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Abstract. In this work, our target is to analyze the dynamics around the
1 : −1 resonance which appears when a family of periodic orbits of a real
analytic three-degree of freedom Hamiltonian system changes its stability from
elliptic to a complex hyperbolic saddle passing through degenerate elliptic. Our
analytical approach consists of computing, up to some given arbitrary order,
the normal form around that resonant (or critical) periodic orbit.

Hence, dealing with the normal form itself and the differential equations
related to it, we derive the generic existence of a two-parameter family of in-
variant 2D tori which bifurcate from the critical periodic orbit. Moreover, the
coefficient of the normal form that determines the stability of the bifurcated
tori is identified. This allows us to show the Hopf-like character of the un-
folding: elliptic tori unfold “around” hyperbolic periodic orbits (case of direct
bifurcation) while normal hyperbolic tori appear “around” elliptic periodic or-
bits (case of inverse bifurcation). Further, the parametrization of the main
invariant objects as well as a global description of the dynamics of the normal
form are also given.

1. Introduction. In this paper, the main topic is the study of the dynamics close
to 1 : −1 resonant periodic orbits of three-degree of freedom Hamiltonian systems.
To be more precise: we consider a one-parameter family of periodic orbits of a real
analytic three-degree of freedom Hamiltonian system, and assume that the orbits of
the family are first linearly stable, for a critical value of the parameter the nontri-
vial (i. e., those different from one) characteristic multipliers of the corresponding
periodic orbit collide on the unit circle (Krein collision, see appendix 29 of [2] and
references therein) and then, if certain generic conditions are met, the characteristic
multipliers leave out the unit circle to the complex plane. Hence the family looses
its (linear) stability and the periodic orbits become complex unstable. In other
words, the family changes from stable to complex-unstable by means of a passage
through a critical, 1 : −1 resonant or simply resonant periodic orbit.

These transitions can be found in several fields of science, from astronomy –in
galactic dynamics [17], planetary theory [8]– to particle accelerators [10]; and not
only in three degrees of freedom Hamiltonian systems, but also in higher dimen-
sional problems (see [14]). This same mechanism of instabilization takes place in
families of symplectic maps where a fixed point undergoes Krein collisions of its
eigenvalues for some (critical) value of the parameter (see [3, 11, 19]).
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The outcome of this work can be summarized as follows: we rely on normal
forms as the key tool of our approach, deriving up to any (arbitrary) order, a versal
normal form of the Hamiltonian around the resonant periodic orbit. This involves
the following steps: (i) we assume the Hamiltonian given in a suitable system of
canonical coordinates which are adapted to the resonant periodic orbit; (ii) apply
a canonical Floquet transformation to reduce the normal variational equations of
the orbit to constant coefficients and (iii) proceed with the nonlinear reduction.

Hence, dealing with the normal form itself (i. e., we compute the normal form
up to a given order and we skip the remainder) we show the generic unfolding
of a two-parameter family of 2D-invariant tori (Hamiltonian Hopf bifurcation) and
identify the coefficients which govern not only the bifurcation, but also its character:
direct or inverse. In the case of direct bifurcation, there appear elliptic tori around
complex-unstable periodic orbits, while in the case of inverse bifurcation, hyperbolic
tori (but also parabolic and elliptic tori) unfold around stable periodic orbits. This
study is completed with a description of the global dynamics of the normal form. We
remark that this is not a merely qualitative (i. e., formal) process for, in addition,
accurate parametrizations of the families of invariant tori and even of the invariant
manifolds of the hyperbolic periodic orbits and hyperbolic tori are derived in this
way. A numerical study of the above explained phenomenology has been recently
done (for a direct bifurcation in the RTBP) in [15].

Indeed, as these invariant tori are obtained using an integrable approximation,
the proof of their persistence (on Cantor sets) for the complete Hamiltonian involves
the use of KAM techniques and is beyond the scope of the present paper. See the
introduction of section 3 for more comments.

The contents of this paper are organized as follows. Section 2 tackles the com-
putation of the normal form around the critical periodic orbit. The main result
of this part, which is the normal form itself, is stated in theorem 2.1. Section 3
is devoted to the analysis of the dynamics of the normal form. In particular,
theorem 3.1 establishes the unfolding of a two-parameter family of 2D invariant
tori and proposition 3.1 states the normal stability of the bifurcated tori.

2. Analytic approach. The purpose of this section is to describe briefly the main
steps of the normal form process around the critical periodic orbit. A complete and
constructive description of the process can be found in [16, 18]. In section 2.1 we
give a precise formulation of the problem and state the “normalization theorem” in
which the normal form is described (see theorem 2.1). In section 2.2 we introduce
(local) adapted coordinates around the resonant periodic orbit. The purpose of
this change is to separate the dynamics along the periodic orbit (described now by
an angular variable and its conjugate action), from the movement in the “normal
directions”. Next, in section 2.3, a symplectic Floquet change is applied. The final
goal is to arrive –through a symplectic 2π-periodic linear change–, to a “clean”
Hamiltonian whose quadratic part is in Williamson’s normal form with respect to its
normal directions (see [1]). Later, the linearly reduced Hamiltonian is complexified
(section 2.4) to simplify the structure of the homological equations arising in the
nonlinear normalization process, which begins in section 2.5.

2.1. Formulation of the problem. Let H(ζ) with ζ∗ = (ξ1, ξ2, ξ3, η1, η2, η3),
be a real three degree of freedom analytic Hamiltonian (asterisk will denote the
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transpose of a vector or a matrix) and consider its associated Hamiltonian system

ζ̇ = J3gradH(ζ). (1)

Henceforth, Jn will denote the matrix of the standard canonical n-form in R2n,

Jn =
(

0 In

−In 0

)
,

being In the n× n identity matrix.
Suppose that this system has a one-parameter family of nondegenerate periodic

orbits, {Mσ}σ∈R, such that for σ = 0 the corresponding orbit M0 (from now on,
the critical or resonant periodic orbit) has an irrational (see definition 2.1) collision
of its nontrivial Floquet (characteristic) multipliers. We recall that in Hamiltonian
systems periodic orbits appear generically as one-parameter families parametrized
by the energy (see [20]). For instance, we suppose that for σ < 0 the nontrivial
multipliers of Mσ lie on the unit circle, they approach pairwise as σ goes to σ = 0,
for this value they collide and separate towards the complex plane when σ > 0.

Definition 2.1. Let λ0 6= 1 be a (double) nontrivial characteristic multiplier of the
resonant periodic orbit M0 and let µ = 2πκ be its principal characteristic exponent
(so λ0 = eiµ). We say that the collision of characteristic multipliers on the unit
circle is irrational if µ is not commensurable with 2π or, equivalently, if κ 6∈ Q.

Moreover, we assume generiticity of the collision, in the following sense.

Definition 2.2. Let M(M0) be the monodromy matrix of the resonant periodic
orbit M0. Hence, Spec (M(M0)) = {1, λ0, 1/λ0}. The Krein collision will be called
generic if the Jordan normal form of M(M0) has the following block structure,

JM(M0) =




1 0
1 1

λ0 0
1 λ0

1/λ0 0
1 1/λ0




(2)

Remark 1. Thus, one is assuming that none of the Jordan blocks of the monodromy
matrix at the resonance is trivial (diagonal). In particular, the nontrivial character
of the first block –corresponding to the eigenvalue equal to 1–, follows from the non-
degeneracy of the family of periodic orbits. This is precisely the generic condition
which allows to parametrize the family using the energy as a parameter.

The main result of section 2 is the following normal form theorem.

Theorem 2.1. Consider the three-degree of freedom Hamiltonian system (1). Let
{Mσ}σ∈R be a one-parameter family of periodic orbits of this system with an irra-
tional (so κ 6∈ Q, see definition 2.1) and generic (see definition 2.2) Krein collision
at σ = 0; also, let ω1 denote the angular frequency of M0 and define ω2 := κω1.

Then, given any r ≥ 3, there exists a real analytic symplectic change: (ξ, η) =
φ(θ1, x, I1, y), defined in S1 × B (S1 = R/2πZ and B a neighbourhood of the origin
in R5) and taking values in a neighbourhood of M0, such that it casts the initial
Hamiltonian into its normal form up to order r,

H ◦ φ(θ1, x, I1, y) = Z(r)(x, I1, y) + R(r)(θ1, x, I1, y).



802 M. OLLÉ, J.R. PACHA AND J. VILLANUEVA

Here, Z(r) is the normal form up to order r and R(r) is the remainder (carrying
higher order terms). The normal form is given by the sum

Z(r) =
r∑

s=2

Zs, (3)

with
Z2 = ω1I1 + ω2(y1x2 − y2x1)± 1

2
(y2

1 + y2
2),

where the sign ± in Z2 is a characteristic of the collision. For s ≥ 3, Zs = 0 if s
is odd and, when s is even, it is an homogeneous polynomial of degree s/2 in

1
2
(x2

1 + x2
2), I1, y1x2 − y2x1.

Although it is not pointed out in theorem 2.1, the change (ξ, η) = φ(θ1, x, I1, y)
yielding the normal form, depends on the order r.

We also remark that the detailed development of the reduction to the normal
form given by (3) is lengthy and involved, due to the non semi-simple character of
the nontrivial characteristic multipliers of the colision orbit. However, the method
and main ideas are standard in normal form techniques. Of course, the full devel-
opment is important if one is interested in the explicit (numerical) computation of
the normal form (see [13] for the case of an elliptic periodic orbit) or in quantitative
estimates (see introduction of section 3). As we focus our attention on the dynam-
ics from the (truncated) normal form, we just recall the main steps and results and
omit all the proofs. We refer the interested reader to [18] for all the details.

2.2. Suitable coordinates around the critical periodic orbit. As a first step,
we shall introduce (local) adapted coordinates around the critical periodic orbitM0

through an analytic 2π-periodic in θ̃ change of variables,

ξi = ξi(θ̃, ξ̃, Ĩ , η̃), ηi = ηi(θ̃, ξ̃, Ĩ , η̃), (4)

i = 1, 2, 3 and with ξ̃∗ = (ξ̃1, ξ̃2), η̃∗ = (η̃1, η̃2). Furthermore, we shall ask the
change (4) to satisfy the following properties (see [5, 6] andreferences therein):

P1. It maps the product set T1 × O, where O is a five-dimensional open set
around the origin, onto some (possibly small) neighbourhood U of M0. We shall
denote by Tn := (R/2πZ)n, n ∈ N, the standard n-torus. In particular T1 ≡ S1.

P2. The periodic orbit M0 is given by ξ̃ = η̃ = 0, Ĩ = 0 and parametrized by
θ̃. Moreover, if ω1 is the angular frequency of M0, then the dynamics of θ̃ on the
orbit is a linear periodic flow, ˙̃

θ = ω1.
P3. The change (4) is symplectic with θ̃, ξ̃ and Ĩ, η̃ the new conjugate positions

and momenta respectively. So in these coordinates, the system (1) is transformed
into another Hamiltonian system,

˙̃
θ =

∂H̃

∂Ĩ
,

˙̃
I = −∂H̃

∂θ̃
,

˙̃
ξi =

∂H̃

∂η̃i
, ˙̃ηi = −∂H̃

∂ξ̃i

, i = 1, 2. (5)

For an example with an explicit construction of local canonical coordinates such
like the ones just described, see [13].

The transformed Hamiltonian H̃, defined in T ×O, is analytic and 2π-periodic
in θ̃, so it can be expanded in a convergent Taylor series,

H̃(θ̃, ξ̃, Ĩ , η̃) =
∑

k,l,m

h̃k,l,m(θ̃)Ĩk ξ̃lη̃m, (6)
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with ξ̃∗ = (ξ̃1, ξ̃2), η̃∗ = (η̃1, η̃2) and the standard multi-index notation ξ̃lη̃m =
ξ̃l1
1 ξ̃l2

2 η̃m1
1 η̃m2

2 , which we shall use throughout the text. The index k, and the
components of l∗ = (l1, l2), m∗ = (m1,m2) range over the nonnegative integers,
Z+ = N ∪ {0}, while the coefficients h̃k,l,m(θ̃) are analytic 2π-periodic functions in
θ̃. If we restrict the system (5) to the periodic orbit M0, and take into account the
expansion (6), we get

0 = h̃′0,0,0,0,0(θ̃), ω1 = h̃1,0,0,0,0(θ̃), 0 = h̃0,ei(θ̃), i = 1, 2, 3, 4,

(ei is the i-th unit vector in R4), since by the condition P2, ˙̃
ξ = ˙̃η = 0, ˙̃

I = 0

and ˙̃
θ = ω1 on the periodic orbit M0. Then, from equations above, it follows that

h̃0,0,0,0,0(θ̃) ≡ const., so we can set h̃0,0,0,0,0 = 0.

2.3. Linear normalization. The main result of this section states that, beyond
the adapted coordinates, a new symplectic change (a “canonical Floquet” trans-
formation) can be applied to reduce the normal variational equations around the
critical orbit (that is, the linearized system in the normal directions) to a system
with constant coefficients. Throughout the text, we shall refer as the “normal direc-
tions” those normal to the periodic orbit. Clearly, once an angle and its conjugate
action have been introduced to describe the periodic orbit, the normal directions
in the phase space will be the ones associated to the rest of the positions and their
corresponding conjugate momenta.

Lemma 2.1. Assuming that the monodromy matrix of the resonant periodic orbit
M0 has the Jordan block structure (2) (and hence generiticity of the Krein collision,
according to definition 2.2), the Hamiltonian H̃(θ̃, ξ̃, Ĩ , η̃), obtained after section 2.2,
can be transformed by means of a symplectic change into

H(θ1, x, I1, y) = H2(x, I1, y) + · · · , (7)

here (θ1, x, I1, y) are the new symplectic coordinates and H2 is given by,

H2(x, I1, y) = ω1I1 + ω2(y1x2 − y2x1)± 1
2
(y2

1 + y2
2) (8)

where ω2 = κω1 (see theorem 2.1) and the sign ± in the above formula is a charac-
teristic of the collision; in particular we also remark that H2 is free from angular
dependence. The dots mean higher order terms in (x, I1, y). Furthermore, the
canonical transformation is linear in the normal directions z∗ = (x, y) and 2π-
periodic in the angle θ1 = θ̃ (Floquet canonical reduction). In this sense, we shall
say that the transformed Hamiltonian (7) is “linearly reduced” (with respect to the
normal directions).

We note that the normal part ofH2 (i. e., excluding the “rotor” ω1I1) agrees with
the quadratic normal form in the classification given in [1] for the non-diagonalizable
case. See [3, 18] for a proof.

Remark 2. After lemma 2.1 we should deal with two different cases which cor-
respond to the plus or minus sign in (8). However, applying first the symplectic
change,

θ1 = εθ′1, x1 = εx′1, x2 = x′2,
I1 = εI ′1, y1 = εy′1, y2 = y′2

to the transformed Hamiltonian H (see (7)) one may get rid of the ± in (8) if
further the substitution t 7→ εt (which reverses the sign of the time when ε = −1)
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is allowed. In the forthcoming we shall assume that both transformations have been
made so the ± sign will no longer appear (i. e., only the case ε = 1 is considered).
Moreover, the primes will be dropped and the names H for the linearly reduced
Hamiltonian and H2 for its lower order terms are kept.

In this way, we arrive to a new, linearly reduced (in the sense stated in lemma 2.1)
Hamiltonian, whose complete expansion can be written as,

H(θ1, x, I1, y) = H2(x, I1, y) +
∑

2l+|m|1+|n|1≥3

ĥl,m,n(θ1)I l
1x

myn (9)

(l ∈ Z+, m, n ∈ Z2
+), where H2 is now (see remark 2 above) given by,

H2(x, I1, y) = ω1I1 + ω2(y1x2 − y2x1) +
1
2
(y2

1 + y2
2). (10)

2.4. Complexification of the Hamiltonian. Before going on with the nonlinear
normalization, and in order to get the homological equations in a simpler form, it
is convenient to introduce the following (complex) coordinates,

x1 =
q1 − p2√

2
x2 = −q1 + p2

i
√

2
, y1 =

q2 + p1√
2

, y2 = −q2 − p1

i
√

2
. (11)

These last relations define a linear canonical change which transforms the Hamil-
tonian (9) into

H(θ1, q, I1, p) = H2(q, I1, p) +
∑

2l+|m|1+|n|1≥3

hl,m,n(θ1)I l
1q

mpn, (12)

where H2 is (10) expressed in these coordinates (see (13)). As usual, we have put
q∗ = (q1, q2), p∗ = (p1, p2) and hl,m,n(θ1) are analytic 2π-periodic functions.

Also, by direct substitution of (11) in the Hamiltonian (9), it can be seen that
the quadratic part in (12) is,

H2 = ω1I1 + iω2(q1p1 + q2p2) + q2p1. (13)

This will be the lowest-order term in our normal form. Note that, in the change (11)
x and y will be real provided that q̄1 = −p2 and q̄2 = p1.

Remark 3. If the above relations are assumed to hold and, as the complex Hamil-
tonian H is the transformed of a real Hamiltonian H, it must be H = H. More
precisely, if we expand H in Poisson (Taylor-Fourier) series,

H(θ1, q, I1, p) =
∑

k,l,m,n

hk,l,m,nI l
1 qmpn exp(ikθ1), (14)

with k ∈ Z, then it is readily checked that the inverse change of (11) transforms H
back to the Poisson series of a real function if and only if the relations:

h̄k,l,m1,m2,n1,n2 = (−1)m1+n2h−k,l,n2,n1,m2,m1

hold between the coefficients of the expansion of H.
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2.5. Nonlinear normalization. The Hamiltonian with the quadratic part given
by (13) is suitable to start the normal form process. We notice that if this normal-
ization is carried out up to any order, it leads to a generically divergent system (due
to the small divisors involved). So, if we want a convergent Hamiltonian, we have
to stop the normal form after a finite number of steps of the normalizing process.

Now, we sketch this reduction process. The most remarkable fact is that the non
semi-simple character of the monodromy matrix of the critical orbit in the normal
directions (the generic condition of definition 2.2), give rise to non semi-simple
homological equations in the reduction process, which is not the standard context
in normal forms. However, it is not strongly difficult to identify the removable
and non-removable terms of the system. What is more complicate (than in the
diagonal case) is to compute explicitly the normalizing transformation. Details of
this reduction and a constructive algorithm to perform it are given in [16, 18].

A very natural way to compute the normalizing (canonical) transformation is to
use the Lie series method to remove in an increasing way, and up to a given finite
order, the “nonresonant” terms of the Hamiltonian. Thus, the generating function
of the transformation is computed degree by degree by solving, at every step, an
homological equation of the form:

{G,H2}+ Z = F, (15)

where F contains the terms (of a given degree s) to be removed by a suitable G
while Z stands for the non-removable terms (the normal form). Here, {·, ·} is the
Poisson bracket. If we denote by E the space of formal Poisson series defined as (14),
the important point for us is to investigate the action of the linear (Lie) operator

LH2 : E −→ E
χ 7→ LH2χ = {χ, H2},

and to give a complement of Range LH2 in E. Given a monomial g ∈ E, of the form

g = I l
1 qm pn exp(ikθ1),

then

LH2g =
(

Ω + m1
q2

q1
− n2

p1

p2

)
g,

where Ω (the small divisors) is introduced as

Ω ≡ Ωk,|m|1,|n|1 = iω1k + iω2(|m|1 − |n|1),
with |m|1 = |m1| + |m2| (similarly for |n|1). Since the frequencies ω1 and ω2

are rationally independent, we have that Ωk,|m|1,|n|1 = 0 if and only if k = 0
and |m|1 = |n|1. Then, a careful analysis of the structure of the homological
equation (15) restricted to the monomials with Ω 6= 0, shows that all of them can
be removed by a suitable choice of G. This means that if there are non-removable
monomials they have to satisfy Ω = 0.

Thus, next step is to discuss the solvability of (15) for the terms for which the
resonant condition Ω = 0 is fulfilled. Those are given by

P =





∑

l,M

∑

0≤m1,n2≤M

fl,m1,M−m1,M−n2,n2I
l
1q

m1
1 qM−m1

2 pM−n2
1 pn2

2



 .

What we have to investigate is the action of LH2 on P, which we denote by L :
P → P. A standard way to compute a complement of Range L in P is to introduce
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an Hermitian product in P. Thus, the following decomposition works,

P = Range L⊕KerL†

where L† is the adjoint operator of L. Given

F =
∑

Fl,m,nI l
1q

mpn, G =
∑

Gl′,m′,n′I
l′
1 qm′

pn′ ,

if we consider the Hermitian product (see [7]):

〈F |G〉 =
∑

m1,m2,n1,n2

m1! m2! n1! n2! Fl,m,mGl,m,n,

then L† = {·,H†
2}, with H†

2 = q1p2. Next, introducing

ξ1 = i (q1p1 + q2p2) , ξ2 = q1p2,

we can check that

KerL† =





∑

l,M

M∑
n=0

gl,n,M−nI l
1ξ

n
1 ξM−n

2



 .

Hence, theorem 2.1 follows immediately since if we apply the inverse of (11), we get

i(q1p1 + q2p2) = y1x2 − y2x1, q1p2 = −1
2
(x2

1 + x2
2),

and therefore, for s ≥ 3 and even, Zs in (3) depends on the real coordinates I1, x, y
in the form stated in the theorem. A careful analysis of the algebraic structure of
the homological equations shows that the symmetries due to the complexification
are preserved by the normal form process, and all the coefficients of Z(r) turn out to
be real. Finally, we recall that due to the minus sign in the second of the formulas
above, the coefficients of Zs may differ in a sign when expressed in real or in complex
coordinates. Also, we remark that an additional reversion in the time t, t 7→ −t, is
necessary if ε = −1 after the linear reduction (see lemma 2.1 and remark 2).

3. Dynamics of the normal form. In this section, the normal form Z(r) is
analyzed. Then, after the setting of the Hamiltonian equations corresponding
to Z(r) and the discussion of their first integrals (section 3.1) we derive, in sec-
tion 3.2, a parametrization of the family of periodic orbits and discuss their stability
(lemma 3.1). Next, in section 3.3 we show that –under certain generic conditions
which depend intrinsically on the low order terms of the normal form– there un-
folds, “surrounding” the periodic orbits, a two-parameter family of two dimensional
invariant tori. Furthermore, A study of the normal behaviour of such bifurcating
tori is done, and the results are summarized in proposition 3.1. The global picture
resembles the classical Andronov-Hopf bifurcation, in the sense that unfolded stable
(elliptic) objects (2D-invariant tori in our case) appear around lower dimensional
unstable ones –here, the periodic orbits of the family– (direct case), whereas con-
versely, unstable (hyperbolic) 2D-invariant tori may unfold around stable periodic
orbits (inverse case). Nevertheless, in the current Hamiltonian case, elliptic and
parabolic tori branch off as well (see proposition 3.1). Whether the former or the
latter phenomenon takes place, depends again upon the nature of the low-order
normal form. In the literature –see [21]–, this kind of bifurcation is known as the
Hamiltonian Andronov-Hopf bifurcation. Next, in sections 3.4 and 3.5, we give
parametrizations of the invariant manifolds of the hyperbolic periodic orbits of the
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family and of the bifurcated (hyperbolic) 2D-invariant tori. Section 3.6 deals with
the 3D-invariant tori branching off the 2D-elliptic tori of proposition 3.1.

However, it is worth realizing that if only a qualitative description is needed,
all these forementioned objects, and the dynamics generated from them, can be
detected using the normal form (16) up to an order four (hence r = 2; see [9]).
Nevertheless, if one looks for accurate parametrizations of those backbone dynami-
cal invariants, then they must be computed from a normal form of higher order and
therefore, our approach describes the (local) dynamics around the non semi-simple
resonant periodic orbit not only qualitatively, but quantitatively as well, in the
sense that allows all these computations effectively and up to any arbitrary order.

The questions related with the effect that the nonintegrable remainder has on
the dynamics of the normal form are not treated here. A very natural one is the
derivation, as a function of the distance to the critical orbit, of the “optimal” order
of the normal form such that it minimizes the size of the remainder in a given
neighbourhood of the resonant periodic orbit. This problem is tackled in [16, 18],
and we only mention that classical exponentially small estimates for the size of the
remainder of the normal form are not obtained in this case.

The most important question is the persistence of the bifurcated invariant tori
detected from the normal form. To do that, one cannot avoid getting involved
with KAM methods (see [4] and references therein for a wide description of these
techniques). What is natural to expect is that these tori persist on Cantor sets for
the parameters, with estimates on the size of the (relative) measure of the destroyed
tori controlled by the size of the nonintegrable remainder (compare with the case
of exponentially small estimates for the remainder of the normal form around an
elliptic torus in [12]). A proof of this fact requires nondegeneracy conditions on
the basic frequencies (see remark 5), and a careful control of the normal frequency
of the 2D-elliptic tori. However, we want to stress that, as we have to deal with
invariant objects that are very close to a degenerate (non semi-simple) orbit, this
fact introduces additional difficulties forcing to modify the standard KAM iterative
methods to achieve the desired estimates for the measure. For a proof in the case of
a direct bifurcation see [18]. We hope to give a complete treatment of the problem
(covering also the inverse case) in a future work.

3.1. Hamiltonian equations of the truncated normal form. From now on
we shall concentrate on the study of the normal form Z(r), skipping the remainder
R(r) off and working only with real coordinates throughout. Hence, in view of
theorem 2.1, Z(r) can be put into the form:

Z(r)(x, I1, y) = ω1I1 + ω2y × x +
1
2
|y|22 + Zr

(
1
2
|x|22, I1, y × x

)
, (16)

with the notation,

|x|2 = (x2
1 + x2

2)
1/2, |y|2 = (y2

1 + y2
2)1/2, y × x = x2y1 − x1y2

and Zr(u, v, w) being a polynomial of degree br/2c (we use bxc to denote the integer
part of x ∈ R), beginning with quadratic terms. We shall express it as

Zr(u, v, w) =
1
2
(au2 + bv2 + cw2) + duv + euw + fvw + Fr(u, v, w) (17)

with
Fr(u, v, w) =

∑

3≤j+m+n≤br/2c
fj,m,nujvmwn, (18)
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if r ≥ 6 or zero otherwise.
Actually, the coefficients of the term of degree two are those which will play an

essential rôle in the dynamics of Z(r). It becomes clear throughout the main results
of this section: lemma 3.1, theorem 3.1 and proposition 3.1.

Now, if we define

η(x, I1, y) :=
(

1
2
|x|22, I1, y × x

)
,

the corresponding Hamiltonian equations can be written in the form

θ̇1 = ω1 + ∂2Zr ◦ η,

İ1 = 0,
ẋ1 = ω2x2 + y1 + x2∂3Zr ◦ η,
ẋ2 = −ω2x1 + y2 − x1∂3Zr ◦ η,
ẏ1 = ω2y2 − x1∂1Zr ◦ η + y2∂3Zr ◦ η,
ẏ2 = −ω2y1 − x2∂1Zr ◦ η − y1∂3Zr ◦ η.

(19)

where ∂iZr is the partial derivative of the function Zr with respect the i-th variable.
The system above is integrable, since it can be shown that the three functions

I1 = I1, I2 = y × x and I3 =
1
2
|y|22 + Zr

(
1
2
|x|22, I1, y × x

)
(20)

are, outside the zero measure set defined by {y1 = 0, y2 = 0, ∂1Zr = 0}, three
functionally independent integrals in involution of the system (19).

3.2. Parametrization of the family of periodic orbits. These Hamiltonian
equations have a one-parameter family of periodic orbits given by

Mσ :





θ1 = (ω1 + ∂2Zr(0, I1, 0))t + θ0
1,

I1 = σ,
x1 = x2 = y1 = y2 = 0.

(21)

This implies that the action I1 is a good parameter for the (local) description of
the initial family of periodic orbits. So we can identify σ ≡ I1 as the parameter
and, in the forthcoming, denote the family by {MI1}I1∈R.

Remark 4. With the parametrization (21), the “twist” condition (see [20]) ω′(0) 6=
0, requiring the angular frequency to move with the parameter of the family, can be
expressed as ∂2,2Zr(0, 0, 0) = b 6= 0.

It turns out that, if the coefficient d in (17) is different from zero (this is a generic
condition that will be assumed in the sequel), the stability of the family {MI1}I1∈R
depends, for |I1| small, on the product dI1. This is stated in the next lemma.

Lemma 3.1. If the coefficient d of the polynomial Zr given by (17) is d 6= 0, then
for |I1| small enough, the periodic orbits in {MI1}I1∈R are complex-unstable when
dI1 < 0 or (linearly) stable when dI1 > 0.

Proof. To compute the characteristic exponents of the periodic orbits, we write
down the variational equations of (19) aroundMI1 . Using the parametrization (21),
one may check that in the normal directions (x, y) these equations are given by the
linear system: 



ẋ1

ẋ2

ẏ1

ẏ2


 =




0 σ2 1 0
−σ2 0 0 1
−σ1 0 0 σ2

0 −σ1 −σ2 0







x1

x2

y1

y2


 ,
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with σ1, σ2 defined by,

σ1 := ∂1Zr(0, I1, 0) = dI1 + O(I2
1 ), (22)

σ2 := ω2 + ∂3Zr(0, I1, 0) = ω2 + fI1 + O(I2
1 )

and then the characteristic exponents of the periodic orbits are,

α±I1
= iσ2 ±

√−σ1

= i(ω2 + fI1 + O(I2
1 ))±

√
−dI1 + O(I2

1 ),

β±I1
= −iσ2 ±

√−σ1

= −i(ω2 + fI1 + O(I2
1 ))±

√
−dI1 + O(I2

1 ).

Thus, if |I1| is sufficiently small, the sign of the terms inside the square roots at
the expansions for α±I1

and β±I1
in the above formulas, depends on the sign of dI1

in the way described by the lemma. ¤

3.3. An unfolding of a two-parameter family of 2D-invariant tori. Generi-
cally, this collision of characteristic multipliers carries on quasiperiodic bifurcation
phenomena. These may be described using the normal form Z(r).

Before, to simplify the identification of the requested solutions, it is convenient
to introduce new coordinates through the change:

x1 =
√

2q cos θ2, y1 = − I2√
2q

sin θ2 + p
√

2q cos θ2,

x2 = −√2q sin θ2, y2 = − I2√
2q

cos θ2 − p
√

2q sin θ2,
(23)

with q > 0. Transformation (23) is canonical, for one immediately verifies: dθ1 ∧
dI1 + dx ∧ dy = dθ ∧ dI + dq ∧ dp and is properly defined and regular except in
the set x1 = x2 = 0. It introduces a second action I2, together with its conjugate
angle θ2 while q and p are the new normal position and its conjugate momentum
respectively; in these coordinates, the Hamiltonian Z(r) takes the form,

Z(r)(θ1, θ2, q, I1, I2, p) = ω1I1 + ω2I2 + qp2 +
I2
2

4q
+ Zr(q, I1, I2). (24)

Assuming, as in lemma 3.1, d 6= 0, the Hamiltonian system corresponding to (24)

θ̇1 = ω1 + ∂2Zr(q, I1, I2),

θ̇2 = ω2 +
I2

2q
+ ∂3Zr(q, I1, I2),

q̇ = 2qp,

İ1 = 0,

İ2 = 0,

ṗ = −p2 +
I2
2

4q2
− ∂1Zr(q, I1, I2),

(25)

has a two-parameter family of bifurcated 2D-invariant tori. Theorem 3.1 sets a
precise formulation of this assertion.

Theorem 3.1. If the coefficient of d of Zr (see equation (17)) is d 6= 0 there exists
a real analytic function I : D ⊂ R2 → R, D a neighbourhood of (0, 0), defined
implicitly by the equation

η2 = ∂1Zr (ξ, I(ξ, η), 2ξη) ,
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with I(0, 0) = 0 and such that, for (ξ, η) ∈ D, the two-dimensional torus

Tξ,η = {(θ, q, I, p) ∈ T2 × R× R2 × R : q = ξ, I1 = I(ξ, η), I2 = 2ξη, p = 0} (26)

is invariant under the flow of (25) with parallel dynamics determined by the vector
Ω∗ = (Ω1,Ω2) of intrinsic frequencies:

Ω1(ξ, η) = ω1 + ∂2Zr(ξ, I(ξ, η), 2ξη),
Ω2(ξ, η) = ω2 + η + ∂3Zr(ξ, I(ξ, η), 2ξη); (27)

moreover, the corresponding invariant tori of (16) are real whenever ξ > 0.

Proof. It follows directly by substitution in equations (25), whereas the last point
about the real character of the invariant tori follows from (26) and the change (23).
Here we only stress that the condition d 6= 0 (the non-degeneracy of the transition)
is the necessary hypothesis for the implicit analytic function I to exist in a neigh-
bourhood of (0, 0), since ∂2

1,2Zr(0, 0, 0) = d. Finally, transformation (23) shows the
real character of the (corresponding) tori of (16) for ξ > 0. ¤

Then {Tξ,η}(ξ,η)∈D with ξ > 0 constitutes a two-parameter family of real in-
variant tori filled up with quasiperiodic solutions of the system (25). Whence,
changing back to rectangular (with respect to the normal directions) coordinates
by means of (23), one obtains a family of two-parameter quasiperiodic solutions
winding 2D-real invariant tori of (16). Explicitly:

θ1 = Ω1(ξ, η)t + θ0
1, I1 = I(ξ, η),

x1 =
√

2ξ cos(Ω2(ξ, η)t + θ0
2), y1 = −√2ξ η sin(Ω2(ξ, η)t + θ0

2),

x2 = −√2ξ sin(Ω2(ξ, η) + θ0
2), y2 = −√2ξ η cos(Ω2(ξ, η)t + θ0

2).

Using the expressions for Zr given by (17) and (18), a formal expansion of the
implicit function I can easily be derived. Up to second order in ξ, η one gets:

I(ξ, η) = −a

d
ξ− 1

d

(
3f3,0,0 − 2af2,1,0

d
+

a2f1,2,0

d2

)
ξ2− 2e

d
ξη+

1
d
η2 +O3(ξ, η) (28)

and then substitution in (27) yields, for the frequencies Ω1, Ω2,

Ω1(ξ, η) = ω1 +
(
d− ab

d

)
ξ

+
(
− 3b

d f3,0,0 − a2b
d3 f1,2,0 + 2ab

d2 f2,1,0 + f2,1,0 − 2a
d f1,2,0 + 3a2

d2 f0,3,0

)
ξ2

+
(− 2eb

d + 2f
)
ξη + b

dη2 + O3(ξ, η), (29)

Ω2(ξ, η) = ω2 +
(
e− af

d

)
ξ + η

+
(
− 3f

d f3,0,0 − a2f
d3 f1,2,0 + 2af

d2 f2,1,0 + f2,0,1 − a
df1,1,1 + a2

d2 f0,2,1

)
ξ2

+
(
2c− 2ef

d

)
ξη + f

d η2 + O3(ξ, η). (30)

Similarly as in the lemma 3.1 for the stability of periodic orbits, the normal char-
acter (elliptic, hyperbolic) of the unfolded tori has to do with the sign of one of the
coefficients of the polynomial Zr (see proposition below).

Remark 5. In view of the expansions (29) and (30) one easily computes detDζΩ =
d−ab/d+O1(ξ, η) –with ζ∗ = (ξ, η), Ω∗ = (Ω1,Ω2)–, so the family of invariant tori
will be nondegenerated (in the Kolmogorov’s sense) under the condition d2 6= ab.
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I
1

ρ

ρ = R

(a) a > 0 (direct bifurcation)

I
1

ρ

ρ = R

(b) a < 0 (inverse bifurcation)

Figure 1. Qualitative sketch of the size of the 2D bifurcated tori
and their stability in the case d > 0. See the text for details.

Proposition 3.1. With the assumptions of theorem 3.1 –including the reality con-
dition ξ > 0– and if the coefficient a of the polynomial Zr in (17) is a 6= 0; the type
of the bifurcation is determined by the sign of the coefficient a.

Case 1. If a > 0; besides the elliptic tori around stable periodic orbits –which
correspond to excitations in their normal elliptic directions– there appear elliptic
tori around complex-unstable periodic orbits.

Case 2. If a < 0, then, hyperbolic invariant tori unfold around stable periodic
orbits. In this case, the family described in theorem 3.1 contains also elliptic tori
(of the same nature than those in the previous case) and parabolic tori.

By analogy with the classical Andronov-Hopf bifurcation, the former and the
latter cases in the proposition are often referred as the “direct” and the “inverse”
bifurcation respectively.

Proof (of proposition 3.1). Consider the system (25) and the family of invariant tori
{Tξ,η}(ξ,η) of theorem 3.1. Around one of these tori, the first variational equations
in the normal directions are given by the linear system,

Ẋ = 2ξY,

Ẏ = −
[
2η2

ξ + a + ∂2
1,1Fr(ξ, I(ξ, η), 2ξη)

]
X

whose eigenvalues (the characteristic exponents of the torus) are:

µ±(ξ, η) = ± [−4η2 − 2aξ − 2ξ∂2
1,1Fr(ξ, I(ξ, η), 2ξη)

]1/2
. (31)

As ξ∂2
1,1Fr(ξ, I(ξ, η), 2ξη) is ξO1(ξ, η), at least –in a small neighbourhood of (ξ, η) =

(0, 0)–, the normal behaviour of the tori is determined by the sign of the first two
terms inside the square root, i. e. by: −4η2 − 2aξ. In particular, if the coefficient
a is positive (case 1) then the family only holds the elliptic invariant tori, whilst
for negative values of a (case 2), elliptic and hyperbolic tori will be present, but
parabolic tori will appear as well. Indeed, if one considers the equation: 2η2 +
aξ + ξ∂2

1,1Fr(ξ, I(ξ, η), 2ξη) = 0, just the implicit function theorem applied at
(ξ, η) = (0, 0) shows the existence –in the space of parameters (ξ, η)–, of a path
ξ = g(η) giving rise to a one-parameter family of parabolic tori. Of course, the
same can be done when a < 0 but then ξ, as a function of η, will take locally (i. e.,
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in a small neighbourhood of the origin) only negative values, against the condition
for real invariant tori.

To discuss the position –relative to the family of periodic orbits– of the bifurcated
invariant tori, one looks at (28) and realizes that for (ξ, η) given, the action I1 of
the corresponding invariant torus can be expressed as

I1 = −a

d
ξ +

1
d
η2 + ξO1(ξ, η) + O3(ξ, η);

hence, the sign of dI1 is determined locally by the first two terms. In particular,
for a > 0 (case 1) dI1 can take positive or negative values so elliptic bifurcated tori
of the first case unfold “around” both stable and unstable periodic orbits. On the
contrary, for a < 0 the sign of dI1 is (locally) always positive and therefore, in the
second case, bifurcated hyperbolic, elliptic and parabolic tori appear around –in
the sense just stated– stable periodic orbits of the family. This ends the proof. ¤

In figure 1 the bifurcation pattern is sketched in both contexts for d > 0 (the
figures for d < 0 follow straightforward). In these plots complex-unstable periodic
orbits lie on the negative horizontal semiaxis (in dashed lines) and the stable ones
in the positive horizontal semiaxis. In figure (a) the shaded area corresponds to
the domain of existence of elliptic invariant tori. In figure (b) the regions shaded
obliquely and horizontally are the domains of the elliptic and hyperbolic tori re-
spectively whilst the separating curve holds parabolic tori. Here ρ, 0 < ρ < R,
is defined by ρ := (x2

1 + x2
2)

1/2 (so ρ = (2ξ)1/2, according to (23)). It can be
thought of as the radius of the invariant torus Tξ,η in the normal directions x1,
x2. R is the “maximum allowed radius” and is determined by the domain D of
I(ξ, η) (see theorem 3.1). If η is allowed to range in a neighbourhood of η = 0, the
regions shaded in the figures may be derived from (28) setting ξ = ρ2/2, i. e. from:
dI1 = −aρ2/2 + η2 + O3(ρ, η) and the normal character of the tori follows from the
characteristic exponents (31).

3.4. Parametrization of the invariant manifolds of the hyperbolic periodic
orbits. We recall that when σ1 < 0 in (22) (i. e., when dI1 < 0 with |I1| small)
then the orbit MI1 given by the parametrization (21) is a hyperbolic periodic orbit
of the Hamiltonian equations of the normal form Z(r). So, one may use Z(r) to get
parametrizations of the stable and unstable invariant manifolds of this orbits. If we
consider a fixed I1 such that σ1 < 0, then the corresponding stable and unstable
manifolds of MI1 are three dimensional and can be obtained by setting the values
of the first integrals in (20) to the ones of MI1 . If we write I2 and I3 in the
coordinates (23) we have,

I2 = I2, I3 = qp2 +
I2
2

4q
+ Zr(q, I1, I2).

So, the invariant manifolds of MI1 are defined by

I2 = 0, qp2 + Zr(q, I1, 0) = Zr(0, I1, 0),

obtaining:

p = ±
{

1
q

[Zr(0, I1, 0)−Zr(q, I1, 0)]
}1/2

= ±
[
−a

2
q − dI1 + O2(q, I1)

]1/2

.

The choice + corresponds to the unstable manifold and the choice − to the sta-
ble one. Going back to the rectangular coordinates through (23), we obtain the
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Figure 2. Invariant manifolds of the hyperbolic periodic orbits
for three different values of I1: I ′′′1 < I ′′1 < I ′1 < 0. Figures (a)
and (b), corresponding to a > 0, are the projections of the invariant
manifolds on the planes (q, p) and (x1, y1) respectively. The same,
but for a < 0 is plotted in figures (c) and (d).

following parametrization of the manifolds:

x1 =
√

2q cos θ2, y1 = ± [2(Zr(0, I1, 0)−Zr(q, I1, 0))]1/2 cos θ2,

x2 = −√2q sin θ2, y2 = ∓ [2(Zr(0, I1, 0)−Zr(q, I1, 0))]1/2 sin θ2.

Alternatively, the invariant manifolds can be given as graphs:

yi = ±xi

{
2

x2
1 + x2

2

[
Zr(0, I1, 0)−Zr

(
1
2

(
x2

1 + x2
2

)
, I1, 0

)]}1/2

= ±xi

[
−a

4
(x2

1 + x2
2)− dI1 + Γ

]1/2

,

where Γ stands for the terms of (adapted) degree at least 3. These parametrizations
are represented in figures 2(a)–(d) for three different (negative) values of the action
I1 and according to the sign of a (see the details in the caption).

However, the range of available parameters (q, I1) is restricted by the condition
that the expressions inside the square roots must be positive. Introducing F (q, I1)
through

F (q, I1) :=
1
q

[Zr(0, I1, 0)−Zr(q, I1, 0)] ,

clearly, F (q, I1) ≥ 0 must hold and we notice that F (0, 0) = 0, ∂1F (0, 0) = −a/2 6=
0 and ∂2F (0, 0) = −d 6= 0. Thus, the boundary of this domain can be (locally)
expressed as function of I1 or q.
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3.5. Parametrization of the invariant manifolds of the hyperbolic 2D-
invariant tori. In the inverse case (when a < 0), we have shown that for certain
range of the parameters (ξ, η) the 2-dimensional bifurcated invariant torus Tξ,η

given in (26) is normally hyperbolic. More precisely, it happens for the values of
ξ > 0 and η such that

4η2 + 2ξ∂2
1,1Zr(ξ, I(ξ, η), 2ξη) < 0

holds (see theorem 3.1 and proposition 3.1). For these tori we can also compute
their stable and unstable manifold which, for any given torus, have dimension three.
Again, they are implicitly defined by fixing the values of the first integrals in (20):

I1 = I(ξ, η), I2 = 2ξη, I3 = ξη2 + Zr(ξ, I(ξ, η), 2ξη).

Using the coordinates (23) we obtain the following expression for p:

p = ±
√

F (q, ξ, η) (32)

= ±
{

1
q

[
Zr(ξ, I(ξ, η), 2ξη)−Zr(q, I(ξ, η), 2ξη) + ξ2η2

(
1
ξ
− 1

q

)]}1/2

and the corresponding manifold will be stable if p(q−ξ) < 0 or unstable if p(q−ξ) >
0 (see figure 3(a)). Of course, using the expressions (23) we can go back to the
original normal form coordinates. As for the hyperbolic periodic orbits, we can
also see these manifolds as graphs, so that

y1 = 2ξη
x2

x2
1 + x2

2

± x1

[
F

(
1
2
(x2

1 + x2
2), ξ, η

)]1/2

,

y2 = −2ξη
x1

x2
1 + x2

2

± x2

[
F

(
1
2
(x2

1 + x2
2), ξ, η

)]1/2

.

Moreover, if we use the equation defining I(ξ, η) (see (28)) we can make more clear
the expression of F (q, ξ, η). Indeed, we can expand it in powers of q− ξ, obtaining:

Zr(q, I(ξ, η), 2ξη)−Zr(ξ, I(ξ, η), 2ξη) = η2(q − ξ)

+
1
2
∂2
1,1Zr(ξ, I(ξ, η), 2ξη)(q − ξ)2

+G(q, ξ, η)(q − ξ)3,

where G(q, ξ, η)(q−ξ)3 stands for the complementary term in the Taylor expansion,
and thus

F = − (q − ξ)2

4q2
g(q, ξ, η)

with

g(q, ξ, η) = 4η2 + 2ξ∂2
1,1Zr(ξ, I(ζ), 2ξη)

+2(q − ξ)
[
∂2
1,1Zr(ξ, I(ζ), 2ξη) + 2qG(q, ζ)

]
.

Using the expression above for F , the condition on the torus Tξ,η to be hyperbolic
appears in a natural form: as in equation (32) we need F (q, ξ, η) ≥ 0. Thus,
whenever 4η2 + 2ξ∂2

1,1Zr(ξ, I(ξ, η), 2ξη) < 0, this condition is fulfilled provided
|q − ξ| is small. In figure 3 we plot, for some given values of the parameters (ξ, η),
the invariant manifolds of the hyperbolic tori. The projections are displayed on the
plane (q, p) –in figure 3(a)– and on the plane (y1, y2) –in figure 3(b)–.

Moreover, if we want to characterize the range of available parameters in (32),
we have to study the solutions of g(q, ξ, η) = 0. Actually, as g(0, 0, 0) = 0 and
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Figure 3. Invariant manifolds of the hyperbolic invariant tori cor-
responding to (ξ, η). In figure (b) we set x2 = 0 and η > 0
is assumed. The position of the hyperbolic invariant tori is
(q, p) = (ξ, 0) in (a) and (y1, y2) = (0,−η

√
2ξ) in (b). In both

cases is marked with a dot.

the derivative ∂1g(0, 0, 0) = 2a 6= 0, we can give the solutions of g(q, ξ, η) = 0 by
writing q = f(ξ, η), so that the boundary of values of q in the parameter space of
F is given (locally around (ξ, η) = (0, 0)) as q ≥ f(ξ, η).

3.6. Computation of 3D-invariant tori. The 3D-invariant tori of the normal
form (16) can be obtained from periodic orbits of the 1-degree of freedom Hamil-
tonian system given by:

H(q, p; I1, I2) = qp2 +
I2
2

4q
+ Zr(q, I1, I2), (33)

where I1 and I2 have to be treated as parameters (see (24)). Thus, given a couple
of values I1 and I2 (fixed), let (q̃(θ3), p̃(θ3)) be a 2π-periodic parametrization of a
periodic orbit of (33) such that θ̇3 = ω̃3. Then, the dynamics of the corresponding
3D-invariant torus of (24) can be obtained by direct integration of the expressions,

θ̇1 = ω1 + ∂2Zr(q̃(ω̃3t), I1, I2),

θ̇2 = ω2 +
I2

2q̃(ω̃3t)
+ ∂3Zr(q̃(ω̃3t), I1, I2),

being the vector of intrinsic frequencies of this torus ω̃ = (ω̃1, ω̃2, ω̃3), with ω̃1 and
ω̃2 defined by

ω̃1 = ω1 + 〈∂2Zr(q̃(θ3), I1, I2)〉,
ω̃2 = ω2 +

〈
I2

2q̃(θ3)

〉
+ 〈∂3Zr(q̃(θ3), I1, I2)〉,

where 〈·〉 denotes the average with respect to the angle θ3 (of course, we need ω̃1,
ω̃2 and ω̃3 to be independent frequencies in order to have a legitimate 3D-torus).

To discuss the range of parameters for which one obtains periodic orbits of (33),
we point out that these orbits can be obtained implicitly as energy levels of the
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system, {H(q, p; I1, I2) = h}, for suitable values of h. The extremal values for the
interval of allowed values of h (for any given I1 and I2), correspond to the ones of
the critical points of H.
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