

+ d1
kj

− d1
kj−1

� d1
kj−1

+ d0
2l,min � d1

l,min + (j − 1)d0
2l,min.

Then, using that d0
2l,min � γ /(2l)ν and d1

l,min � γ /lν , we have

#Dl∑
j=1

1

(d1
kj

)2
�

#Dl∑
j=1

1

(d1
l,min + (j − 1)d0

2l,min)
2

�
∞∑

j=1

l2ν

γ 2(1 + (j − 1)2−ν)2
� α(ν)

γ 2
l2ν,

and using a similar argument for d1
kj

< 0, we obtain∑
k∈Z

r\{0}
|k|1�l

1

|d1
k |2 � 2α(ν)

γ 2
l2ν,

so we can control the sum (66) as follows:∑
k∈Zr\{0}

1

|di
k|2

e−2|k|1δ �
∞∑
l=1

2δα(ν)

γ 2

∫ l+1

l

x2νe−2δx dx � α(ν)

γ 2(2δ)2ν
�(2ν + 1).

Combining the obtained expressions—and using that |[f 1]Tr | = |ĝ0|/|d|—we end up with the
stated estimates. �

Proposition 5.3. Under the notations and assumptions of proposition 5.1, we define the matrix
functions

N1(θ) = N(θ), N2(θ) = iN∗(θ),

and the real analytic matrix V (θ) given by (23)–(26). Then, for any 0 < δ < ρ/2 the following
estimates hold:

‖�Dτ‖ρ−2δ � α̂

γ δν+1
‖e‖ρ, (68)

‖�Ni
‖ρ−δ � α̂

γ δν
‖R‖ρ, (69)

‖�Dτ,Ni
‖ρ−2δ � α̂

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
, (70)

‖�N2,N1 − Idn−r‖ρ−δ � α̂

γ δν
‖R‖ρ, (71)

‖�V,Dτ − Idr‖ρ−2δ � α̂

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
, (72)

‖�V,Ni
‖ρ−2δ � α̂

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
, (73)

‖�V ‖ρ−2δ � α̂

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
, (74)
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for i = 1, 2, where α̂ > 1 is a constant depending on ν, r , n, |ω|, σ0, σ1, σ3 and σ4.
Furthermore, if the errors ‖e‖ρ and ‖R‖ρ satisfy

α̂

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
� 1

2
, (75)

then the columns of Dτ(θ), V (θ), N1(θ), N2(θ) form an approximately symplectic basis for
every θ ∈ T

r . In addition, it turns out that the action of the operator R given in (17) on V is
expressed in terms of this basis as

R(V (θ)) = Dτ(θ)(A1(θ) + A+
1(θ)) + V (θ)A+

2(θ) + N1(θ)A+
3(θ) + N2(θ)A+

4(θ), (76)

where A1 is the matrix (48) and A+
1 , A+

2 , A+
3 and A+

4 satisfy the estimate

‖A+
i ‖ρ−2δ � α̂

γ δν+1

(‖e‖ρ

δ
+ ‖R‖ρ

)
, (77)

for i = 1, . . . , 4.

Proof. For the sake of simplicity, we redefine (enlarge) the constant α̂ along the proof to meet
the different conditions given in the statement. For example, we observe that there exists a
constant α̂ > 0, depending on r , n, |ω|, σ0 and σ1, such that

‖Bi‖ρ, ‖T1‖ρ, ‖T2‖ρ, ‖A1‖ρ, ‖V ‖ρ � α̂, ‖LωBi‖ρ−δ � α̂

δ
, (78)

for i = 1, 2, 3—we recall that T1 and T2 are given in (49) and (50), respectively. Now we
take derivatives at both sides of the approximated invariance equation in (46) and we read the
reducibility equations in (47) for N1 and N2

LωDτ = Jhess h(τ)Dτ + De,

LωN1 = Jhess h(τ)N1 − N1� + R,

LωN2 = Jhess h(τ)N2 + N2� + iR∗. (79)

Using the previous expressions, we compute the derivative Lω of the matrices �Dτ , �N1 ,
�Dτ,N1 and �N2,N1 thus obtaining

Lω(�Dτ ) = �De,Dτ + �Dτ,De, (80)

Lω(�N1) = −��N1 − �N1� + �R,N1 + �N1R, (81)

Lω(�Dτ,N1) = −�Dτ,N1� + �De,N1 + �Dτ,R, (82)

Lω(�N2,N1) = ��N2,N1 − �N2,N1� + i�R∗,N1 + �N2,R. (83)

First, we get estimate (68) for �Dτ by applying lemma 5.2 to the (i, j)-component of
�Dτ obtained from (80), i.e. taking d0

k = 〈ω, k〉 and g = −i(�De,Dτ + �Dτ,De)
(i,j) that (using

Cauchy estimates) is analytic in �(ρ − δ). Moreover, since [�Dτ ]Tr = 0 (see remark 2.2), we
obtain

‖�Dτ‖ρ−2δ � α0

γ δν
‖g‖ρ−δ � α̂

γ δν+1
‖e‖ρ.

Then, we proceed in a similar way to get (69) for N1, by applying lemma 5.2 to the
(i, j)-component of �N1 obtained from (81), i.e. taking d1

k = 〈ω, k〉 + λi + λj and g =
−i(�R,N1 + �N1R)(i,j), analytic in �(ρ). To bound the average of �N1 , we use hypothesis H5

of proposition 5.1,

‖�N1‖ρ−δ �
(

1

mini,j |λi + λj | +
α0

γ δν

)
‖g‖ρ �

(
1

σ3
+

α0

γ δν

)
� α̂

γ δν
‖R‖ρ.
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Analogous computations from equations (82) and (83) allow us to obtain estimate (70) for N1

and (71). Of course, to obtain (71) we resort to the hypothesis diag[�N,N∗]Tr = iIdn−r in H3

of proposition 5.1. Estimates (69) and (70) corresponding to N2 are straightforward using that
�N2 = −�∗

N1
and �Dτ,N2 = i�∗

Dτ,N1
.

Next we show that the columns of Dτ , JDτG−1
Dτ , Re(N1) and Im(N1) form an R-basis

of R
2n. As in the proof of proposition 4.1, we consider a linear combination

Dτa + JDτG−1
Dτb + N1c + N2d = 0,

for functions a, b : T
r → C

r and c, d : T
r → C

n−r . We project this equation multiplying by
Dτ�, Dτ�J , N�

2 J and N�
1 J , thus obtaining

M1 +


0 �DτG

−1
Dτ 0 0

�Dτ 0 �Dτ,N1 �Dτ,N2

�N2,Dτ 0 �N2,N1 − Idn−r �N2

�N1,Dτ 0 �N1 �N1,N2 + Idn−r


︸ ︷︷ ︸

M2




a

b

c

d

 =


0
0
0
0

 ,

where M1 is the same matrix that appears in equation (27). Now, we have to invert the matrix
M1 + M2 = M1(Id + M−1

1 M2), where

M−1
1 =


G−1

Dτ M1,2 −G−1
DτGDτ,N1 G−1

DτGDτ,N2

0 −Idr 0 0
0 −GN2,DτG

−1
Dτ Idn−r 0

0 GN1,DτG
−1
Dτ 0 −Idn−r

 ,

with M1,2 = G−1
Dτ (GDτ,N1GN2,Dτ − GDτ,N2GN1,Dτ )G

−1
Dτ , so it is clear that ‖M−1

1 ‖ρ � α̂. By
means of Neumann series we obtain

‖(Id + M−1
1 M2)

−1‖ρ−2δ � 1

1 − ‖M−1
1 M2‖ρ−2δ

,

which is well posed since (using bounds (68)–(71) and applying hypothesis (75))

‖M−1
1 M2‖ρ−2δ � α̂

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
� 1

2
.

Then, it must be a = b = 0 and c = d = 0 along T
r .

Now, we consider the basis defined by the columns of Dτ , V , N1 and N2, where V is given
by (23)–(26), and we characterize the fact that the new basis is approximately symplectic. It
is straightforward to compute

�Dτ,V = −Idr + �Dτ,N1B1 + �Dτ,N2B2 + �DτB3,

�N1,V = −GN1,DτG
−1
Dτ + �N1B1 + �N1,N2B2 + �N1,DτB3

= �N1B1 + (�N1,N2 + Idn−r )B2 + �N1,DτB3,

�V = B�
3 (�Dτ,V + Idr ) + B�

1 �N1,V + B�
2 �N2,V + G−1

Dτ�DτG
−1
Dτ ,

and �N2,V = i�∗
N1,V

. Then, estimates (72)–(74) follow from (68)–(71) and (78).
Let us characterize the action of the linear operator R on the elements of this basis. By

hypothesis, we immediately have that

R(Dτ) = De, R(N1) = −N1� + R, R(N2) = N2� + iR∗, (84)
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and we have to see that if we write

R(V ) = Dτ(A1 + A+
1) + V A+

2 + N1A
+
3 + N2A

+
4,

where A1 is the matrix (29), then the functions A+
1 , A+

2 , A+
3 and A+

4 are small—i.e. they
satisfy (77). To this end, expanding R(V ) in the previous expression as

R(V ) = R(JDτG−1
Dτ ) + N1(LωB1 − �B1) + N2(LωB2 + �B2) + DτLωB3

+ RB1 + iR∗B2 + DeB3,

and multiplying both sides of this equation by V �J , Dτ�J , N�
2 J and N�

1 J , we obtain the
linear system

(Id + M3)


A+

1

A+
2

A+
3

A+
4

 =


C1

C2

C3

C4

 , (85)

where

M3 =


�V,Dτ − Idr �V �V,N1 �V,N2

−�Dτ �V,Dτ − Idr −�Dτ,N1 −�Dτ,N2

�N2,Dτ �N2,V �N2,N1 − Idn−r �N2

−�N1,Dτ −�N1,V −�N1 �N2,N1 − Idn−r

 (86)

and the functions C1, C2, C3 and C4 have the following form

C1 =
C+

1︷ ︸︸ ︷
V �JR(JDτG−1

Dτ ) + LωB3 − A1 +�V,N1(LωB1 − �B1) + �V,N2(LωB2 + �B2)

+ V �J (RB1 + iR∗B2 + DeB3) + (�V,Dτ − Idr )(LωB3 − A1),

C2 =
C+

2︷ ︸︸ ︷
−Dτ�JR(JDτG−1

Dτ ) −�Dτ,N1(LωB1 − �B1) − �Dτ,N2(LωB2 + �B2)

− Dτ�J (RB1 + iR∗B2 + DeB3) + �Dτ (A1 − LωB3),

C3 =
C+

3︷ ︸︸ ︷
N�

2 JR(JDτG−1
Dτ ) + LωB1 − �B1 +�N2(LωB2 + �B2) + �N2,Dτ (LωB3 − A1)

+ (�N2,N1 − Idn−r )(LωB1 − �B1) + N�
2 J (RB1 + iR∗B2 + DeB3),

C4 =
C+

4︷ ︸︸ ︷
−N�

1 JR(JDτG−1
Dτ ) + LωB2 + �B2 −�N1(LωB1 − �B1) + �N1,Dτ (A1 − LωB3)

− (�N1,N2 + Idn−r )(LωB2 + �B2) − N�
1 J (RB1 + iR∗B2 + DeB3),

and we observe that C4 = −iC∗
3 and C+

4 = −i(C+
3 )∗. Apart from C+

1 , C+
2 , C+

3 and C+
4 , the size

of the other terms that appear in the above expressions are easily controlled in terms of ‖e‖ρ

and ‖R‖ρ—using approximately symplectic properties in (68)–(74). We see next that C+
j , for

j = 1, . . . , 4, are also controlled in a similar way, since they are given by equations which are
close to (32)–(35) for the invariant and reducible case. For example, using equation (24) for
B1 in the expressions of C+

3 we obtain

C+
3 = (LωN2 − Jhess hN2 − N2�)�DτG−1

Dτ = iGR∗,DτG
−1
Dτ , (87)
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where we used equation (79). To control C+
1 and C+

2 we have to compute the action of R on
the matrix JDτG−1

Dτ

R(JDτG−1
Dτ ) = R(JDτ)G−1

Dτ + JDτLω(G−1
Dτ ) = (Id + JDτG−1

DτDτ�J )T1DτG−1
Dτ

+ JDeG−1
Dτ − JDτG−1

Dτ [GDe,Dτ + GDτ,De]G−1
Dτ ,

where T1 is given by (49). Then, if we multiply this expression by Dτ�J we get

C+
2 = −GDe,DτG

−1
Dτ (88)

and if we multiply by V �J and use the definitions of C+
2 , C+

3 and C+
4 , we obtain

C+
1 = (B�

3 Dτ� + B�
2 N�

2 + B�
1 N�

1 + G−1
DτDτ�J�)JR(JDτG−1

Dτ ) + LωB3 − A1

= −B�
3 C+

2 + B�
2 (C+

3 − LωB1 + �B1) + B�
1 (−C+

4 + LωB2 + �B2)

+ G−1
DτDτ�R(JDτG−1

Dτ ) + LωB3 − A1

= −B�
3 C+

2 + B�
2 C+

3 − B�
1 C+

4 + G−1
Dτ�DτG

−1
DτDτ�JT1DτG−1

Dτ (89)

+ G−1
Dτ�Dτ,DeG

−1
Dτ − G−1

Dτ�DτG
−1
Dτ (GDe,Dτ + GDτ,De)G

−1
Dτ + C++

1 ,

where C++
1 is given as

C++
1 = G−1

DτDτ�T1DτG−1
Dτ + B�

1 (LωB2 + �B2) − B�
2 (LωB1 − �B1) + LωB3 − A1

= G−1
DτDτ�T1DτG−1

Dτ + Re(LωB�
2 B1 − B�

2 LωB1 + 2B�
2 �B1) − A1,

where we used that B3 = Re(GB2,B1) and (B�
1 (LωB2 + �B2))

∗ = −B�
2 (LωB1 − �B1). By

introducing expression (48) for A1, expanding LωB1 and LωB2 as in lemma 4.3

LωB2 = −�B2 + N�
1 JT1DτG−1

Dτ − N�
1 DτG−1

DτDτ�JT1DτG−1
Dτ

− GR,DτG
−1
Dτ − GN1,DeG

−1
Dτ + GN1,DτG

−1
Dτ (GDe,Dτ + GDτ,De)G

−1
Dτ .

LωB1 = �B1 − N�
2 JT1DτG−1

Dτ + N�
2 DτG−1

DτDτ�JT1DτG−1
Dτ

+ iGR∗,DτG
−1
Dτ + GN2,DeG

−1
Dτ − GN2,DτG

−1
Dτ (GDe,Dτ + GDτ,De)G

−1
Dτ ,

and using that Re(N1N
�
2 ) = −Re((N1N

�
2 )�) and Re(GDτ,RGN2,Dτ )

� =
−Re(iGDτ,N1GR∗,Dτ ), we obtain (after some cancellations)

C++
1 = Re(T3 + T �

3 ), (90)

where

T3 = −G−1
Dτ (GDτ,R + GDe,N1 − (GDe,Dτ + GDτ,De)G

−1
DτGDτ,N1)GN2,DτG

−1
Dτ . (91)

Now, we control expressions (88), (87), (91) and (90) as

‖C+
2 ‖ρ−δ � α̂

δ
‖e‖ρ, ‖C+

3 ‖ρ−δ, ‖C+
4 ‖ρ−δ � α̂‖R‖ρ,

‖T3‖ρ−δ, ‖C++
1 ‖ρ−δα̂

(‖e‖ρ

δ
+ ‖R‖ρ

)
.

We use these bounds to control expression (89) as follows:

‖C+
1 ‖ρ−2δ � α̂

( ‖e‖ρ

γ δν+1
+

‖e‖2
ρ

γ δν+2
+ ‖R‖ρ

)
.

Then we use hypothesis (75) to get rid of the quadratic terms, thus obtaining

‖C+
1 ‖ρ−2δ � α̂

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
.

Therefore, we have

‖Ci‖ρ−2δ � α̂

γ δν+1

(‖e‖ρ

δ
+ ‖R‖ρ

)
,



1062 A Luque and J Villanueva

for i = 1, . . . , 4. Finally, we obtain estimates for the inverse of the matrix Id +M3 that appears
in system (85), given by

‖(Id + M3)
−1‖ρ−2δ � 1

1 − ‖M3‖ρ−2δ

, (92)

that, using hypothesis (75) again, is well posed since

‖M3‖ρ−2δ � α̂

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
� 1

2
.

Therefore, we obtain (77) for the functions {A+
i }i=1,...,4. �

Proof of proposition 5.1. We organize the proof of this iterative procedure in three parts.
In part I), we correct the invariance of the torus by approximately solving the linearized
equation R(�τ ) = −e, given by (17), as it was explained in proposition 4.4. Next, in
part II) we correct the reducibility of the torus by approximately solving the linearized equation
S(�N, ��) = −R̂, given by (15) and (18), as it was explained in proposition 4.6. Finally, in
part III) we compute some additional estimates regarding the non-degeneracy conditions for
the new torus.

Firstly, let us observe that condition (51) implies condition (75) in proposition 5.3 by
taking a constant ᾱ larger than α̂. Then, we use proposition 5.3 to construct an approximately
symplectic basis at every point of the torus. As before, we redefine (enlarge) the constant ᾱ

along the proof to meet the different conditions given in the statement.

(I) Correction of the torus. The idea is that the solution of the equation R(�τ ) = −e obtained
in the invariant and reducible case—as discussed in proposition 4.4—provides an approximate
solution in the approximately invariant case. To this end, we consider the function

�τ = Dτ�1 + V �2 + N1�3 + N2�4,

where �i , for i = 1, . . . , 4, are solutions of the cohomological equations (37)–(40), taking
[�1]Tr = 0 and [�2]Tr given by (41). Then we claim that the new embedding τ̄ = τ + �τ

parametrizes an approximately reducible and invariant torus T̄ with an error which is
quadratic in ‖e‖ρ and ‖R‖ρ . Of course, first we have to check the compatibility condition
[Dτ�Je]Tr = 0. This follows from

Dτ�Je = Dτ�J (Lωτ − Jgrad h(τ)) = �Dτω + gradθ (h(τ )), (93)

by observing that both terms at the right-hand side have zero average (see remark 2.2). It is
important to observe that �∗

3 = i�4 so the correction �τ is real analytic.
As far as the estimates are concerned, we have (using lemma 5.2 to control the solution

of the cohomological equations)

‖�1‖ρ−2δ � ᾱ

γ 2δ2ν
‖e‖ρ, ‖�i‖ρ−δ � ᾱ

γ δν
‖e‖ρ,

for i = 2, 3, 4, so we can control the correction �τ in the parametrization as follows:

‖�τ‖ρ−2δ � ᾱ

γ 2δ2ν
‖e‖ρ,

thus obtaining estimate (56). Moreover, we observe that the derivative of the new
parametrization can be controlled easily as follows:

‖Dτ̄‖ρ−3δ � ‖Dτ‖ρ + ‖D�τ‖ρ−3δ � ‖Dτ‖ρ +
ᾱ

γ 2δ2ν+1
‖e‖ρ < σ1,
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where we used hypothesis (51), and also the distance of τ̄ (�(ρ − 2δ)) to the boundary of U
dist (τ̄ (�(ρ − 2δ)), ∂U) � dist (τ (�(ρ)), ∂U) − ‖�τ‖ρ−2δ

� dist (τ (�(ρ)), ∂U) − ᾱ

γ 2δ2ν
‖e‖ρ > σ2,

where we used hypothesis (52). Note that we have achieved part of (64) and (65).
Next we control the new error in the invariance. To this end, we first introduce �τ into

R(�τ ) + e and we use properties (76) and (84) of the operator R and also the cohomological
equations (37)–(40), thus obtaining

R(�τ ) + e = R(Dτ)�1 + R(V )�2 + R(N1)�3 + R(N2)�4

+ DτLω�1 + V Lω�2 + N1Lω�3 + N2Lω�4 + e

= De�1 + (DτA+
1 + V A+

2 + N1A
+
3 + N2A

+
4)�2 + R�3 + iR∗�4

−DτV �Je + V Dτ�Je − N1N
�
2 Je + N2N

�
1 Je + e︸ ︷︷ ︸

e+

(94)

We note that the terms not included in e+ are clearly quadratic in e and R, since the
functions {A+

i }i=1,...,4 and {�i}i=1,...,4 are controlled by ‖e‖ρ and ‖R‖ρ . Then, it suffices to
study the remaining part e+. To this end, we write e+ in terms of the constructed basis

e+ = Dτe+
1 + V e+

2 + N1e
+
3 + N2e

+
4 ,

and obtain {e+
i }i=1,...,4 by multiplying both sides by V �J , Dτ�J , N�

2 J and N�
1 J . This leads

to study the linear system

(Id + M3)


e+

1

e+
2

e+
3

e+
4

 =


D1

D2

D3

D4

 , (95)

where M3 is given in (86) and the matrices in the right-hand side are

D1 = −(�V,Dτ − Idr )V
�Je + �V Dτ�Je − �V,N1N

�
2 Je + �V,N2N

�
1 Je,

D2 = �DτV
�Je − (�Dτ,V + Idr )Dτ�Je + �Dτ,N1N

�
2 Je − �Dτ,N2N

�
1 Je,

D3 = −�N2,DτV
�Je + �N2,V Dτ�Je − (�N2,N1 − Idn−r )N

�
2 Je + �N2N

�
1 Je,

D4 = −iD∗
3 .

Now we control these functions using estimates (68)–(74) in proposition 5.3

‖Di‖ρ−2δ � ᾱ

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
‖e‖ρ,

for i = 1, . . . , 4. We have shown in the proof of proposition 5.3 that the matrix Id + M3 is
invertible and that ‖(Id + M3)

−1‖ρ−2δ � 2 (see (92)) so we conclude that

‖e+‖ρ−2δ � ᾱ

γ δν

(‖e‖ρ

δ
+ ‖R‖ρ

)
‖e‖ρ.

Going back to equation (94) we get

‖R(�τ ) + e‖ρ−3δ � ᾱ

γ 2δ2ν+1

(‖e‖ρ

δ
+ ‖R‖ρ

)
‖e‖ρ,

and therefore, we conclude that R(�τ ) = −e is solved modulo quadratic terms in the errors.
Then, we observe that

ē = Lωτ̄ − Jgrad h(τ̄ )

= R(�τ ) + e + J (grad h(τ) + hess h(τ)�τ − grad h(τ + �τ)).
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We control the last terms by estimating the remainder of the Taylor expansion of h up to second
order, thus obtaining

‖grad h(τ) + hess h(τ)�τ − grad h(τ + �τ)‖ρ−2δ � ᾱ

γ 4δ4ν
‖e‖2

ρ.

Hence, we end up with

‖ē‖ρ−3δ � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
‖e‖ρ,

where we used that ν > r − 1 � 1, finally obtaining estimate (57).

(II) Correction of the reducibility. To square the error in reducibility of the new torus T̄ we
have to deal with the equation S(�N, ��) = −R̂, given by (15) and (18). As before, we solve
approximately this equation by taking (the reason of writing �̂N rather than �N will be clear
later on)

�̂N = DτP1 + V P2 + N1P3 + N2P4,

{Pi}i=1,...,4 and �� being the solutions of the cohomological equations (42)–(45) for

R̂ = R + Jhess h(τ)N − Jhess h(τ̄ )N,

and fixing diag[P3]Tr = 0. The formal solution of these equations has been discussed in
proposition 4.6 so we know that we must take �� = −diag[N�

2 J R̂]Tr .
Firstly, we claim that the geometry of the problem implies that the selected �� is pure

imaginary, so our procedure automatically preserves the approximately elliptic character of
the torus. To see that, we observe that transposing equation (83) leads to

Lω�N1,N2 = −��N1,N2 + �N1,N2� + �R,N2 + i�N1,R∗ .

Since the left-hand side of this expression has vanishing average and diag[�N1,N2 ]Tr = −Idn−r ,
it turns out that

diag[�R,N2 + i�N1,R∗]Tr = 0,

and so diag[i�N1,R∗]Tr = diag[�N2,R]�
Tr . Then, it is straightforward to compute

�∗
� = −diag[N�

2 J R̂]∗
Tr = −diag[−i�N1,R∗ + N�

1 (hess h(τ) − hess h(τ̄ ))N2]Tr

= diag[�N2,R]�
Tr − diag[N�

2 (hess h(τ) − hess h(τ̄ ))N1]�
Tr

= diag[�N2,R − N�
2 (hess h(τ) − hess h(τ̄ ))N1]�

Tr = −��
� = −��, (96)

so �� is pure imaginary.
Now obtaining estimates for the solution of the cohomological equations is straightforward

after controlling

‖R̂‖ρ−2δ � ᾱ

γ 2δ2ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
, |��| � ᾱ

γ 2δ2ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
,

and applying lemma 5.2

‖P1‖ρ−4δ � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
, ‖Pi‖ρ−3δ � ᾱ

γ 3δ3ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
,

for i = 2, 3, 4. With these estimates we check condition (64) for the new approximate normal
frequencies λ̄. For example,

|λ̄i ± λ̄j | � |λi ± λj | − 2|��| � min
i �=j

|λi ± λj | − 2|��| > σ3,
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where we used (53). Similar computations allow us to see that (σ3/2) < |λ̄j | < (σ4/2),
using (54) and (55), respectively.

We also have

‖�̂N‖ρ−4δ � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
and we observe that, if we introduce N̂ = N + �̂N , then using (51) we obtain

‖N̂‖ρ−4δ � ‖N‖ρ + ‖�̂N‖ρ−4δ � ‖N‖ρ +
ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
< σ1. (97)

Now the matrix diag[�N̂,N̂∗ ]Tr is constant, diagonal and pure imaginary, but it is not iIdn−r as
we want. Nevertheless, from the following expression:

�N̂,N̂∗ − �N,N∗ = �N,�̂∗
N

+ ��̂N ,N̂∗

and using hypothesis (51) we obtain

‖�N̂,N̂∗ − �N,N∗‖ρ−4δ � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
,

where we recall that diag[�N,N∗]Tr = iIdn−r . Hence, we have that the elements of
diag[�N̂,N̂∗ ]Tr are of the form i(1 + di) with

|di | � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
.

Hence, using again hypothesis (51), we have that |di | � 1/2 for i = 1, . . . , n − r , so we can
normalize N̂ in order to preserve hypothesis H3. To this end, we define the real matrix

B = diag(b1, . . . , bn−r ), with bi =
√

1

1 + di

,

and it turns out that the matrix N̄ = N̂B satisfies diag[�N̄,N̄∗ ]Tr = iIdn−r . We observe that
the performed correction is small, since if we take N̄ = N + �N we have that

�N = N(B − Idn−r ) + �̂NB,

and so

‖�N‖ρ−4δ � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
,

which corresponds to estimate (59). We see that ‖N̄‖ρ−4δ < σ1 by similar computations as
in (97), thus obtaining the corresponding condition in (65).

The rest of this part is devoted to check that the new approximately invariant torus T̄ is
approximately elliptic up to a quadratic error. To this end, we compute

R̄ = LωN̄ − Jhess h(τ̄ )N̄ + N̄�̄

= S(�N, ��) + R̂ + J (hess h(τ) − hess h(τ̄ ))�N + �N��. (98)

Now we write the action of S on �N in terms of the action on �̂N as follows:

S(�N, ��) + R̂ = S(N(B − Idn−r ) + �̂NB, ��) + R̂

= R(N(B − Idn−r )) + R(�̂NB) + N�� + N(B − Idn−r )� + �̂NB� + R̂

= R(B − Idn−r ) + R(�̂N)B + N�� + �̂NB� + R̂

= (S(�̂N , ��) + R̂)B + (R − R̂ − N�� + �̂N�)(B − Idn−r ),

where we used that R(N) = −N� + R and B� = �B.
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Then, we introduce �̂N and �� in S(�̂N , ��)+R̂ and we use the properties (76) and (84)
of the operator R and also the cohomological equations (42)–(45), thus obtaining

S(�̂N , ��) + R̂ = R(�̂N) + N1�� + �̂N� + R̂

= R(Dτ)P1 + R(V )P2 + R(N1)P3 + R(N2)P4

+ DτLωP1 + V LωP2 + N1LωP3 + N2LωP4 + N1��

+ DτP1� + V P2� + N1P3� + N2P4� + R̂

= DeP1 + (DτA+
1 + V A+

2 + N1A
+
3 + N2A

+
4)P2 + RP3 + iR∗P4

−DτV �J R̂ + V Dτ�J R̂ − N1N
�
2 J R̂ + N2N

�
1 J R̂ + R̂︸ ︷︷ ︸

R+

.

As in the case of equation (94), the terms not included in R+ are clearly quadratic in e

and R. Then, we express R+ in terms of the basis

R+ = DτR+
1 + V R+

2 + N1R
+
3 + N2R

+
4 ,

and for R+
j we get a system like (95) for e+

j , simply by replacing e with R̂ in the definition of
Dj . Hence,

‖R+‖ρ−2δ � ᾱ

γ 3δ3ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)2

.

Therefore, we can compute a bound for the error in the solution of the linear equation that
corrects reducibility

‖S(�̂N , ��) + R̂‖ρ−4δ � ᾱ

γ 4δ4ν

(‖e‖ρ

δ
+ ‖R‖ρ

)2

,

so we obtain

‖S(�N, ��) + R̂‖ρ−4δ � ᾱ

γ 8δ8ν−2

(‖e‖ρ

δ
+ ‖R‖ρ

)2

.

Therefore, recalling (98), we easily show that the new error (60) in reducibility is quadratic

‖R̄‖ρ−4δ � ᾱ

γ 8δ8ν−2

(‖e‖ρ

δ
+ ‖R‖ρ

)2

.

(III) Additional estimates. Finally, we have to check estimates that allow us to control the
non-degeneracy of the basis and the twist condition. Using that

GDτ̄ − GDτ = GDτ,D�τ
+ GD�τ ,Dτ̄

and recalling (51) and (56), we get

‖GDτ̄ − GDτ‖ρ−3δ � ᾱ

γ 2δ2ν+1
‖e‖ρ.

Now, we observe that G−1
Dτ̄ = (Idr + G−1

Dτ (GDτ̄ − GDτ ))
−1G−1

Dτ so we can compute the
following (again, we make use of (51)):

‖G−1
Dτ̄ − G−1

Dτ‖ρ−3δ � ‖G−1
Dτ‖ρ‖(Idr + G−1

Dτ (GDτ̄ − GDτ ))
−1 − Idr‖ρ−3δ (99)

�
‖G−1

Dτ‖2
ρ‖GDτ̄ − GDτ‖ρ−3δ

1 − ‖G−1
Dτ‖ρ‖GDτ̄ − GDτ‖ρ−3δ

� ᾱ

γ 2δ2ν+1
‖e‖ρ,
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thus obtaining (61) and the term in (65) that corresponds to G−1
Dτ̄ . Similar computations allow

us to control the non-degeneracy of the set of normal vectors, thus getting (62) and (65) for
G−1

N̄,N̄∗ . Now, we are able to estimate the new twist condition for

Ā1(θ) = G−1
Dτ̄ (θ)Dτ̄ (θ)�(T̄1(θ) + T̄2(θ) + T̄2(θ)�)Dτ̄ (θ)G−1

Dτ̄ (θ),

where

T̄1(θ) = J�hess h(τ̄ (θ))J − hess h(τ̄ (θ)),

T̄2(θ) = T̄1J [Dτ̄(θ)GDτ̄ (θ)−1Dτ̄(θ)� − Id] Re(iN̄(θ)N̄∗(θ)�).

As before, we first bound

|[Ā1]Tr − [A1]Tr | � ᾱ

γ 4δ4ν−1

(‖e‖ρ

δ
+ ‖R‖ρ

)
.

Now we estimate the inverse of [Ā1]Tr using the fact that Ā1 = A1 + Ā1 −A1. Then, we repeat
the same argument used in (99), thus obtaining bounds (63) and (65) for [Ā1]−1

Tr . �

6. Proof of the main result

In this section we prove theorem 3.1 by applying inductively proposition 5.1. First, in
section 6.1 we study the convergence of the obtained iterative scheme, without worrying
about the exclusion of parameters that lead to resonances. As usual, the quadratic convergence
overcomes the effect of small divisors. Then, in section 6.2 we prove that Lipschitz regularity
is preserved along the iterative procedure. Finally, in section 6.3, we estimate the measure of
the set of excluded parameters.

6.1. Convergence of the Newton scheme

Given a parameter µ ∈ I , we denote the objects that characterize the corresponding
approximately elliptic and invariant torus as (from now on we omit the dependence on the
parameter)

τ(0) = τµ, N(0) = Nµ, �(0) = �µ,

and we introduce also

e(0) = eµ, R(0) = Rµ, A1,(0) = A1,µ, λ(0) = (λ
(0)
1 , . . . , λ

(0)
n−r ) = λµ.

where we recall that �(0) = diag(iλ(0)). Moreover, given γ0 > 0 such that γ0 � 1
2 min{1, γ̂ },

we define the following quantities (recall that 0 < ρ < 1):

ρ(0) = ρ, δ(0) = ρ(0)

16
, ρ(s) = ρ(s−1) − 4δ(s−1), δ(s) = δ(0)

2s
,

γ(s) = (1 + 2−s)γ0,

for any s � 1, and consider the normalized error

ε(0) = ‖e(0)‖ρ(0)

δ(0)

+ ‖R(0)‖ρ(0)
. (100)

We are going to show that, if the normalized error ε(0) is sufficiently small so that

28ν−1ᾱε(0)

γ 8
0 δ8ν−2

(0)

<
1

2
min

{
1, σ1 − σ ∗, dist (τ(0)(�(ρ)), ∂U) − σ2, σ

∗∗ − σ3, σ4 − 2 max
j

|λ(0)
j |

}
,

(101)
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where

σ ∗ = max
{
‖Dτ(0)‖ρ(0)

, ‖N(0)‖ρ(0)
, ‖G−1

Dτ(0)
‖ρ(0)

, ‖G−1
N(0),N

∗
(0)

‖ρ(0)
, |[A1,(0)]

−1
Tr |

}
, (102)

σ ∗∗ = min
{

min
i �=j

|λ(0)
i ± λ

(0)
j |, 2 min

j
|λ(0)

j |
}

(103)

and ᾱ is the constant provided by proposition 5.1, then we can apply recursively proposition 5.1
to the initial approximation. Thus, we obtain a sequence

τ(s) = τ̄(s−1) = τ(s−1) + �τ(s−1)
, e(s) = ē(s−1),

N(s) = N̄(s−1) = N(s−1) + �N(s−1)
, R(s) = R̄(s−1),

�(s) = �̄(s−1) = �(s−1) + ��(s−1)
, A1,(s) = Ā1,(s−1),

all these objects being analytic in �(ρ(s)). Note that, in order to apply s times proposition 5.1,
we restrict the parameter µ to the set I(s−1) defined iteratively by I(−1) = I and

I(s) = {µ ∈ I(s−1) : λ(s) satisfies Diophantine conditions (9)

of (γ(s), ν)-type with respect to ω}. (104)

Let us observe that the basic frequencies ω automatically satisfy Diophantine conditions (4)
of (γ(s), ν)-type, for every s � 0, since they are fixed along the procedure and we have
γ(s) � 2γ0 � γ̂ and ν > ν̂.

Now we proceed by induction. We suppose that we have applied s times proposition 5.1,
for certain s � 0, and we verify that we can apply it again. To this end, we define ε(s), σ ∗

(s)

and σ ∗∗
(s) as in (100), (102) and (103), just by replacing the (0)-objects with (s)-ones. First, we

observe that we have

σ ∗
(s) < σ1, dist (τ(s)(�(ρ(s))), ∂U) > σ2, σ ∗∗

(s) > σ3, max
j

|λ(s)
j | <

σ4

2
,

so the construction of the constant ᾱ of proposition 5.1 is uniform for all iterative steps—it
depends on the constants σ0, σ1, σ2, σ3 and σ4 that remain unchanged along the procedure.
Hence, conditions (51)–(55) are fulfilled provided that the normalized error ε(s) satisfies

ᾱε(s)

γ 4
(s)δ

4ν−1
(s)

<
1

2
min

{
1, σ1 − σ ∗

(s), dist (τ(s)(�(ρ(s))), ∂U) − σ2, σ
∗∗
(s) − σ3, σ4 − 2 max

j
|λ(s)

j |
}
.

(105)

In order to verify this inequality, we start by computing the normalized error at the sth
step (recall that γ(s) < 1 and δ(s) < 1)

ε(s) = ‖e(s)‖ρ(s)

δ(s)

+ ‖R(s)‖ρ(s)
� 2ᾱ

γ 8
(s−1)δ

8ν−2
(s−1)

ε2
(s−1) � 2(s−1)(8ν−2)+1ᾱ

γ 8
0 δ8ν−2

(0)

ε2
(s−1), (106)

where we used (57), (60) and the fact that γ(s−1) � γ0. Then, by iterating this sequence
backwards, we obtain that

ε(s) �
γ 8

0 δ8ν−2
(0)

2ᾱ
2−(s+1)(8ν−2)

(
28ν−1ᾱε(0)

γ 8
0 δ8ν−2

(0)

)2s

. (107)

Using this expression of the error, we verify condition (105) in order to perform the step
s + 1. For example, the first term in this condition is straightforward

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

� 1

2
γ 4

0 δ4ν−1
(0) 2−(4ν−1)s−8ν+2

(
28ν−1ᾱε(0)

γ 8
0 δ8ν−2

(0)

)2s

<
1

2
,
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recalling that ν > r − 1 � 1 and (101). In order to verify the remaining conditions in (105),
we have to control also the objects ‖Dτ(s)‖ρ(s)

, ‖N(s)‖ρ(s)
, |�(s)|, etc. For example, we obtain

‖Dτ(s)‖ρ(s)
+

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

< σ1

recursively as follows:

‖Dτ(s)‖ρ(s)
+

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

� ‖Dτ(s−1)‖ρ(s−1)
+ ‖D�τ(s−1)

‖ρ(s)
+

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

� ‖Dτ(0)‖ρ(0)
+

s−1∑
j=0

‖D�τ(j)
‖ρ(j+1)

+
ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

� ‖Dτ(0)‖ρ(0)
+

s−1∑
j=0

ᾱε(j)

γ 2
(j)δ

2ν
(j)

+
ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

� ‖Dτ(0)‖ρ(0)
+

s∑
j=0

ᾱ ε(j)

γ 4
(j)δ

4ν−1
(j)

. (108)

Note that in the above computations we used estimate (56) in proposition 5.1 and the fact
that γ(s), δ(s) < 1. Then, we introduce the expression for the errors ε(j) previously computed
and use that j + 1 � 2j to obtain

‖Dτ(s)‖ρ(s)
+

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

� ‖Dτ(0)‖ρ(0)
+ γ 4

0 δ4ν−1
(0) 2−8ν+1

s∑
j=0

2−(4ν−1)j

(
28ν−1ᾱε(0)

γ 8
0 δ8ν−2

(0)

)2j

� ‖Dτ(0)‖ρ(0)
+ γ 4

0 δ4ν−1
(0) 2−8ν+1

∞∑
j=0

(
28ν−1ᾱε(0)

γ 8
0 δ8ν−2

(0)

)j+1

� ‖Dτ(0)‖ρ(0)
+

2ᾱε(0)

γ 4
0 δ4ν−1

(0)

< σ1,

where in the last two inequalities we have used hypothesis (101) to bound the expression by
the sum of a geometric progression of ratio 1/2. Analogous computations show that (we use
estimates (59), (61), (62) and (63), respectively)

‖N(s)‖ρ(s)
+

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

< σ1, ‖G−1
Dτ(s)

‖ρ(s)
+

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

< σ1,

‖G−1
N(s),N

∗
(s)

‖ρ(s)
+

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

< σ1, |[A(s)]
−1
Tr | +

ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

< σ1,

thus obtaining the second condition in (105). Next, to verify the inequality which corresponds
to the third term in (105) we observe that

dist (τ(s)(�(ρ(s))), ∂U) � dist (τ(s−1)(�(ρ(s−1))), ∂U) − ‖�τ(s−1)
‖ρ(s)

,

and we use again (56) and (101), thus concluding (computations are analogous to those
performed for Dτ(s) above)

dist (τ(s)(�(ρ(s))), ∂U) − ᾱ ε(s)

γ 4
(s)δ

4ν−1
(s)

� dist (τ(0)(�(ρ(0))), ∂U) − 2ᾱε(0)

γ 4
0 δ4ν−1

(0)

> σ2.

Checking fourth and fifth conditions in (105)—which involves estimates (58) for the normal
frequencies—is left to the reader, since it can be performed in the same way.
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We now observe that hypotheses H1, H2, H3, H4 and H5 are automatically satisfied for the
s-objects and Diophantine conditions in H6 are guaranteed after defining the sets I(s) of ‘good
parameters’. Then, we can apply proposition 5.1 again.

Therefore, we can apply inductively this scheme. Since the sequence of normalized errors
satisfies ε(s) → 0 as s → ∞ (due to hypothesis (101)) we converge to a true quasi-periodic
invariant torus for every µ in the set

I(∞) =
⋂
s�0

I(s). (109)

Note also that

ρ(∞) = lim
s→∞ ρ(s) = ρ(0) − 4

∞∑
s=0

δ(s) = ρ(0) − 8δ(0) = ρ(0)

2
,

and that the limit objects are close to the initial (approximate) ones:

‖τ(∞) − τ(0)‖I(∞), ρ(0)/2 � 2ᾱε(0)

γ 2
0 δ2ν

(0)

, ‖N(∞) − N(0)‖I(∞), ρ(0)/2 � 2ᾱε(0)

γ 4
0 δ4ν−1

(0)

,

|λi,(∞) − λi,(0)|I(∞)
� 2ᾱε(0)

γ 2
0 δ2ν−1

(0)

,

for i = 1, . . . , n − r . Then, from these expressions we obtain bounds (11) and (10) in the
statement of the theorem, just observing that ε(0) � ε∗/δ(0).

6.2. Lipschitz regularity

As we pointed out in section 4.1, to control the measure of the set of removed parameters we
cannot use smooth dependence (in the usual sense) with respect to µ, because the sets I(s) have
empty interior. Then, following closely [37–40], to control this measure we use a Lipschitz
condition from below with respect to µ on the eigenvalues of the matrix �(s), for s � 0. In
order to guarantee this condition we see that �(s) is Lipschitz and then, using that �(s) is close
to �(0), we prove that �(s) is Lipschitz from below. For the sake of completeness, we provide
some basic results related to Lipschitz dependence.

Lemma 6.1. Given Lipschitz functions f, g : I ⊂ R → C, we have

(i) LipI (f + g) � LipI (f ) + LipI (g).
(ii) LipI (fg) � LipI (f )‖g‖I + ‖f ‖I LipI (g).

(iii) LipI (1/f ) � ‖1/f ‖2
I LipI (f ), if f does not vanish in I .

Moreover, an equivalent result holds if f and g take values in spaces of complex matrices
(f must be invertible in the third item) and also for families µ �→ fµ of functions on T

r , using
LipI,ρ(f ) and ‖f ‖I,ρ .

Proof. The result is straightforward. �

Lemma 6.2. Given a family µ ∈ I ⊂ R �→ fµ, where fµ : U ⊂ C
l → C is an

analytic function with bounded derivatives (that we denote Dmfµ) in U , and given families
µ ∈ I ⊂ R �→ gµ, hµ, where gµ, hµ : T

r → U are analytic in �(ρ), we have

(i) LipI,ρ(f ◦ g) � LipI,U (f ) + ‖f ‖I,C1, ULipI,ρ(g).
(ii) LipI,ρ(f ◦ g − f ◦ h) � β(1)(LipI,ρ(g − h) + ‖g − h‖I,ρ).
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(iii) LipI,ρ(f ◦ g − f ◦ h − Df ◦ h[g − h]) � β(2)‖g − h‖I,ρ(‖g − h‖I,ρ + LipI,ρ(g − h)).

The constant β(1) depends on LipI,C1, U (f ), ‖f ‖I,C2, U and sups∈[0,1] LipI,ρ(h + s(g − h)). The
constant β(2) depends on LipI,C2, U (f ), ‖f ‖I,C3, U and sups∈[0,1] LipI,ρ(h + s(g − h)).

Proof. Item (i) is straightforward. Then, items (ii) and (iii) are obtained using the expressions

fµ ◦ gµ − fµ ◦ hµ =
∫ 1

0
Dfµ ◦ (hµ + s(gµ − hµ))[gµ − hµ] ds

and

fµ ◦ gµ − fµ ◦ hµ − Dfµ ◦ hµ[gµ − hµ] =
∫ 1

0
D2fµ ◦ (hµ + s(gµ − hµ))[gµ − hµ]⊗2 ds,

respectively, and then applying item (i). �

Lemma 6.3. Let µ ∈ I ⊂ R �→ gµ be a family of functions gµ : T
r → C that are analytic in

�(ρ) and satisfying LipI,ρ(g) < ∞. If we expand g in Fourier series

gµ(θ) =
∑
k∈Zr

ĝk(µ)ei〈k,θ〉,

then we have

(i) LipI (ĝk) � LipI,ρ(g)e−|k|1ρ .

(ii) LipI,ρ−δ

(
∂g

∂θj

)
� 1

δ
LipI,ρ(g), for j = 1, . . . , r .

(iii) Given ω ∈ R
r\{0} and a Lipschitz function d : I ⊂ R → C, we consider the sets

{d0
k }k∈Zr\{0}, {d1

k }k∈Zr of complex functions of µ given by d0
k = 〈k, ω〉, d1

k = 〈k, ω〉 + d(µ),
satisfying |d0

k |, |d1
k | � γ /|k|ν1, if |k|1 �= 0, for certain 1 > γ > 0 and ν > r − 1. Then,

the functions f 0 and f 1 whose Fourier coefficients are given by

f̂ 0
k = ĝk/d

0
k , k ∈ Z

r\{0}, f̂ 0
0 = 0,

f̂ 1
k = ĝk/d

1
k , k ∈ Z

r ,

satisfy

LipI,ρ−δ(f
0) � α0

γ δν
LipI,ρ−δ(g),

LipI,ρ−δ(f
1) � β0

(
LipI,ρ(g)

γ δν
+ ‖g‖I,ρ

LipI (d)

γ 2δ2ν

)
+ LipI,ρ(g)

∥∥∥∥ 1

d

∥∥∥∥
I

+

∥∥∥∥ 1

d

∥∥∥∥2

I

LipI (d)‖g‖I,ρ,

for any δ ∈ (0, min{1, ρ}), where α0 � 1 is the constant that appears in lemma 5.2, and
β0 � α0 is a constant depending on r , ν and α0.

Proof. Items (i) and (ii) are straightforward (see [38]). Item (iii) follows from the same
arguments used in lemma 5.2 and applying the properties in lemma 6.1. �

Now, we use these elementary results to control recursively the Lipschitz dependence of
the constructed objects. To this end, we obtain an ‘extended’ version of proposition 5.1.
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Lemma 6.4 (Addenda to proposition 5.1). Let us consider a Lipschitz family of Hamiltonian
systems µ ∈ I ⊂ R �→ hµ, where I is an arbitrary set, with hµ : U ⊂ R

2n → R, and a vector
of basic frequencies ω ∈ R

r . Assume that there exist families µ ∈ I �→ τµ, Nµ, �µ satisfying
all the hypotheses of proposition 5.1 for every µ ∈ I and also that

‖h‖I,C4, U � σ0, LipI,C3, U (h), LipI,ρ(τ ), LipI,ρ(Dτ), LipI,ρ(N), LipI (�) < σ5.

Then, there exists a constant β̄ � ᾱ—where ᾱ is introduced in proposition 5.1—depending on
r , n, ν, |ω|, σ0, σ1, σ2, σ3, σ4 and σ5, such that if the condition

max{LipI,ρ(τ ), LipI,ρ(Dτ), LipI,ρ(N), LipI (�)} +
β̄ε̂

γ 4δ4ν−1
< σ5 (110)

holds, where

ε̂ = LipI,ρ(e)

δ
+ LipI,ρ(R) +

1

γ δν

(‖e‖I,ρ

δ
+ ‖R‖I,ρ

)
, (111)

then we have that the families µ �→ τ̄µ, Dτ̄µ, N̄µ, �̄µ, �τ , �N, �� obtained in proposition 5.1
satisfy

LipI,ρ−2δ(τ̄ ), LipI,ρ−3δ(Dτ̄ ), LipI,ρ−4δ(N̄), LipI (�̄) < σ5, (112)

LipI,ρ−2δ(�τ ) � β̄ε̂

γ 2δ2ν−1
, LipI,ρ−4δ(�N) � β̄ε̂

γ 4δ4ν−1
, LipI (��) � β̄ε̂

γ 2δ2ν−1
(113)

and

LipI,ρ−3δ(ē) � β̄ε̂2

γ 3δ3ν−2
, LipI,ρ−4δ(R̄) � β̄ε̂2

γ 7δ7ν−2
. (114)

Proof. Basically, it consists in using the properties in lemmata 6.1, 6.2 and 6.3 to control
the different functions that appear along the proof of propositions 5.3 (construction of
the approximately symplectic basis) and proposition 5.1 (iterative procedure). Since the
computations are similar to those detailed in section 5, we will omit some intermediate steps.

First, let us study the objects in proposition 5.3. To this end, we observe that there exists
a constant β̂ (which is enlarged along the proof in order to include dependence on r , n, ν, |ω|,
σ0, σ1, σ2, σ3, σ4 and σ5) such that

LipI,ρ(G
−1
Dτ ), LipI,ρ(G

−1
N,N∗), LipI,ρ(Ti), LipI ([A1]−1

Tr ), LipI,ρ(V ), LipI,ρ(Bj ) � β̂,

LipI,ρ−δ(LωBi) � β̂

δ

for i = 1, 2 and j = 1, 2, 3. For example, we have that

LipI,ρ(G
−1
Dτ ) � ‖G−1

Dτ‖2
I,ρLipI,ρ(GDτ )

� ‖G−1
Dτ‖2

I,ρ

(
LipI,ρ(Dτ�)‖Dτ‖I,ρ + ‖Dτ�‖I,ρLipI,ρ(Dτ)

)
� 4n‖G−1

Dτ‖2
I,ρ‖Dτ‖I,ρLipI,ρ(Dτ) � β̂.

Then, we estimate Lipschitz constants for the matrices �Dτ , �N1 , . . . , �V that characterize
the approximately symplectic character of the basis in propositions 5.3. For example, we get
LipI,ρ−2δ(�Dτ ) by applying item (iii) of lemma 6.3 to the (i, j)-component of �Dτ obtained
from equation (80). Concretely, taking d0

k = 〈ω, k〉 and g = −i(�De,Dτ + �Dτ,De)
(i,j), we

obtain

LipI,ρ−2δ(�Dτ ) � β̂

γ δν+1
(LipI,ρ(e) + ‖e‖I,ρ).
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Similarly, to bound LipI,ρ−δ(�N1) we proceed in the same way taking d1
k = 〈k, ω〉 + λi + λj

and g = −i(�R,N1 + �N1,R)(i,j). We obtain

LipI,ρ−δ(�N1) � β̂

γ δν

(
LipI,ρ(R) +

‖R‖I,ρ

γ δν

)
.

In this way, we have the following bounds in terms of the error ε̂ defined in (111):

LipI,ρ−2δ(�Dτ ), LipI,ρ−δ(�Ni
), LipI,ρ−δ(�N2,N1) � β̂ε̂

γ δν
,

LipI,ρ−2δ(�Dτ,Ni
), LipI,ρ−2δ(�V,Dτ ), LipI,ρ−2δ(�V,Ni

), LipI,ρ−2δ(�V ) � β̂ε̂

γ δν
,

for i = 1, 2. Furthermore, by performing similar computations to estimate the Lipschitz
constants of M3 in (86), C+

1 in (89), C+
2 in (88), C+

3 in (87) and (Id + M3)
−1 in (92) we obtain

that the functions A+
i , for i = 1, . . . , 4, in the statement of proposition 5.3 are controlled by

LipI,ρ−2δ(A
+
i ) � β̂ε̂

γ δν+1
,

provided ε̂ is small enough—indeed, under condition (51) in proposition 5.1.
Now we can estimate the Lipschitz constants of �i , i = 1, . . . , 4, defined as the solutions

of cohomological equations (37)–(40). In analogy with the notation in proposition 5.1, we
introduce a constant β̄ � β̂ depending on the same variables as β̂. We have

LipI,ρ−2δ(�1) � β̄ε̂

γ 2δ2ν−1
, LipI,ρ−δ(�i) � β̄ε̂

γ δν−1
, LipI,ρ−2δ(�τ ) � β̄ε̂

γ 2δ2ν−1
,

for i = 2, 3, 4. In particular, we observe that condition (110) guarantees that

LipI,ρ−2δ(τ̄ ), LipI,ρ−3δ(Dτ̄ ) < σ5.

Now, to control the Lipschitz constant of expression (94) we compute

LipI,ρ−2δ(Di), LipI,ρ−2δ(e
+) � β̄δε̂2, LipI,ρ−3δ(R(�τ ) + e)) � β̄ε̂2

γ δν
,

for i = 1, 2, 3, 4. Finally, an estimate for the Lipschitz constant of ē follows by applying item
(iii) in lemma 6.2 that allows controlling the Taylor remainder, thus obtaining

LipI,ρ−3δ(ē) � β̄ε̂2

γ 3δ3ν−2
.

Similarly we control the Lipschitz constant of the new normal eigenvalues of the new
reducibility error. As in section 5, we start by controlling

LipI,ρ−2δ(R̂) � β̄ε̂

γ 2δ2ν−1
, LipI (��) � β̄ε̂

γ 2δ2ν−1
,

where we used item (ii) in lemma 6.2. Then we apply lemma 6.3 in order to obtain

LipI,ρ−3δ(Pi) � β̄ε̂

γ 3δ3δ−1
, LipI,ρ−4δ(P1) � β̄ε̂

γ 4δ4δ−1
,

for i = 2, 3, 4. From these estimates it follows that

LipI,ρ−4δ(�̂N), LipI (di), LipI (bi), LipI,ρ−4δ(�N) � β̄ε̂

γ 4δ4ν−1
,

and we observe that condition (110) guarantees that

LipI,ρ−4δ(N̄), LipI (�̄) < σ5.
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In order to control the Lipschitz constant of the new error in reducibility R̄ we have to
compute

LipI,ρ−2δ(R
+) � β̄ε̂2

γ 2δ2ν−1
, LipI,ρ−4δ(S(�̂N , ��) + R̂) � β̄ε̂2

γ 3δ3ν

and

LipI,ρ−4δ(S(�N, ��) + R̂) � β̄ε̂2

γ 7δ7ν−2
.

Finally, estimate (114) for the Lipschitz constant of R̄ follows by applying lemma 6.2 that
allows us to control the Taylor remainder in (98). �

In order to prove that the Lipschitz dependence is preserved along the iterative scheme, we
only have to check—together with conditions for the convergence of the quadratic method—
that condition (110) is satisfied at every step of the procedure. As in section 6.1, assuming that
we have applied s times proposition 5.1 and lemma 6.4, we have to ensure that

max{LipI(s−1),ρ(s)
(τ(s)), LipI(s−1),ρ(s)

(Dτ(s)), LipI(s−1),ρ(s)
(N(s)), LipI(s−1)

(�(s))} +
β̄ε̂(s)

γ 4
(s)δ

4ν−1
(s)

< σ5

To this end, we compute the normalized error (111) at the sth step

ε̂(s) = LipI(s−1),ρ(s)
(e(s))

δ(s)

+ LipI(s−1),ρ(s)
(R(s)) +

1

γ(s)δ
ν
(s)

(‖e(s)‖I(s−1),ρ(s)

δ(s)

+ ‖R(s)‖I(s−1),ρ(s)

)
(115)

in terms of ε̂(0). Analogous computations as those performed in (107) show that

ε̂(s) � 2(s−1)(7ν−2)+ν+2β̄

γ 7
0 δ7ν−2

(0)

ε̂2
(s−1)

where we used (57), (60) and (114). Then, by iterating this sequence backwards, we obtain

ε̂(s) �
γ 7

0 δ7ν−2
(0)

β̄
2−(s+1)(7ν−2)−ν−2

(
28ν β̄ε̂(0)

γ 7
0 δ7ν−2

(0)

)2s

.

The convergence of the Lipschitz procedure follows from similar computations as those in (108)
(but using (113)), asking for the condition:

28ν β̄ε̂(0)

γ 7
0 δ7ν−2

(0)

� 1

2
min{1, σ5 − σ ∗∗∗}, (116)

where

σ ∗∗∗ = max{LipI,ρ(0)
(τ(0)), LipI,ρ(0)

(Dτ(0)), LipI,ρ(0)
(N(0)), LipI (�(0))}.

Next, we show that the Lipschitz constants from below of the functions

µ ∈ I(s−1) �→ λi,(s)(µ), µ ∈ I(s−1) �→ λi,(s)(µ) ± λj,(s)(µ),

for i �= j = 1, . . . , n − r , have a lower bound that does not depend on the step s—note that
Lipschitz (from above) constants are controlled for every s as (112). Indeed, we have

LipI(s−1)
(�(s) − �(0)) �

s−1∑
j=0

LipI(j)
(��(j)

) � 2β̄ε̂(0)

γ 2
0 δ2ν−1

(0)

,

where we used condition (116).
Finally, using that

lipI(s−1)
(λi,(s)) � lipI (λi,(0)) − LipI(s−1)

(λi,(s) − λi,(0))
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and provided that (we use H6 in theorem 3.1)

2β̄ε̂(0)

γ 2
0 δ2ν−1

(0)

<
σ6

4
, (117)

we end up with the bounds

lipI(s−1)
(λi,(s)) � σ6

4
, lipI(s−1)

(λi,(s) ± λj,(s)) � σ6

2
, (118)

for i, j = 1, . . . , n − r , with i �= j , and s � 0. Analogous computations hold for
λi,(s)(µ) ± λj,(s)(µ).

Therefore, the quadratic procedure to obtain invariant tori with Lipschitz dependence
converges for µ ∈ I(∞)—see (109)—provided conditions (101), (116) and (117) hold.
Moreover, note that we can control the errors ε(0) and ε̂(0) (given by (100) and (115),
respectively) in terms of the error ε∗ that appears in the statement of theorem 3.1 as follows:

ε(0) � ε∗
δ(0)

, ε̂(0) � ε∗
γ0δ

ν+1
(0)

. (119)

Then we have convergence provided that ε∗ � C1γ
8
0 , where C1 is taken in order to meet all

the required conditions.

6.3. Measure of the set of excluded parameters

It remains to control the measure of the set I(∞) given by (104) and (109), for which all steps
performed along the iterative procedure of section 6.1 are well posed. Let us recall that I(∞) is
constructed by taking out, in recursive form, the set of parameters µ for which (4) and (9) do not
hold at any step of the KAM process. Concretely, we bound the measure of the complementary
set I\I(∞), which we write as

I\I(∞) = (I\I(0)) ∪ (I(0)\I(∞)) = (I\I(0)) ∪
⋃
s�1

I(s−1)\I(s).

We start by controlling the measure of I(s−1)\I(s), for s � 1. To simplify the notation,
in the following discussion we consider a generic divisor of the form 〈ω, k〉 − d(s)(µ), where
d(s)(µ) is either λj,(s)(µ) or λj,(s)(µ)±λi,(s)(µ). For this purpose, we introduce the kth resonant
set for the divisor d(s) as

Res(s)
k =

{
µ ∈ I(s−1) : |〈ω, k〉 − d(s)(µ)| <

γ(s)

|k|ν1

}
,

and we control

measR

( ⋃
k∈Zr\{0}

Res(s)
k

)
(120)

using the following two elementary results.

Lemma 6.5. In the above setting, let us assume that µ ∈ I(s−1), with s � 1. Then, there exists
K∗(s) ∈ N such that µ /∈ Res(s)

k provided |k|1 � K∗(s). Concretely,

K∗(s) = �ε̃− 2s−1

ν �, where ε̃ = 28ν−1ᾱε(0)

γ 8
0 δ8ν−2

(0)

. (121)
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Proof. To prove this result, we observe that the correction of the normal frequencies—and
hence of d(s)(µ)—is smaller at each step of the iterative procedure. Indeed, using (58) at the
sth step, (106), (107) and (119), we have that

‖d(s) − d(s−1)‖I(s−1)
� 2‖��(s−1)

‖I(s−1)
� γ 6

0 δ6ν−1
(0) 2−(6ν−1)s−2ν+1ε̃2s−1

.

Then, given µ ∈ I(s−1), it turns out that µ /∈ Res(s)
k provided the quantity

|〈ω, k〉 − d(s)(µ)| � |〈k, ω〉 − d(s−1)(µ)| − ‖d(s) − d(s−1)‖I(s−1)

� γ(s−1)|k|−ν
1 − γ 6

0 δ6ν−1
(0) 2−(6ν−1)s−2ν+1ε̃2s−1

is larger than γ(s)|k|−ν
1 . This is equivalent to ask for (recall that γ(s) = (1 + 2−s)γ0)

γ 6
0 δ6ν−1

(0) 2−(6ν−1)s−2ν+1ε̃2s−1 � 2−sγ0|k|−ν
1 ,

which is satisfied for every |k|1 � K∗(s), where K∗(s) is given in (121). �

Lemma 6.6. Let us consider a vector ω ∈ R
r satisfying Diophantine conditions (4) of (γ̂ , ν̂)-

type, with γ̂ > 0 and ν̂ > r − 1. Then, given J ⊂ [α, β] ⊂ R, with α > 0, γ > 0, ν > ν̂ and
K ∈ N, we have that the measure of the set

�K =
{
d ∈ J : |〈k, ω〉 − d| <

γ

|k|ν1
, for some k ∈ Z

r , with |k|1 > K

}
(122)

is controlled as

measR(�K) � 2ν̂+1ν̂(β − α)
γ

γ̂

∑
j>K

1

jν−ν̂+1
. (123)

Proof. Let us introduce the following notation:

Resk =
{
d ∈ J : |〈k, ω〉 − d| <

γ

|k|ν1

}
if |k|1 > K , Resk = ∅ if |k|1 � K , and also R̃esj = ⋃

|k|1=j Resk . Then, we have that

measR(�K) = measR

⋃
j>K

R̃esj

 �
∑
j>K

measR(R̃esj ),

thus reducing the problem to study the sets R̃esj , which only contain resonances of order j .
Now, let us observe that the width of one resonant set Resk of order j is controlled by
measR(Resk) � 2γj−ν . Hence, it remains to estimate the number of resonant sets Resk ,
with |k|1 = j , that intersect J . This follows using similar arguments as in lemma 5.2.

For this purpose we introduce some notation. We define dk = 〈k, ω〉, which corresponds
to the exact resonant value d ∈ Resk , and

D̃j = [α, β] ∩
( ⋃

|k|1=j

{dk}
)

, D̂j =
⋃
l�j

D̃l .

With these ingredients, we have

measR(�K) �
∑
j>K

#(D̃j )
2γ

jν
= 2γ

∑
j>K

#D̂j

(
1

jν
− 1

(j + 1)ν

)
� 2γ ν

∑
j>K

#D̂j

j ν+1
, (124)

where we used the convention Resk = ∅ if |k|1 � K .
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In order to estimate #D̂j , we sort the resonances dk for |k|1 � j according to

· · · < dk−2 < dk−1 < 0 < dk1 < dk2 < · · ·
and we observe that dkl

�= dkj
if kl �= kj . Then, using that ω is Diophantine of (γ̂ , ν̂)-type, we

have |dkj+1 − dkj
| � γ̂ /(2j)ν̂ . Hence

#(D̂j ) � |β − α|2ν̂ j ν̂

γ̂
.

By introducing this expression into (124) we end up with (123). �

Now let us control (120). First we use lemma 6.5 in order to restrict the indexes in (120)
to k ∈ Z

r\{0} such that |k|1 > K∗(s)—see (121). Then, we use lemma 6.6 to control the
corresponding measure. To do that, we observe that lipI(s−1)

(d(s)) � σ6/4 by (118) and that
d(s)(I(s−1)) ⊂ [σ3/2, σ4]—this follows from the fact that (64) is preserved along the iterative
procedure. Then, the Lipschitz constant from below of d(s) allows moving the measure of
the ‘resonant’ sets (122), controlled in terms of d = d(s)(µ), to the corresponding measure in
terms of µ. Hence, we get

measR

( ⋃
k∈Zr\{0}

Res(s)
k

)
= measR

( ⋃
|k|1>K∗(s)

Res(s)
k

)
� 2ν̂+4ν̂

(
σ4 − σ3

2

σ6

)
γ0

γ̂

∑
j>K∗(s)

1

jν−ν̂+1
,

where we used that γ(s) � 2γ0. Note that this estimate does not depend on the selected
d(s)(µ). Then, we can control the measure of the set I(0)\I(∞) multiplying the obtained bound
by 2(n− r)2 to take into account all possible combinations of normal frequencies. Concretely,
we have

measR(I(0)\I(∞)) �

C︷ ︸︸ ︷
2ν̂+5ν̂(n − r)2

γ̂

(
σ4 − σ3

2

σ6

)
γ0

∞∑
s=1

∑
j>K∗(s)

1

jν−ν̂+1
� Cγ0

ν − ν̂

∞∑
s=1

1

K∗(s)ν−ν̂
,

where we used ν > ν̂. Then, we introduce expression (121) for K∗(s) and using that ε̃ � 1/2
(see (101)) and that s � 2s−1, we have

measR(I(0)\I(∞)) � Cγ0

ν − ν̂

∞∑
s=1

(ε̃
ν−ν̂
ν )2s−1 � Cγ0

ν − ν̂

∞∑
s=1

2−s � C

ν − ν̂
γ0.

Finally, we estimate the measure of the set I\I(0) = I(−1)\I(0) using the same arguments,
and it turns out that it is also proportional to γ0. Hence, we obtain (12) as follows:

measR(I\I(∞)) � measR(I\I(0)) + measR(I(0)\I(∞)) � C3γ0.
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[9] Broer H W, Hanßmann H, Jorba À, Villanueva J and Wagener F 2003 Normal-internal resonances in quasi-

periodically forced oscillators: a conservative approach Nonlinearity 16 1751–91
[10] Broer H W, Huitema G B and Sevryuk M B 1996 Quasi-periodic motions in families of dynamical systems.

Order amidst chaos (Lecture Notes in Mathematics vol 1645) (Berlin: Springer)
[11] Broer H W, Huitema G B and Takens F 1990 Unfoldings of quasi-periodic tori Mem. Am. Math. Soc. 83 1–81,

171–5
[12] Bruno A D 1989 Normalization of a Hamiltonian system near an invariant cycle or torus Russ. Math. Surv.

44 53–89
[13] Calleja R and de la Llave R 2009 Fast numerical computation of quasi-periodic equilibrium states in 1-D

statistical mechanics, including twist maps Nonlinearity 22 1311–36
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