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Abstract. In this paper we consider the standard map, and we study the invariant curve obtained
by analytical continuation, with respect to the perturbative parameter ε, of the invariant circle of
rotation number equal to the golden mean, corresponding to the case ε = 0. We show that, if we
consider the parametrization that conjugates the dynamics of this curve to an irrational rotation, the
domain of definition of this conjugation has an asymptotic boundary of analyticity when ε → 0
(in the sense of the singular perturbation theory). This boundary is obtained by studying the
conjugation problem for the so-called semi-standard map.

To prove this result we have used KAM-like methods adapted to the framework of singular
perturbation theory, as well as matching techniques to join different pieces of the conjugation,
obtained in different parts of its domain of analyticity.
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1. Introduction

We consider the following family of exact symplectic diffeomorphisms of the cylinder to itself:

F : (q, p) ∈ S
1 × R �→ (q + p + V ′(q), p + V ′(q)) ∈ S

1 × R (1.1)

where S
1 = R/2πZ and V (q) is an analytic function, 2π -periodic in q. We will refer to these

maps as ‘standard-like maps’. In this context, it is usual to consider the case where V (q) is an
even trigonometric polynomial and ‘small’. This smallness can be expressed, for instance, by
saying that V ≡ O(ε), where ε is a small parameter. In particular, when V (q) = −ε cos q we
obtain the so-called ‘standard map’ [4],

(q, p) �→ (q + p + ε sin q, p + ε sin q). (1.2)

In spite of its simple formulation, the standard map displays a very complex behaviour. For
this reason, it has become a classical model for studying several non-integrability phenomena,
such as the creation of hyperbolic objects due to the breakdown of resonant invariant curves,
the splitting of separatrices and the chaotic behaviour associated with it, the existence and
breakdown of irrational invariant curves, etc. We can refer to the extensive literature on the
topic (see, for instance, [1, 8, 11]).

If we take V ≡ 0 in (1.1), we obtain an integrable twist map:

(q, p) ∈ S
1 × R �→ (q + p, p) ∈ S

1 × R. (1.3)
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For any p0 ∈ R, we have that S
1 × {p0} is an invariant circle of (1.3), and that the dynamics

on the variable q is a rotation of angle ω ≡ p0. If we consider the perturbed map (1.1), it is
natural to ask for which irrational values of the rotation number ω/2π there exists an invariant
curve, close to the unperturbed one, with the same quasi-periodic dynamics. This problem
has been considered by several authors, mainly for the case of the standard map, and it is one
of the most classical examples of a small divisors problem. To ensure the persistence of the
invariant curve, the rotational number has to be irrational enough to control the small divisors
involved. For instance, if the rotation number is Diophantine, that is,∣∣∣∣ ω2π − n

m

∣∣∣∣ � cω

|m|σ n,m ∈ Z m �= 0 (1.4)

for certain cω > 0 and σ � 2, KAM theory [12] ensures that, if V (q) is small enough, then
there exists an invariant analytic curve close to the unperturbed one, having the same quasi-
periodic dynamics up to a smooth change of variables. This curve can be found by looking for a
parametrization (q, p) = (u1(θ), u2(θ)), with θ ∈ S

1, such that the dynamics on the variable θ
corresponds to the desired irrational rotation, that is, F(u1(θ), u2(θ)) = (u1(θ +ω), u2(θ +ω)).
Now, by using (1.1), we have that u2(θ) = u1(θ + ω) − u1(θ) − V ′(u1(θ)), and this system
of functional equations can be reduced to the following second-order difference equation for
u(θ) ≡ u1(θ):

u(θ + ω)− 2u(θ) + u(θ − ω) = V ′(u(θ)) (1.5)

usually called the Lagrangian formulation of this conjugation problem. Moreover, if we
want this curve to be an analytic continuation of the unperturbed one, we have to look for
u(θ) = θ + �(θ), with �(θ) 2π -periodic in θ . We will choose �(θ) with zero average, for
instance, in order to avoid the indetermination of the origin for θ .

In the Diophantine case (1.4), it is known that, if V ≡ O(ε), �(θ) is of the same order for
moderately large values of | Im(θ)|. The aim of this paper is to study the existence and the
analytic properties of �(θ) when | Im(θ)| grows. In order to present concrete results, and for
the sake of simplicity, we are going to consider the case of the standard map and we will work
with the invariant curve with rotation number γ , where γ = (

√
5 − 1)/2 is the golden mean.

Let us introduce the main ideas of our approach.
There are several works in the literature (see, for instance, [2, 3, 5–7, 9, 10]) devoted to

finding the critical value of the perturbation parameter ε corresponding to the breakdown of
this γ -invariant curve, since there is strong evidence that it is the most robust invariant circle
of the unperturbed case. Nevertheless, the goal of this paper is to find an asymptotic estimate,
when ε → 0, for the width of the strip of analyticity of the function �(θ).

A direct application of KAM theory in this context only gives the existence of �(θ), if ε
is small enough, for complex values of θ with | Im(θ)| � C, where C > 0 is independent of
ε. A more careful analysis, also using KAM-like methods, allows us to improve this estimate
in theorem 2.1 and corollary 2.4, obtaining that the curve is analytic for | Im(θ)| � log(A/ε),
where A is independent of ε (this result also follows from [9]). Nevertheless, with the direct
KAM approach we are far from obtaining the ‘optimal’ value of A in this expression. This is
because KAM methods are based on an iterative process which converges to the solution
of equation (1.5) quadratically (Newton-like method), and therefore, we can only expect
convergence in a domain where the solution is a small perturbation of the initial approximation
�(0)(θ) = 0 (which is the solution when V ≡ 0). In the case of the standard map, if we look
for the function �(θ) as a power series with respect to ε, it is straightforward to check that

�(θ) = ε sin θ

2(cos (2πγ )− 1)
+ O(ε2).
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Then, the solution is not perturbative when | Im(θ)| = log(1/ε) + O(1). In order to study the
behaviour of �(θ) for Im(θ) ≈ − log(1/ε), it is natural to perform the change of variables

θ = −i log

(
1

ε

)
+ π + τ l(τ ) = �(θ) v(τ ) = τ + l(τ ) (1.6)

where i = √−1, and hence,

u(θ) = θ + l

(
i log

(
1

ε

)
− π + θ

)
= −i log

(
1

ε

)
+ π + v(τ). (1.7)

With this new variable, the boundary of the domain where we will ensure convergence of the
Newton method (see section 2.4), corresponds to values of τ with Im(τ ) ≡ O(1). After this
ε-dependent change, equation (1.5) reads

v(τ + 2πγ )− 2v(τ) + v(τ − 2πγ ) = 1
2 i eiv(τ) − ε2 1

2 i e−iv(τ). (1.8)

Now, if we put ε = 0 in (1.8), we obtain a new unperturbed problem, usually called the
inner equation in the context of singular perturbation theory. In our case, the inner equation
corresponds to the Lagrangian equation (1.5) of the γ -invariant curve of the so-called semi-
standard map,

(q, p) �→ (
q + p + 1

2 i eiq, p + 1
2 i eiq

)
(1.9)

which is obtained from (1.1) taking V (q) = 1
2 eiq . This map was introduced in [7], and it can

be seen as a limit of the standard map in the negative half-plane for Im(τ ). Actually, we expect
the lower boundary of the domain of analyticity with respect to τ of the invariant curve of the
semi-standard map, to have similar behaviour to that of the standard map, at least for small
values of ε. By assuming that both boundaries have this close behaviour, the semi-standard
map has the advantage that the periodic solutions of its Lagrangian equation can be found by
a power-series expansion, by means of the change x = eiτ . In lemma 3.2, we will see that this
power series has a finite radius of convergence R0 > 0. Then, it is natural to expect R0 to be
the asymptotic value of A.

To establish this result, we will prove, in theorem 5.3 and corollary 5.4, that the solution
of (1.8) can be obtained, as a perturbation of the inner solution, in a complex domain for
the variable τ of the form − log (R(ε)) � Im(τ ) � − log(B), where limε→0 R(ε) = R0,
and we will take the constant B > 0 to be small enough in order to overlap this complex
domain with the domain of analyticity of the invariant curve u(θ) = θ + �(θ), obtained by
means of the standard KAM approach. Going back to the original variable θ , we prove (by
using matching techniques) that the solution obtained is the analytic continuation of u(θ) until
Im(θ) � − log (R(ε)/ε), and so, − log (R0/ε) is the asymptotic lower boundary of its domain
of analyticity. To prove this result, we will be forced to modify the Newton method in order to
obtain a suitable formulation to work close to the boundary of the strip of analyticity. Of course,
by the symmetry of the standard map, we have an analogous result for the upper half-plane,
giving rise to the following theorem.

Theorem 1.1.

(a) The semi-standard map (1.9) has an invariant analytic curve of degree one, whose
dynamics is analytically conjugated to a rotation of angle ω = 2πγ . If we denote this
conjugation by (v(0)1 (τ ), v

(0)
2 (τ )), where v(0)1 (τ )− τ and v(0)2 (τ ) are 2π -periodic analytic

functions, with v(0)1 (τ )−τ having zero average, then there exists 0 < R0 < +∞, such that
the Fourier expansions of v(0)1 (τ )−τ and v(0)2 (τ ) are convergent only if Im(τ ) � − logR0.
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(b) The standard map (1.2), for ε small enough, has an invariant analytic curve of degree one,
whose dynamics is analytically conjugated to a rotation of angle ω = 2πγ , and which is
an analytic continuation, with respect to ε, of the invariant circle S

1 ×{ω} corresponding
to the case ε = 0 (1.3). If we denote this conjugation by (u1(θ), u2(θ)), where u1(θ)− θ

and u2(θ) are 2π -periodic analytic functions, with u1(θ) − θ having zero average, then,
we have that they are analytic (at least) in the complex domain for θ given by

| Im(θ)| � log (R(ε)/ε)

where R(ε) behaves, as a function of ε, as R(ε) = R0 − O(ε1/4−α), for any α > 0.

(c) When we approach the lower border of the domain of analyticity, we have that the γ -
invariant curve of the standard map is a small perturbation of that of the semi-standard
map, in the sense that there exists a constant 0 < D < R0 with R0 − D small enough,
such that

lim
ε→0

|(u1(θ)− θ)− (v
(0)
1 (τ )− τ)| = 0 lim

ε→0
|u2(θ)− v

(0)
2 (τ )| = 0

if

− log (R(ε)/ε) � Im(θ) � − log(D/ε)

and we take τ = θ + i log(1/ε)− π .

Remark 1.2. In view of the results displayed in theorem 1.1, we can say, roughly speaking,
that Im(θ) = − log(R0/ε) is, asymptotically, ‘the natural’ (lower) boundary of analyticity of
(u1(θ), u2(θ)).

Remark 1.3. Of course, we have an analogous result to (c) in the upper half-plane, but we
have to reformulate (a) in terms of the following ‘alternative’ definition of the semi-standard
map:

(q, p) �→ (
q + p − 1

2 ie−iq, p − 1
2 ie−iq

)
.

Remark 1.4. In spite of the fact that to present these results we have focused on the invariant
curve of the standard map with rotation number equal to the golden mean, the methods used
in this paper can be applied to any invariant curve having a Diophantine rotation number (1.4).
Moreover, we can also deal with the general case (1.1), taking V (q) = εP (q), with P(q) a
trigonometric polynomial.

This paper is organized as follows. In section 2 we formulate the Newton method used to
construct a sequence of functions which converge to the solution of equation (1.5). This result
is summarized in theorem 2.1 and its application to the standard map is given in corollary 2.4.
Section 3 is devoted to the study of the domain of analyticity of the inner solution obtained
after the change of variables (1.6) and (1.7). In section 4, we construct the modified Newton
method which allows us, in section 5, to obtain the invariant curve near the inner domain. This
result is stated in theorem 5.3, and a more quantitative version of the domain of convergence
is given in corollary 5.4. Finally, the proof of theorem 1.1 is also given in section 5. In the
appendix, we give the technical details of the proofs of several results appearing throughout
the paper.
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2. The Newton method

In this section we will discuss the formulation of an iterative scheme, based on the standard
Newton method, to compute general invariant curves of (1.1). To do that, we allow any
Diophantine ω (1.4) and any periodic and entire V (q) (not necessarily small, in principle), and
we will study the requirements to ensure convergence in this general context.

First of all, we consider the following linear operators corresponding to first- and second-
order differences with respect to ω:

Lωξ(θ) = ξ(θ + ω)− ξ(θ)

and

L2
ωξ(θ) = ξ(θ + ω)− 2ξ(θ) + ξ(θ − ω).

We have the following elementary properties:

L2
ωξ(θ + ω) = (Lω)

2ξ(θ) Lω(ξ(θ)η(θ)) = (Lωξ(θ))η(θ + ω) + ξ(θ)Lωη(θ). (2.1)

With this notation, equation (1.5) becomes

L2
ωu(θ) = V ′(u(θ)).

Now, let us suppose that we know u(θ) = θ + �(θ), an approximate solution of this equation,
with error

e(θ) = L2
ωu(θ)− V ′(u(θ)). (2.2)

If we want to improve this approximation by means of a Newton method (formulated in an
infinite-dimensional space), the correction ξ(θ) has to verify

L2
ωξ(θ) = V ′′(u(θ))ξ(θ)− e(θ). (2.3)

This is a linear difference equation of second order, with a periodic dependence on θ . Due
to this periodic dependence, there are no direct methods for solving this equation. Then, it is
natural to look for a linear change of variables, 2π -periodic in θ , that reduces the homogeneous
part of (2.3) to constant coefficients, that is, to use a Floquet-like method for linear difference
equations.

2.1. Reducibility of invariant curves

To discuss the resolution of equation (2.3), let us begin by giving some heuristic ideas about
the reducibility to constant coefficients of the homogeneous part of such an equation. We point
out that the final method obtained to solve (2.3) is analogous to that formulated in [9], where
the threshold for the maximum value of ε for which the γ -invariant curve of the standard map
exists, is studied by using computer-assisted proofs.

Let us start by assuming that u(θ) is a true solution of (1.5), and let us consider (2.3) for an
arbitrary e(θ) (2π -periodic in θ ). In this case, we can construct explicitly the periodic change
of variables we are looking for. To do that, we put

ζ1(θ) = ξ(θ) ζ2(θ) = Lωξ(θ)

and (2.3) becomes

Lωζ1(θ) = ζ2(θ)

Lωζ2(θ) = V ′′(u(θ + ω))ζ1(θ) + V ′′(u(θ + ω))ζ2(θ)− e(θ + ω).
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Introducing

A(θ) =
(

0 1

V ′′(u(θ + ω)) V ′′(u(θ + ω))

)
(2.4)

we obtain the following linear system of difference equations for ζ1(θ) and ζ2(θ):

Lω

(
ζ1(θ)

ζ2(θ)

)
= A(θ)

(
ζ1(θ)

ζ2(θ)

)
−
(

0

e(θ + ω)

)
. (2.5)

Then, what we want to do is to reduce A(θ) to constant coefficients. First of all, let us note
that if u(θ) is a solution of (1.5), then u′(θ) is a solution of its variational equation:

L2
ωy(θ) = V ′′(u(θ))y(θ). (2.6)

By assuming that u′(θ) �= 0 for any θ ∈ S
1 (as u′(θ) = 1 + �′(θ), this holds, for instance, if

�(θ) is small enough), and, as in the case of second-order differential equations, we can look
for another independent solution of (2.6) taking the form

y(θ) = c(θ)u′(θ). (2.7)

Then, c(θ) has to verify

L2
ω(c(θ)u

′(θ)) = V ′′(u(θ))c(θ)u′(θ)

and hence

u′(θ + ω)Lωc(θ)− u′(θ − ω)Lωc(θ − ω) = 0. (2.8)

Now, if we define

h(θ) = Lωc(θ) (2.9)

and we multiply (2.8) by u′(θ), we obtain the relation

Lω(h(θ)u
′(θ)u′(θ + ω)) = 0.

Thus, we can characterize h(θ) by the following expression:

h(θ)u′(θ)u′(θ + ω) ≡ κ

with κ an arbitrary constant. In order to choose κ , we note that if we consider the corresponding
fundamental matrix of (2.5),

*(θ) =
(

u′(θ) y(θ)

Lωu
′(θ) Lωy(θ)

)
(2.10)

it verifies that det(*(θ)) = κ . So, it motivates the choice κ = 1. At this point, we introduce

a = 〈h〉 h(θ) = 1

u′(θ)u′(θ + ω)
(2.11)

where

〈h〉 = 1

2π

∫ 2π

0
h(θ) dθ

is the average of a 2π -periodic function in θ . Let us remark that, if h(θ) is a complex analytic
function, we can define its average by shifting the path of integration to a suitable Im(θ). If
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a �= 0, it is not possible to compute from (2.9) a 2π -periodic solution c(θ). Of course, this
is not a surprise, as the case when *(θ) is periodic is, clearly, a degenerate one. Thus, if we
write c(θ) as

c(θ) = ν(θ) +
a

ω
θ

then we can look for ν(θ) as a 2π -periodic solution of

Lων(θ) = h̃(θ) (2.12)

taking 〈ν〉 = 0, for instance, where we define h̃(θ) as

h̃(θ) = h(θ)− 〈h〉. (2.13)

In (2.12) we find the classical first-order difference equation related to the inverse of the
operator Lω. To solve this equation, we expand h(θ) in Fourier series,

h(θ) =
∑
k∈Z

hke
ikθ (2.14)

and then ν(θ) is given by

ν(θ) = L−1
ω (h̃(θ)) ≡

∑
k∈Z\{0}

hk

eikω − 1
eikθ . (2.15)

This expression involves small divisors coming from ω, but it is convergent if h(θ) is analytic
and ω/2π verifies the Diophantine condition (1.4) (see lemma A.1).

Now, we have constructed a matrix *(θ) such that Lω*(θ) = A(θ)*(θ), and moreover

*(θ + 2π) = *(θ)

(
1 2πa/ω

0 1

)
.

Then, we proceed to perform the Floquet reduction analogously to the case of periodic systems
of ordinary differential equations. We define

B =
(

0 a/ω

0 0

)

and introduce

P(θ) = *(θ) e−θB =
(

u′(θ) ν(θ)u′(θ)

Lωu
′(θ) Lω(ν(θ)u

′(θ)) + au′(θ + ω)

)
. (2.16)

It is clear that P(θ) is 2π -periodic in θ , and that det(P (θ)) = 1. Now, we perform on (2.5)
the change of variables:

ζ = P(θ)η

where ζ = (ζ1, ζ2). To give the transformed system, we use that, by the properties (2.1)

LωP (θ) = (Lω*(θ)) e−θB + *(θ + ω)Lωe−θB = A(θ)P (θ)− P(θ + ω)

(
0 a

0 0

)
(2.17)

and then, by using again (2.1) and (2.17), we obtain for η = (η1, η2),

Lωη(θ) =
(

0 a

0 0

)
η(θ)− P(θ + ω)−1

(
0

e(θ + ω)

)
. (2.18)
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This is a new system of difference equations of first order, which has the homogeneous part
reduced to constant coefficients. For this reason, and with analogy to the case of linear
periodic systems of differential equations, we will refer to P(θ) as the Floquet matrix of the
homogeneous part of (2.5). Moreover, we remark that the non-homogeneous part of (2.18)
can be rewritten in the following form:

P−1(θ)

(
0

e(θ)

)
=
( −ν(θ)

1

)
u′(θ)e(θ).

where we have taken advantage of the fact that det(P (θ)) = 1.
Thus, it can be immediately checked that if a �= 0 and 〈u′e〉 = 0, we can solve η(θ) from

(2.18), with an indeterminate value for 〈η1〉.

2.2. Formulation of the iterative method

Now, we want to adapt the methodology explained in section 2.1 to solve (2.3) when u(θ) is
not an exact solution of (1.5). In section 2.1 we have used the fact that u(θ) is a true solution
of such an equation to reduce (2.3) to (2.18), which is a system of difference equations with
constant coefficients, by means of the (explicit) reducibility of invariant curves. Now, in the
case of a quasi-solution, we will be forced to replace reducibility by quasi-reducibility, that is,
to reduce equation (2.3) to a system of difference equations with constant coefficients, except
for a ‘small’ non-constant contribution in the homogeneous part. Hence, to ‘solve’ (2.3) in the
context of a quasi-solution, we will only take into account the ‘reduced’ part of the system,
and we will add the truncated ‘non-reduced’ remainder to the error due to the Newton method.
Then, we will use this scheme to construct a sequence of functions u(n)(θ), n � 0, that we
will define iteratively, by solving equation (1.5) with an error in the (n + 1)th step which is
‘quadratic’ with respect to the error in the nth step.

Let us start by assuming that u(n)(θ) = θ + �(n)(θ), with 〈�(n)〉 = 0, is an approximate
solution of (1.5) with error e(n)(θ) as defined in (2.2). Then, we consider ν(n)(θ) as introduced
in (2.11) and (2.12), and we define u(n+1)(θ) = u(n)(θ) + ξ (n)(θ), with

ξ (n)(θ) = u′ (n)(θ)η(n)1 (θ) + ν(n)(θ)u′ (n)(θ)η(n)2 (θ) (2.19)

where η(n)(θ) = (η
(n)
1 (θ), η

(n)
2 (θ)), 2π -periodic in θ , is obtained by solving the following

system of first-order difference equations (with constant coefficients):

Lωη
(n)(θ) =

(
0 a(n)

0 0

)
η(n)(θ) +

(
ν(n)(θ + ω)

−1

)
u′ (n)(θ + ω)e(n)(θ + ω) (2.20)

where, a(n), defined as in (2.11), is assumed to be non-zero. We observe that, in order to
compute a periodic solution for η(n)2 (θ) from (2.20), we need that 〈u′ (n)e(n)〉 = 0. Let us check
that it holds in the present context. To prove this, we multiply the equation defining e(n)(θ)

(see (2.2)) by u′ (n)(θ). Then, we have

u′ (n)(θ)e(n)(θ) = L2
ω�

(n)(θ) + (L2
ω�

(n)(θ))�′ (n)(θ)− V ′(u(n)(θ))u′ (n)(θ).
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Thus, as L2
ω�

(n)(θ) and V ′(u(n)(θ))u′ (n)(θ) = d
dθ V (u

(n)(θ)) have zero average, we have

〈u′ (n)e(n)〉 = 〈(L2
ω�

(n))�′ (n)〉

= 1

2π

∫ 2π

0
(�(n)(θ + ω)− 2�(n)(θ) + �(n)(θ − ω))�′ (n)(θ) dθ

= 1

2π

∫ 2π

0
(�(n)(θ + ω)�′ (n)(θ)− 2�(n)(θ)�′ (n)(θ) + �(n)(θ)�′ (n)(θ + ω)) dθ

= 1

2π

[
�(n)(θ + ω)�(n)(θ)− (�(n)(θ))2

]2π

0 = 0. (2.21)

Since the equation for Lωη
(n)
2 (θ) holds for any value of 〈η(n)2 〉, we will choose it so as to have

a periodic solution for η(n)1 (θ), that is,

〈η(n)2 〉 = − 1

a(n)
〈ν(n)u′ (n)e(n)〉. (2.22)

Moreover, we remark that we also have a free choice for 〈η(n)1 〉. Then, we define it to keep the
zero average for �(n+1)(θ),

〈η(n)1 〉 = −〈u′ (n)η̃(n)1 〉 − 〈ν(n)u′ (n)η(n)2 〉. (2.23)

The important thing in this method is that if we consider u(n+1)(θ) to be defined in such a way,
then we have that e(n+1)(θ) is O((e(n))2). To prove this, we write the new error as

e(n+1)(θ) = L2
ωu

(n+1)(θ)− V ′(u(n+1)(θ))

= e(n)(θ) + V ′(u(n)(θ))− V ′(u(n+1)(θ)) + L2
ωξ

(n)(θ)

≡ e
(n+1)
1 (θ) + e

(n+1)
2 (θ) (2.24)

where

e
(n+1)
1 (θ) = L2

ωξ
(n)(θ)− V ′′(u(n)(θ))ξ (n)(θ) + e(n)(θ)

e
(n+1)
2 (θ) = V ′(u(n)(θ)) + V ′′(u(n)(θ))ξ (n)(θ)− V ′(u(n) + ξ (n)(θ)).

(2.25)

As it is clear that e(n+1)
2 (θ) is O((ξ (n))2) (and hence O((e(n))2)), then we only have to discuss the

smallness of e(n+1)
1 (θ). For this purpose, we remark that if we put ζ (n)(θ) = (ζ

(n)
1 (θ), ζ

(n)
2 (θ)),

with

ζ
(n)
1 (θ) = ξ (n)(θ) ζ

(n)
2 (θ) = Lωξ

(n)(θ)

then, by (2.19) we have

η(n)(θ) = (P (n)(θ))−1ζ (n)(θ)

where P (n)(θ) is defined as P(θ) in (2.16), just adding the superscript (n) to the formula. As in
the case of P(θ), the matrix P (n)(θ) is still 2π -periodic in θ , and, from the definition (2.12) of
ν(n)(θ), we also have that det(P (n)(θ)) = 1. Nevertheless, as u(n)(θ) is not an exact solution of
(1.5), then the matrix *(n)(θ) (given as in (2.10)) is not an exact solution of the homogeneous
part of the system of linear difference equations associated with the Newton method at the
nth step (see (2.5)). Consequently, we cannot ensure that the linear transformation defined
by P (n)(θ) reduces this homogeneous part to constant coefficients, and so ζ (n)(θ) is not a
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solution of equation (2.5) at the nth step. In order to obtain the equation verified by ζ (n)(θ), it
is straightforward to check that

Lω*
(n)(θ) = A(n)(θ)*(n)(θ) +

(
0 0

1 c(n)(θ + ω)

)
e′ (n)(θ + ω)

and hence the matrix P (n)(θ) verifies, instead of (2.17),

LωP
(n)(θ) = A(n)(θ)P (n)(θ)− P (n)(θ + ω)

(
0 a(n)

0 0

)

+

(
0 0

1 ν(n)(θ + ω)

)
e′ (n)(θ + ω). (2.26)

This implies that

Lωζ
(n)(θ) = A(n)(θ)ζ (n)(θ)−

(
0

e(n)(θ + ω)

)
+ e′ (n)(θ + ω)

(
0 0

1 ν(n)(θ + ω)

)
η(n)(θ).

Then, by writing this equality by components we obtain

Lωζ
(n)
1 (θ) = ζ

(n)
2 (θ)

Lωζ
(n)
2 (θ) = V ′′(u(n)(θ + ω))ζ

(n)
1 (θ) + V ′′(u(n)(θ + ω))ζ

(n)
2 (θ)

−e(n)(θ + ω) + e′ (n)(θ + ω)
(
η
(n)
1 (θ) + ν(n)(θ + ω)η

(n)
2 (θ)

)
and, from here, we derive the following expression for e(n+1)

1 :

e
(n+1)
1 (θ) = e′ (n)(θ)

(
η
(n)
1 (θ − ω) + ν(n)(θ)η

(n)
2 (θ − ω)

)
. (2.27)

2.3. Convergence of the iterative method and uniqueness of the solution

We will work with 2π -periodic analytic functions defined in complex domains of the form

D(ρ1, ρ2) = {z ∈ C: ρ1 � Im(θ) � ρ2} (2.28)

with −∞ � ρ1 � ρ2 � +∞. When working with these domains, we will not restrict ourselves
to the case when D(ρ1, ρ2) is symmetric with respect to the real axis. Moreover, we will also
allow one of the boundaries to go to infinity in the purely imaginary direction. To control
the size of 2π -periodic analytic functions f (θ), defined in (2.28), we will use the following
weighted norm:

‖f ‖ρ1,ρ2 = |f0| +
∑
k>0

|fk| e−kρ1 +
∑
k<0

|fk| e−kρ2 (2.29)

defined from the Fourier expansion of f (θ) (see (2.14)). In principle, one may think that it is
more natural to work with the standard supremum norm in the desired domain. Nevertheless,
as we will see in the proofs, to work with this weighted norm simplifies the estimates we will
make on the 2π -periodic functions involved. Of course, ‖ · ‖ρ1,ρ2 is an upper bound for the
supremum norm. Besides, this definition keeps some useful properties of the supremum norm,
that we display in lemma A.1.

Now, let us study the convergence of the iterative method described in section 2.2. It
is clear that to ensure this convergence, we need to have an initial approximation, u(0)(θ) =
θ +�(0)(θ), with error e(0)(θ) (see (2.2)), which is small in some complex domain D(ρ(0)1 , ρ

(0)
2 ).
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Nevertheless, as we are going to see, the smallness of ‖e(0)‖
ρ
(0)
1 ,ρ

(0)
2

is not the only condition to
take into account to control the iterative process. Hence, to formulate the convergence of the
method rigorously, we have to consider constants µ(0)

1 , . . . , µ
(0)
7 such that

‖�(0)‖
ρ
(0)
1 ,ρ

(0)
2

� µ
(0)
1 ‖�′ (0)‖

ρ
(0)
1 ,ρ

(0)
2

� µ
(0)
2

‖e(0)‖
ρ
(0)
1 ,ρ

(0)
2

� µ
(0)
3

∥∥∥∥ 1

u′ (0)(θ)

∥∥∥∥
ρ
(0)
1 ,ρ

(0)
2

� µ
(0)
4 (2.30)

0 < µ
(0)
5 � |a(0)| � µ

(0)
6 ‖V ′′′‖

ρ
(0)
1 −µ(0)

1 −1,ρ(0)2 +µ(0)
1 +1 � µ

(0)
7

where a(0) is the value of a defined in (2.11) corresponding to u(0)(θ).
Then we can formulate the following result for the convergence of the iterative method.

The proof is given in section A.2.

Theorem 2.1. Letω ∈ R such thatω/2π is a Diophantine number (1.4), for certain σ � 2 and
cω > 0, and letV (q) be an entire function, 2π -periodic in q. Let �(0)(θ) be an analytic function
defined in D(ρ(0)1 , ρ

(0)
2 ), for certain −∞ � ρ

(0)
1 < ρ

(0)
2 � +∞, 2π -periodic in θ , and with

〈�(0)〉 = 0. We consider the constants µ(0)
j , j = 1, . . . , 7, introduced in (2.30), and we assume

that µ(0)
3 � 1. Then, there exists a constant c � 1, depending on µ

(0)
1 , µ

(0)
2 , µ

(0)
4 , µ

(0)
5 , µ

(0)
6

and µ(0)
7 , such that given any δ(0) > 0 verifying

δ(0) < min
{
1, 1

24

(
ρ
(0)
2 − ρ

(0)
1

)}
(2.31)

and provided that µ(0)
3 is small enough such that

2cµ(0)
3

(
2

ρ
(0)
2 − ρ

(0)
1

)2σ−1

� min
{

1
2µ

(0)
5 , µ

(0)
6

}

4 ≡ c

(
16

(δ(0))4

)σ−1

µ
(0)
3 < 1

(2.32)

we can ensure that the sequence u(n)(θ) defined in section 2.2, beginning with u(0)(θ) =
θ + �(0)(θ), converges to an analytic solution of (1.5), u(θ) = θ + �(θ), with �(θ) 2π -periodic
in θ , defined in D(ρ(0)1 + 6δ(0), ρ(0)2 − 6δ(0)) and with 〈�〉 = 0.

Moreover, in this domain we have for �(θ) the bounds (2.30), now with µ1 = µ
(0)
1 +

2cµ(0)
3 /(δ(0))2(σ−1), µ2 = µ

(0)
2 + 2cµ(0)

3 /(δ(0))2σ−1, µ4 = eµ(0)
4 , µ5 = µ

(0)
5 /2 and µ6 = 2µ(0)

6 ,

where µ1 � µ
(0)
1 + 1 and µ2 � µ

(0)
2 + 1.

On the other hand, �(θ) is a small perturbation of �(0)(θ) in the sense that∥∥�(θ)− �(0)(θ)
∥∥
ρ
(0)
1 +6δ(0),ρ(0)2 −6δ(0) � 2cµ(0)

3 /(δ(0))2(σ−1)

∥∥�′(θ)− �′ (0)(θ)
∥∥
ρ
(0)
1 +6δ(0),ρ(0)2 −6δ(0) � 2cµ(0)

3 /(δ(0))2σ−1.

Remark 2.2. This result gives us the functions (u1(θ), u2(θ)), with u1(θ) = u(θ) and
u2(θ) = u1(θ + ω)− u1(θ)− V ′(u1(θ)), which are a parametrization of an invariant curve of
(1.1), with a domain of analyticity of at least D(ρ(0)1 + 6δ(0), ρ(0)2 − 6δ(0)). Moreover, with this
parametrization we have that the dynamics on the curve is conjugated to a rotation of angle ω
in the variable θ .

Nevertheless, theorem 2.1 only gives the existence of a true solution of equation (1.5),
that is close to the first approximation u(0)(θ), but does not guarantee, in principle, that this is
the only one. However, we can adapt the proof of theorem 2.1 to obtain the following result
concerning uniqueness. See also section A.2 for a proof.
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Proposition 2.3. With the same hypotheses as theorem 2.1, let us assume that ū(θ) = θ + �̄(θ),
2π -periodic in θ , analytic in D(ρ̄1, ρ̄2), where ρ̄1 > ρ

(0)
1 + 6δ(0), and ρ̄2 < ρ

(0)
2 − 6δ(0), and

with 〈�̄〉 = 0, is another solution of (1.5). Then, if we have that u(θ) and ū(θ) are close
enough,

‖�̄‖ρ̄1,ρ̄2 � 1 + µ
(0)
1 ‖�̄− �‖ρ̄1,ρ̄2 � 4̄ (2.33)

where

4̄ = 2(ρ̄2 − ρ̄1)
2(σ−1)

cµ
(0)
7 26(σ−1)

(2.34)

then we can ensure that u ≡ ū.

2.4. Application to the standard map

Even though theorem 2.1 can be applied to the general map (1.1), and for an arbitrary
Diophantine ω/2π , now we want to give more concrete results by considering the standard
map, with V (q) = −ε cos q, and more concretely, the invariant curve with rotation number γ .
Thus, we have that ω = 2πγ verifies (1.4) with σ = 2, for certain constant c2πγ > 0, that, in
order to simplify the notation, we will denote by cγ . In this case, we start by taking u(0)(θ) = θ

as a first approximation, which is the solution of (1.5) for ε = 0. With this choice we have,
independently of the domain, that µ(0)

1 = µ
(0)
2 = 0, µ(0)

4 = 1 and a(0) = 1. On the other hand,
as e(0)(θ) = −ε sin θ , it is clear that µ(0)

3 depends on the initial domain. In order to choose
this domain, let us point out that as we are working with real analytic functions, it is natural
to consider a symmetric domain with respect to the real axis. If we start with D(−ρ(0), ρ(0)),
then we have that ‖e(0)‖−ρ(0),ρ(0) = εeρ

(0) ≡ µ
(0)
3 . Our interest is to look for the largest ρ(0) for

which theorem 2.1 can be applied, for ε small enough. This requires µ(0)
3 to be small. Hence,

the ‘optimal’ selection for ρ(0) seems to be of the form ρ(0) = log(A(0)/ε), where we will need
A(0) > 0 to be ‘small’.

Corollary 2.4. We consider ω = 2πγ , which is of Diophantine type (1.4), with σ = 2 and
cω ≡ cγ . Let us take 0 < A(0) < 1/16c, where c � 1 is the constant provided by theorem 2.1
associated with the values µ(0)

1 = µ
(0)
2 = 0, µ(0)

4 = µ
(0)
5 = µ

(0)
6 = 1 and µ(0)

7 = e/2.
Then, if

ε � min

{
A(0)

e12
,

A(0)

e(4cA(0))1/3

}

the Lagrangian equation (1.5) associated with the standard map has a solution u(θ) =
θ + �(θ), where �(θ) is 2π -periodic in θ , with 〈�〉 = 0 and analytic at least in the complex
strip D(− log(A/ε), log(A/ε)), where A = A(0)/e6δ(0) , with δ(0) being any value verifying
(16cA(0))1/4 < δ(0) < 1.

Moreover, we have the estimate ‖�‖− log(A/ε),log(A/ε) � 2cA(0)/(δ(0))2 �
√
cA(0)/3.

Proof. The proof of this result is straightforward. We only have to check the statement of
theorem 2.1, with V (q) = −ε cos q, by taking ρ(0)2 = −ρ(0)1 = log(A(0)/ε). So, we have that
µ
(0)
3 = A(0). In addition, the condition ε � A(0)/12 guarantees that (ρ(0)2 − ρ

(0)
1 )/24 � 1 in

(2.31), and in the same way the remaining conditions (2.32) are easily verified, and the result
follows. �
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3. The inner variables

Corollary 2.4 ensures the existence of the solution u(θ) of equation (1.5) for complex θ , with
| Im(θ)| � log(A/ε), for some constant A > 0. We do not claim that the constant A given by
corollary 2.4 is optimal. On the one hand, the estimates used in the proof can be improved.
However, even though these estimates were as optimal as possible, we could not ensure that,
with the previous approach, we can reach the ‘optimal’ value of A. The reason is clear: the
Newton method needs the initial error µ(0)

3 to be small or, which is the same, the solution u(θ)
to be a small perturbation of the first approximation u(0)(θ) = θ . Expanding �(θ) in Taylor
series with respect to ε, one can check that

�(θ) = ε sin θ

2(cos (2πγ )− 1)
+

ε2 sin 2θ

8(cos (2πγ )− 1)(cos (4πγ )− 1)
+ O(ε3).

It is clear that if | Im(θ)| = log(1/ε) + O(1), both terms displayed contribute to the
final solution with order one with respect to ε. A more careful analysis gives that for
| Im(θ)| = log(1/ε) + O(1), all the terms in this series are of order one, and hence, the
perturbative analysis with respect to ε fails. This phenomenon prompts us to perform the
change of variables given by (1.6) and (1.7) in order to study the behaviour of �(θ) for
Im(θ) ≈ − log(1/ε). This change of variables transforms equation (1.5) into equation (1.8)
for v(τ). Therefore, for values of τ with Im(τ ) ≡ O(1) it is natural to ask whether v(τ) can
be found as a perturbation of v(0)(τ ) = τ + l(0)(τ ), with l(0)(τ ) = m(τ) defined as the periodic
solution, with zero average, of the inner equation:

L2
2πγm(τ) = 1

2 i ei(τ+m(τ)). (3.1)

Before considering this perturbative analysis, in the next section we are going to study the
existence and the domain of definition of m(τ).

3.1. The inner equation

First of all, we need to know that equation (3.1) has a solutionm(τ) for some range of complex
values of τ . If Im(τ ) is big enough, it is natural to look for this solution as a perturbation of
m(0)(τ ) = 0, and this can be done by applying theorem 2.1 to equation (3.1), obtaining:

Corollary 3.1. We consider ω = 2πγ , which is of Diophantine type (1.4) with σ = 2 and
cγ ≡ cω. Let us take c � 1 as the constant provided by theorem 2.1 associated with the values
µ
(0)
1 = µ

(0)
2 = 0, µ(0)

4 = µ
(0)
5 = µ

(0)
6 = 1 and µ(0)

7 = e/2, and let ρ(0) > max{0, log (8c)}.
Then, equation (3.1) has a solution m(τ), 2π -periodic in τ , with 〈m〉 = 0 and

analytic at least in the complex strip D(ρ(0) + 6δ(0),+∞), where δ(0) is any number verifying
(8ce−ρ(0) )1/4 < δ(0) < 1.

Proof. To prove this result we again use theorem 2.1 applied to equation (1.5), now with
V (q) = 1

2 i eiq , and taking ρ
(0)
1 = ρ(0) and ρ

(0)
2 = +∞. Then, µ(0)

3 = e−ρ(0) /2. With this
choice we have that v(τ) = τ + m(τ) is the solution we are looking for. �

Corollary 3.1 only guarantees the existence of an analytic solution m(τ) when the
imaginary part of τ is big enough. However, again due to its perturbative character, this
theorem is not useful for knowing what happens for the values of τ outside this perturbative
range. For instance, with this result we are not able to decide whether the solution m(τ) is
entire or if it has some natural lower boundary.
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To study this solution in more detail, let us point out that, in this case,m(τ)has only positive
Fourier harmonics. To compute the Fourier coefficients of m(τ), we introduce x ≡ eiτ , and
define m̄(x) ≡ im(τ). Then, m̄(x) takes the form

m̄(x) =
∑
k�1

mkx
k (3.2)

with mk ∈ C (as we want 〈m〉 = 0, we take m0 = 0). Moreover, m̄(x) verifies

m̄(x5)− 2m̄(x) + m̄(x/5) = − 1
2xem̄(x) (3.3)

where 5 = eiω, with ω = 2πγ . In corollary 3.1 we have proved that m̄(x) has a positive
radius of convergence R0, for certain R0 � eρ

(0)+6δ(0) > 0.
Let us display the recurrence for the coefficients mk . For this purpose, we put F(x) =

em̄(x), and expand

F(x) =
∑
k�0

Fkx
k

having F0 = 1 and, by using that F ′(x) = m̄′(x)F (x), one obtains

Fk = 1

k

k∑
j=1

jmjFk−j . (3.4)

Thus, it is straightforward to check that

mk+1 = Fk

4Dk+1
(3.5)

for any k � 0, where we defineDk = 1−cos (kω) = 2 (sin (kω/2))2. In the way, we have that
all the coefficientsmk are real and positive, for any k � 1. By using this fact and equation (3.3),
it is not difficult to check that m̄(x) has a finite radius of convergence. (See [5] for a similar
result for curves with rotation number of Brjuno type.)

Lemma 3.2. The solution m̄(x) of equation (3.3), with m̄(0) = 0, has a finite radius of
convergence R0 � 8/e. Moreover, its Taylor expansion converges uniformly up to the border
of the disc of convergence, |x| � R0.

Proof. We take any 0 � r < R0, and we start by considering the real part of (3.3) evaluated
at x = r . As m̄(r5) and m̄(r/5) are complex conjugated, we have

2(Re(m̄(r5))− m̄(r)) = − 1
2 rem̄(r).

Then, as the coefficients mk are positive, we have that

max
|x|=r

| Re(m̄(x))| = m̄(r).

From here, we deduce

m̄(r) � 1
8 rem̄(r)

or in an equivalent way,

r � 8m̄(r) e−m̄(r). (3.6)

Now, if we assume a non-bounded radius of convergence, we will have that limr→∞ m̄(r) =
+∞. However, if we take this limit at the right-hand-side of the previous expression, we have
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a contradiction, as 8m̄(r) e−m̄(r) � 8/e, which is an upper bound for the radius of convergence
R0. Moreover, from (3.6) we can derive another consequence for m̄(x) at the border of its
domain of convergence: its Taylor expansion is uniformly convergent, and hence, m̄(x) is (at
least) a continuous function in the closest disc. This result is also a consequence of the same
argument, as if we assume that m̄(r) → +∞ when r → R0, then on the left-hand-side of (3.6)
we obtain that r → 0, which is also a contradiction. Thus, we have |m̄(x)| � m̄(R0) < +∞
if |x| � R0. �

3.2. The Newton method for the inner variables

We recall that our purpose is to prove the existence of an analytic solution v(τ) of equation (1.8),
in a domain whose lower border is as close as possible to the domain of analyticity ofm(τ), and
that, when written as a function of θ , overlaps with the domain of the solution u(θ) provided by
corollary 2.4. So, once we have proved the existence of a solution of the inner equation (3.1),
it is natural to look for v(τ) by applying again the iterative (Newton) method of section 2 to
equation (1.8), taking as the first iterate v(0)(τ ) = τ + m(τ).

From the statement of theorem 2.1, it is clear that to ensure convergence we need to know
the constants µ(0)

j , j = 1, . . . , 7, defined in (2.30), in this domain. Thus, this method needs us
to have a good control of the function v(0)(τ ) and its derivative near the boundary of its domain
of analyticity. Lemma 3.2 gives us that m(τ) is continuous up to the lower border of its strip
of analyticity and, due to the fact that it only has positive Fourier harmonics, it is clear that
m(τ) → 0 when Im(τ ) → +∞. This shows that µ(0)

1 is bounded, and 1 = a(0) = µ
(0)
5 = µ

(0)
6 .

On the other hand, the perturbation term in equation (1.8) is unbounded when Im(τ ) → +∞.
Therefore, in order to control the constants µ(0)

3 and µ
(0)
7 , we have to take an initial domain

with a finite upper boundary.
A bigger problem arises when we try to estimate µ(0)

2 and µ(0)
4 . A small reduction of the

domain of analyticity ofm(τ) allows us to control the size of v′ (0)(τ ) by means of the classical
Cauchy estimates, obtaining µ(0)

2 . However, since the function v′ (0)(τ ) can have zeros inside
its domain of convergence, we are not able, in principle, to control the constant µ(0)

4 inside this
domain. Then, for this technical reason, theorem 2.1 can only work until v′ (0)(τ ) reaches its
first zero (or until this happens for any iterate v′ (n)(τ )), but it is not reasonable to think about
this as a real obstruction for the solution of (1.8) to exist.

We point out that v′(τ ) vanishes (or, thinking about the original variables, if u′(θ) = 0,
with u(θ) the solution of (1.5)) and is not an obstruction to the well defined character of
the conjugation. The reason for this is that the invariant curve is given by two components,
namely (u1(θ), u2(θ)), where u1(θ) = u(θ) and u2(θ) = u(θ +ω)−u(θ)−V ′(u(θ)). So, this
parametrization is degenerate only when u′

1(θ0) = u′
2(θ0) = 0 simultaneously, for some θ0,

and this happens if and only if u′(θ0) = u′(θ0 +ω) = 0. On the other hand, if u(θ) is a solution
of (1.5), and u′(θ0) = u′(θ0 + ω) = 0, for certain θ0, and we use the fact that u′(θ) verifies
equation (2.6), then we have that u′(θ) = 0 in a dense set of values of θ with Im(θ) = Im(θ0),
and this cannot happen in the domain of analyticity of u(θ). Nevertheless, a sole zero of u′(θ)
(or of v′(τ )) does not have, in principle, a special meaning, and it does not seem reasonable to
think that this is a real obstruction for the Newton method of section 2.2.

Looking more carefully at the method of section 2.2, one can see that this technical
obstruction comes from the way in which we have constructed the second solution y(θ) =
u′(θ)c(θ) = u′(θ)(ν(θ) + a

ω
θ) of the variational equation (2.6) associated with u(θ), in the

case when u(θ) is a true solution of (1.5) (see section 2.1). Equations (2.11) and (2.12) show
that the zeros of u′(θ) seem to become singularities of ν(θ).
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In order to investigate this phenomena, and analogous to the case of second-order
differential equations, where the simple zeros of the first solution do not cause singularities in
the second one, we have that if u′(θ) does not have a couple of zeros with difference equal to
ω, then the apparent singularities of ν(θ) cancel in the final expression for the second solution
y(θ).

Nevertheless, we cannot expect ‘these cancellations’ from the zeros ofu′(θ) to singularities
of y(θ), to also be true in section 2.2, where y(n)(θ) is defined in the same way as y(θ)
in section 2.1, but when u(n)(θ) is not a solution of (1.5). Thus, it is natural to ask
whether there is a different way to construct y(n)(θ), and more concretely, its periodic part
w(n)(θ) = ν(n)(θ)u′ (n)(θ), not involving additional singularities to those coming from u(n)(θ),
at least if we shrink the domain of analyticity of u(n)(θ) slightly. In the next section we are
going to describe how to formulate a modified iterative method following this method, and
its application to equation (1.8) is given in section 5. This new method will also be Newton-
like (that is, with ‘quadratic speed’ of convergence), and based on the same quasi-reducibility
considerations used to construct the sequence u(n)(θ) of section 2.2. For these reasons, we
will refer to it as the ‘modified Newton method’.

4. The modified Newton method

As we have done in section 2.2, to formulate this modified iterative method we consider the
‘generic case’ of (1.1), and we resume the Lagrangian formulation (1.5) with an arbitrary entire
function V (q) (not necessarily ‘small’) and a fixed Diophantine ω/2π . Let us describe the
basic ideas used to construct this method.

If we go back to section 2.1, we recall that if u(θ) is an exact solution of (1.5), then
the Floquet matrix P(θ) (2.16), can be written in terms of u′(θ) and u′(θ)ν(θ), which is the
periodic part of the second independent solution y(θ) (2.7) of the variational equation (2.6),
and that we will call w(θ). Then, w(θ) is given explicitly by

w(θ) = y(θ)− a

ω
θu′(θ) (4.1)

and verifies the equation

L2
ωw(θ) + a(u′(θ + ω)− u′(θ − ω)) = V ′′(u(θ))w(θ). (4.2)

Moreover, the Floquet matrix P(θ) can be written in terms of u′(θ) and w(θ) as

P(θ) =
(

u′(θ) w(θ)

Lωu
′(θ) Lωw(θ) + au′(θ + ω)

)
. (4.3)

We recall that this matrix verifies that det(P (θ)) = 1, and that

LωP (θ) = A(θ)P (θ)− P(θ + ω)

(
0 a

0 0

)
(4.4)

where A(θ) is defined in (2.4). Then, provided with this matrix, in section 2.1 we have made
the periodic change of variables ζ = P(θ)η, which transforms the linear system of difference
equations (2.5) for ζ(θ) into equation (2.18) for η(θ), which is the one we solve when we apply
the iterative method of section 2.2. Now, by using this new notation as a function of w(θ), the
non-homogeneous part of (2.18) can be written as

(P (θ + ω))−1

(
0

e(θ + ω)

)
=
(

−w(θ + ω)

u′(θ + ω)

)
e(θ + ω).
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In view of this, the modified Newton method will consist in looking iteratively for u(θ) and,
simultaneously, for w(θ). Moreover, the iterative computation of w(θ) will be formulated in
terms of the Floquet matrix P(θ). Thus, we will look iteratively for a 2π -periodic matrix
P (n)(θ), having the form (4.3), which solves in an approximate way the corresponding
equation (4.4), with an error that goes to zero ‘quadratically’ as the error of u(n)(θ). This
method of constructing w(n)(θ) has the advantage that, as det(P (n)(θ)) will be close to 1, the
singularities appearing in section 2.2 due to the vanishing character of u′ (n)(θ) will not be
present here.

4.1. Formulation of the modified iterative method

Let us start by considering u(n)(θ) = θ + �(n)(θ) and w(n)(θ), with �(n)(θ) and w(n)(θ) analytic
and 2π -periodic in θ , and with 〈�(n)〉 = 0. We suppose that both functions are approximate
solutions of equations (1.5) and (4.2), with errors e(n)(θ) and f (n)(θ), respectively. More
concretely, we have

e(n)(θ) = L2
ωu

(n)(θ)− V ′(u(n)(θ)) (4.5)

f (n)(θ) = L2
ωw

(n)(θ) + a(n)(u′ (n)(θ + ω)− u′ (n)(θ − ω))− V ′′(u(n)(θ))w(n)(θ). (4.6)

From u(n)(θ) and w(n)(θ) we introduce the approximate Floquet matrix

P (n)(θ) =
(

u′ (n)(θ) w(n)(θ)

Lωu
′ (n)(θ) Lωw

(n)(θ) + a(n)u′ (n)(θ + ω)

)
(4.7)

where we assume that a(n) �= 0 is given in such a way P (n)(θ) verifies

〈det(P (n))〉 = 1. (4.8)

Let us note that, in section 2.2, the role of w(n)(θ) was played by u′ (n)(θ)ν(n)(θ), and the
definition (2.12) of ν(θ) implied det(P (n)(θ)) = 1. Now, with this modified construction,
u(n)(θ) and w(n)(θ) are given independently and then we cannot ask that det(P (n)(θ)) = 1.
What we have in this case is that if we write det(P (n)(θ)) = 1 + d(n)(θ), with 〈d(n)〉 = 0, then
the size of d(n)(θ) is of the same order as e′ (n) and f (n). We can check this by using (4.5) and
(4.6), and computing

Lω(det(P (n)(θ))) = u′ (n)(θ + ω)[L2
ωw

(n)(θ + ω) + a(n)Lωu
′ (n)(θ + ω)]

+ Lω(u
′ (n)(θ))[Lωw

(n)(θ) + a(n)u′ (n)(θ + ω)]

− w(n)(θ + ω)L2
ωu

′ (n)(θ + ω)− (Lωw
(n)(θ))Lωu

′ (n)(θ)

= u′ (n)(θ + ω)f (n)(θ + ω)− w(n)(θ + ω)e′ (n)(θ + ω). (4.9)

By solving equation (4.9), we obtain for d(n)(θ)

d(n)(θ) = L−1
ω [u′ (n)(θ + ω)f (n)(θ + ω)− w(n)(θ + ω)e′ (n)(θ + ω)] (4.10)

where L−1
ω is defined in (2.15). Moreover, if we denote by E(n)(θ) the error of P (n)(θ),

E(n)(θ) = LωP
(n)(θ)− A(n)(θ)P (n)(θ) + P (n)(θ + ω)

(
0 a(n)

0 0

)
(4.11)

equations (4.5) and (4.6) give us that

E(n)(θ) =
(

0 0

e′ (n)(θ + ω) f (n)(θ + ω) + a(n)e′ (n)(θ + ω)

)
. (4.12)
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Once we have P (n)(θ), now we can follow the same method as that explained in section 2.2 in
order to compute u(n+1)(θ) = u(n)(θ) + ξ (n)(θ), where

ξ (n)(θ) = u′ (n)(θ)η(n)1 (θ) + w(n)(θ)η
(n)
2 (θ) (4.13)

defining the vector η(n)(θ) = (η
(n)
1 (θ), η

(n)
1 (θ)), 2π -periodic in θ , as the solution of the system

of difference equations given by

Lωη
(n)(θ) =

(
0 a(n)

0 0

)
η(n)(θ) +

(
w(n)(θ + ω)

−u′ (n)(θ + ω)

)
e(n)(θ + ω) (4.14)

where as we want 〈ξ (n)〉 = 0, we choose 〈η(n)1 〉 = −〈w(n)η
(n)
2 〉 − 〈u′ (n)η̃(n)1 〉 as in (2.23). Let

us recall that the generic conditions needed to solve this system are that a(n) �= 0 and that
〈u′ (n)e(n)〉 = 0, both fulfilled in this context. Then, as we will see later, the new error e(n+1)(θ)

defined from (4.5) for u(n+1)(θ), has quadratic size with respect to the errors e(n) and f (n) of
the nth step.

Once we have u(n+1)(θ), we are going to give a method that computes w(n+1)(θ) as a small
perturbation of w(n)(θ).

Remark 4.1. To compute w(n+1)(θ) we will take advantage of the fact that we have already
computed u(n+1)(θ). Thus, we will look for the correction of w(n)(θ), say χ̂ (n)(θ), as a
combination of u′ (n+1)(θ) andw(n)(θ) (‘Gauss–Seidel style’, see (4.19)) instead of u′ (n)(θ) and
w(n)(θ) (‘Jacobi style’). Both approaches are valid, but we have chosen the ‘Gauss–Seidel-
like’ because it leads to simpler expressions to check that the new approximation, w(n+1)(θ),
verifies equation (4.6) with a quadratic error (see section 4.2).

Even if we follow the Jacobi or Gauss–Seidel approach, with this construction we avoid
the ‘extra’ singularities appearing if we compute w(n+1)(θ) only from u(n+1)(θ).

To compute w(n+1)(θ) we will proceed as follows. First of all, we consider the following
intermediate Floquet matrix between the nth step and the (n + 1)th step:

P̄ (n)(θ) =
(

u′ (n+1)(θ) w(n)(θ)

Lωu
′ (n+1)(θ) Lωw

(n)(θ) + a(n)u′ (n+1)(θ + ω)

)
. (4.15)

This matrix is defined as P (n)(θ), but replacing u′ (n)(θ) by its correction u′ (n+1)(θ). The error
of this intermediate matrix is

Ē(n)(θ) = LωP̄
(n)(θ)− A(n+1)(θ)P̄ (n)(θ) + P̄ (n)(θ + ω)

(
0 a(n)

0 0

)
(4.16)

which, by using equations (4.5), for n + 1, and (4.6), can be expressed as

Ē(n)(θ) =
(

0 0

e′ (n+1)(θ + ω) g(n)(θ + ω) + a(n)e′ (n+1)(θ + ω)

)
(4.17)

where

g(n)(θ) = L2
ωw

(n)(θ)− V ′′(u(n+1)(θ))w(n)(θ) + a(n)
(
u′ (n+1)(θ + ω)− u′ (n+1)(θ − ω)

)
= a(n)(ξ ′ (n)(θ + ω)− ξ ′ (n)(θ − ω)) + w(n)(θ)

(
V ′′(u(n)(θ))− V ′′(u(n+1)(θ))

)
+ f (n)(θ). (4.18)

We will check that the first column of Ē(n)(θ) has quadratic size with respect to e(n) and f (n)

(see (4.30)), but this does not hold for the second one. Then, we have to modify the second
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column of P̄ (n)(θ), or which is the same, w(n)(θ). For this purpose, we will look for α(n)(θ)
and β(n)(θ), 2π -periodic in θ , such that if we define

ŵ(n)(θ) = w(n)(θ) + χ̂ (n)(θ) (4.19)

with

χ̂ (n)(θ) = α(n)(θ)u′ (n+1)(θ) + β(n)(θ)w(n)(θ) (4.20)

then we have a quadratic error in equation (4.6), if we replace w(n)(θ) by ŵ(n)(θ) and u(n)(θ)
by u(n+1)(θ), but keeping the same constant a(n). Let us point out that we are not saying that
ŵ(n)(θ) is w(n+1)(θ), because if we define P (n+1)(θ) from u′ (n+1) and ŵ(n), we cannot ensure
that the condition 〈det(P (n+1))〉 = 1 is fulfilled. This is because we compute ŵ(n)(θ) working
with the same a(n) as in the nth step. Then, once we have computed ŵ(n), we will be forced to
perform a suitable scaling (see (4.28)) in order to have 〈det(P (n+1))〉 = 1.

To obtain the equations for (α(n)(θ), β(n)(θ)), we formulate the problem in a compact
(matrix) way, looking for a square matrix B(n)(θ), 2π -periodic in θ , such that P̄ (n)(θ)B(n)(θ)

verifies the Floquet equation (4.4) for A(n+1)(θ). By using (4.16), one obtains the following
equation for B(n)(θ):

LωB
(n)(θ) =

(
0 a(n)

0 0

)
B(n)(θ)− B(n)(θ + ω)

(
0 a(n)

0 0

)

−(P̄ (n)(θ + ω))−1Ē(n)(θ)B(n)(θ).

As we cannot solve this equation, we will choose B(n)(θ) to solve it except for a ‘quadratic’
error. Thus, from the discussions before, it is natural to look for

B(n)(θ) =
(

1 α(n)(θ)

0 1 + β(n)(θ)

)
. (4.21)

The error of the first column is clearly squared, and for the second column, if we skip the terms
having quadratic size, we have

Lω

(
α(n)(θ)

β(n)(θ)

)
=
(

a(n)β(n)(θ)

0

)
+

(
w(n)(θ + ω)g(n)(θ + ω)

−u′ (n+1)(θ + ω)g(n)(θ + ω)

)
. (4.22)

In order to obtain this equation, we have used the fact that det(P̄ (n)(θ)) and det(P (n)(θ)) are
close to 1 except for terms of the order of the error of the nth step. Unfortunately, we cannot
ensure that the second component of the non-homogeneous part of (4.22) has a zero average.
In fact, we have that

u′ (n+1)(θ)g(n)(θ) = u′ (n+1)(θ)L2
ωw

(n)(θ) + e′ (n+1)(θ)w(n)(θ)− w(n)(θ)L2
ωu

′ (n+1)(θ)

+ a(n)(u′ (n+1)(θ + ω)− u′ (n+1)(θ − ω))u′ (n+1)(θ)

where we have used (4.18) and

e′ (n+1)(θ) = L2
ωu

′ (n+1)(θ)− V ′′(u(n+1)(θ))u′ (n+1)(θ) (4.23)

which is obtained by taking derivatives in equation (4.5) for n+1. Now, proceeding as in (2.21),
we can see thatu′ (n+1)(θ)g(n)(θ)−e′ (n+1)(θ)w(n)(θ) has a zero average, and as e′ (n+1)(θ)w(n)(θ)

is only a correction with ‘quadratic size’, we can replace equation (4.22) for (α(n), β(n)) by

Lω

(
α(n)(θ)

β(n)(θ)

)
=
(

a(n)β(n)(θ)

0

)

+

(
w(n)(θ + ω)g(n)(θ + ω)

e′ (n+1)(θ + ω)w(n)(θ + ω)− u′ (n+1)(θ + ω)g(n)(θ + ω)

)
. (4.24)
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Then, we can solve (4.24) choosing, for instance, α(n)(θ)with zero average, and formula (4.20)
gives us χ̂ (n)(θ), and hence, ŵ(n)(θ). Before continuing, we define f̂ (n)(θ) as the error of
ŵ(n)(θ), and P̂ (n)(θ) as the ‘corresponding’ Floquet matrix. More concretely, we have

f̂ (n)(θ) = L2
ωŵ

(n)(θ) + a(n)(u′ (n+1)(θ + ω)− u′ (n+1)(θ − ω))− V ′′(u(n+1)(θ))ŵ(n)(θ) (4.25)

and

P̂ (n)(θ) =
(

u′ (n+1)(θ) ŵ(n)(θ)

Lωu
′ (n+1)(θ) Lωŵ

(n)(θ) + a(n)u′ (n+1)(θ + ω)

)
. (4.26)

Now, to end the formulation of this modified method, we only have to define w(n+1)(θ) and
a(n+1) scaling ŵ(n)(θ) and a(n). To do this, we note that

det(P̂ (n)(θ)) = det(P (n)(θ)) + 4d̂(n)(θ)

where

4d̂(n)(θ) = ξ ′ (n)(θ)Lωŵ
(n)(θ) + u′ (n)(θ)Lωχ̂

(n)(θ)− χ̂ (n)(θ)Lωu
′ (n+1)(θ)

−ŵ(n)(θ)Lωξ
′ (n)(θ) + a(n)(ξ ′ (n)(θ + ω)u′ (n)(θ) + ξ ′ (n)(θ)u′ (n+1)(θ + ω)).

(4.27)

Then, by (4.8) we have that

〈det(P̂ (n))〉 = 1 + 〈4d̂(n)〉
and we can define the new iteration as

w(n+1)(θ) = 1

1 + 〈4d̂(n)〉 ŵ
(n)(θ) a(n+1) = 1

1 + 〈4d̂(n)〉a
(n) (4.28)

and the corresponding Floquet matrix for the (n + 1)th step

P (n+1)(θ) =
(

u′ (n+1)(θ) w(n+1)(θ)

Lωu
′ (n+1)(θ) Lωw

(n+1)(θ) + a(n+1)u′ (n+1)(θ + ω)

)
.

It is clear that the new iteration verifies

L2
ωŵ

(n+1)(θ) + a(n+1)(u′ (n+1)(θ + ω)− u′ (n+1)(θ − ω)) = V ′′(u(n+1)(θ))w(n+1)(θ) + f (n+1)(θ)

with

f (n+1)(θ) = 1

1 + 〈4d̂(n)〉 f̂
(n)(θ). (4.29)

4.2. Analysis of the errors in the modified iterative method

Once we have introduced the modified Newton method, in this section we want to give explicit
expressions of the new errors e(n+1)(θ) and f (n+1)(θ) in terms of the errors in the previous step.
First of all, we study the error of u(n+1)(θ). As we have done in (2.25), the error of u(n+1)(θ)

can be decomposed as a sum of e(n+1)
2 (θ), the error due to the Newton method, and e(n+1)

1 (θ),
the error due to the quasi-reducibility. The considerations about e(n+1)

2 (θ) are the same as
explained in section 2.2, and an explicit formula is given in (2.25). In order to give e(n+1)

1 (θ)

in this context, we can repeat the computations that lead to formula (2.27), but now, we have
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to use the fact that the error of the Floquet matrix P (n)(θ) is given by (4.11) and (4.12) instead
of (2.26), obtaining

e
(n+1)
1 (θ) = e′ (n)(θ)η(n)1 (θ − ω) + (f (n)(θ) + a(n)e′ (n)(θ))η(n)2 (θ − ω). (4.30)

The next step is to study the error Ê(n)(θ) of the matrix P̄ (n)(θ)B(n)(θ), where B(n)(θ) is given
by (4.21). More concretely, calling Ê(n)

2 (θ) the error of its second column:

Ê
(n)
2 (θ) = Lω

[
P̄ (n)(θ)

(
α(n)(θ)

1 + β(n)(θ)

)]
− A(n+1)(θ)

[
P̄ (n)(θ)

(
α(n)(θ)

1 + β(n)(θ)

)]

+P̄ (n)(θ + ω)B(θ + ω)

(
a(n)

0

)
(4.31)

we can compute this error by using equations (4.16) and (4.24), obtaining

Ê
(n)
2 (θ) = Ē(n)(θ)

(
α(n)(θ)

1 + β(n)(θ)

)

+P̄ (n)(θ + ω)

(
w(n)(θ + ω)g(n)(θ + ω)

−u′ (n+1)(θ + ω)g(n)(θ + ω) + w(n)(θ + ω)e′ (n+1)(θ + ω)

)
.

Moreover, by using (4.15) and (4.17), we have after some computations

Ê
(n)
2 (θ) =

(
ê
(n)
1 (θ)

ê
(n)
2 (θ)

)

with

ê
(n)
1 (θ) = (w(n)(θ + ω))2e′ (n+1)(θ + ω) (4.32)

ê
(n)
2 (θ) = e′ (n+1)(θ + ω)

[
α(n)(θ) + a(n)(1 + β(n)(θ) + u′ (n+1)(θ + 2ω)w(n)(θ + ω))

+w(n)(θ + ω)Lωw
(n)(θ + ω)

]
+ g(n)(θ + ω)

[
1 − det(P̄ (n)(θ + ω)) + β(n)(θ)

]
.

(4.33)

In order to control ê(n)1 (θ) and ê(n)2 (θ) we note that

1 − det(P̄ (n)(θ)) = 1 − det(P (n)(θ)) + det(P̄ (n)(θ))− det(P (n)(θ))

= −d(n)(θ) + 4d̄(n)(θ)

where d(n)(θ) is defined in (4.10) and

4d̄(n)(θ) = det(P̄ (n)(θ))− det(P (n)(θ))

= ξ ′ (n)(θ)Lωw
(n)(θ)− w(n)(θ)Lωξ

′ (n)(θ)

+ a(n)
[
u′ (n)(θ)ξ ′ (n)(θ + ω) + ξ ′ (n)(θ)u′ (n+1)(θ + ω)

]
. (4.34)

It is clear from these expressions that both ê(n)1 (θ) and ê(n)2 (θ) are of quadratic size.
To control the size of f̂ (n)(θ) (see (4.25)), we write equation (4.31) explicitly, component

by component, and we use the definition of ŵ(n)(θ) from (4.19) and (4.20), having

ê
(n)
1 (θ) = Lωŵ

(n)(θ)− (Lωu
′ (n+1)(θ))α(n)(θ)

− [Lωw
(n)(θ) + a(n)u′ (n+1)(θ + ω)

]
(1 + β(n)(θ)) + a(n)u′ (n+1)(θ + ω)

ê
(n)
2 (θ) = Lω

[
(Lωu

′ (n+1)(θ))α(n)(θ) + (Lωw
(n)(θ) + a(n)u′ (n+1)(θ + ω))(1 + β(n)(θ))

]
−V ′′(u(n+1)(θ + ω))

[
ŵ(n)(θ) + (Lωu

′ (n+1)(θ))α(n)(θ)

+(Lωw
(n)(θ) + a(n)u′ (n+1)(θ + ω))(1 + β(n)(θ))

]
+ a(n)Lωu

′ (n+1)(θ + ω).
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Joining these two equations, we obtain

ê
(n)
2 (θ) = Lω

[Lωŵ
(n)(θ) + a(n)u′ (n+1)(θ + ω)− ê

(n)
1 (θ)

]
−V ′′(u(n+1)(θ + ω))

[
ŵ(n)(θ + ω) + a(n)u′ (n+1)(θ + ω)− ê

(n)
1 (θ)

]
+a(n)Lωu

′ (n+1)(θ + ω).

Now, by using (4.23), we have

L2
ωŵ

(n)(θ + ω) + a(n)(u′ (n+1)(θ + 2ω)− u′ (n+1)(θ))

= V ′′(u(n+1)(θ + ω))ŵ(n)(θ + ω) + f̂ (n)(θ + ω)

with

f̂ (n)(θ) = Lωê
(n)
1 (θ − ω)− a(n)e′ (n+1)(θ) + ê

(n)
2 (θ − ω)− V ′′(u(n+1)(θ))ê

(n)
1 (θ − ω). (4.35)

5. The standard map as a singular perturbation of the semi-standard map

As we explained in section 3, we want to apply the modified Newton method, formulated in
section 4, to equation (1.8). This equation corresponds to equation (1.5) with ω = 2πγ , in
the case of the standard map, written in the inner variables. Thus, we have to consider the
equation

L2
ωv(τ) = V ′(v(τ )) (5.1)

where V (q) = 1
2 eiq + 1

2ε
2e−iq and to look for v(τ) = τ + l(τ ), with l(τ ) 2π -periodic in

τ and with zero average. As a first approximation for the solution of (5.1), we will take
v(0)(τ ) = τ +m(τ), where m(τ) is the solution of the inner equation (3.1), which corresponds
to (5.1) for ε = 0. As w(0)(τ ), we will take the periodic part (4.1) of the solution of the
variational equation around v(0)(τ ) associated with the inner equation (3.1).

We recall that in section 3.1 we have proved that m(τ) is defined in D(− logR0,+∞),
which is the stripe of convergence of its Fourier expansion, and hence, the domain of definition
of v(0)(τ ). Of course, when doing a perturbative analysis of the solution of (5.1), we cannot
expect to keep an infinite upper bound for the domain of analyticity of v(τ), as V ′(q) becomes
unbounded when Im(q) → +∞. However, we recall that our purpose is a bit less ambitious:
what we want to establish is that the solution of (5.1) is defined in a domain whose lower
boundary is asymptotically close, when ε → 0, to the lower boundary − logR0 of the domain
of analyticity of v(0)(τ ), and whose upper boundary matches, when written in the θ variables
(see (1.6)), with the domain of analyticity of the solution of (1.5), obtained in corollary 2.4.
Then, we obtain that the solution v(τ) of (5.1) is the analytic continuation of the solution u(θ)
of (1.5).

In section 3.2 we have discussed why the formulation of the Newton method given in
section 2 is not suitable to achieve this objective. Now, we want to see that by using the
modified formulation, we can overcome the previous difficulties. In order to apply this method,
we need some information referring to v(0)(τ ), which can be obtained from the properties of
m(τ) (see lemma 3.2). Moreover, we also need additional considerations referring to w(0)(τ )

to be able to proceed with the modified Newton method. This is done in the following section.

5.1. The variational equation of the inner solution

Let us consider the variational equation of (3.1) around v(0)(τ )

L2
ω(z(τ )) = − 1

2 ei(τ+m(τ))z(τ ). (5.2)
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It is clear that z(τ ) ≡ v′ (0)(τ ) = 1+m′(τ ) is a solution of (5.2). As we have seen in section 2.1,
we can look for an independent solution of (5.2) of the form

z(0)(τ ) = 1

ω
v′ (0)(τ )τ + w(0)(τ )

where w(0)(τ ) is 2π -periodic in τ , with zero average, and verifies (see equation (4.2))

L2
ω(w

(0)(τ )) + m′(τ + ω)−m′(τ − ω) = − 1
2 ei(τ+m(τ))w(0)(τ ). (5.3)

In order to study the analyticity properties of w(0)(τ ), and in an analogous way to the study of
m(τ) in section 3.1, we replace the Fourier expansion of w(0)(τ ) (which can be immediately
used to check that it only contains positive Fourier harmonics) by a Taylor expansion in the
variable x ≡ eiτ . Then, we define w̄(x) ≡ iw(0)(τ ), which can be written as

w̄(x) =
∑
k�1

wkx
k

and verifies

w̄(x5)− 2w̄(x) + w̄(x/5) + i

(
x5m̄′(x5)− x

5
m̄′(x/5)

)
= − 1

2xem̄(x)w̄(x)

where m̄(x) has been defined in (3.2) and 5 = eiω. From this expression, it is straightforward
to obtain the following recurrence for the coefficients wk:

wk+1 = 1

4Dk+1

k∑
j=1

Fk−jwj − (k + 1)mk+1
cos

(
1
2 (k + 1)ω

)
sin
(

1
2 (k + 1)ω

) (5.4)

for any k � 0. The expressions mk , Fk and Dk have been introduced in section 3.1. From
(5.4), and using that mk , Fk and Dk are real numbers, one obtains that wk ∈ R for any k.

Now, to continue studying w̄(x), the most important point is to relate the radii of
convergence of m̄(x) and w̄(x) (or in an equivalent way, the strips of analyticity of m(τ)
and w(0)(τ )). What we are going to prove is that the radius of convergence of w̄(x) is greater
than or equal to that of m̄(x).

Lemma 5.1. By assuming all the previous notation and definitions, we have

|wk| � M1k
2 log (k + 1)mk k � 1

for certain M1 > 0 (independent of k).

Proof. We consider the recurrence (5.4), and we divide it by mk+1 > 0, obtaining

|wk+1|
mk+1

� 1

4Dk+1mk+1

k∑
j=1

(
jFk−jmj

|wj |
jmj

)
+

(k + 1)∣∣sin
(

1
2 (k + 1)ω

)∣∣ .
Now, let us assume for a moment that |wj |

jmj
is an increasing function of j . If this were true, we

would have

|wk+1|
mk+1

� |wk|
mk

+
(k + 1)∣∣sin
(

1
2 (k + 1)ω

)∣∣
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where we have used (3.4) and (3.5). Of course, the previous assertion on the monotonic
character of |wj |

jmj
has not been fulfilled. To overcome this problem we define the following

auxiliary recurrence:

Wk+1 = (k + 1)

k
Wk +

(k + 1)∣∣sin
(

1
2 (k + 1)ω

)∣∣
with W1 = |w1|

m1
. Then, it is straightforward to prove by induction that |wk |

mk
� Wk . Moreover,

from its recursive definition, we derive the following explicit expression for Wk:

Wk = kW1 + k

k∑
j=2

1∣∣sin
(

1
2jω

)∣∣ k � 1.

To estimate the coefficients Wk , we have to bound
∣∣sin

(
1
2jω

)∣∣−1
. For this purpose we define,

for any j ∈ N, J (j) = int
(
jγ + 1

2

)
, where int(·) denotes the integer part of a real number.

Let us point out that J (j) is the unique l ∈ N such that

− 1
2π � 1

2jω − lπ < 1
2π.

Then, as we have that

| sin t | � 2

π
|t | t ∈ [− 1

2π,
1
2π
]

we obtain

Wk � kW1 +
k

2

k∑
j=2

1

|jγ − J (j)| (5.5)

and using that ω = 2πγ verifies the Diophantine condition (1.4) with σ = 2, for a certain
constant cω ≡ cγ > 0, we derive that

Wk � kW1 +
k

4cγ
(k2 + k − 2)

which gives that Wk , and then |wk |
mk

, are bounded by an expression of O(k3), proving the
‘equality’ between both radii. However, this estimate can be improved, as for any j in the
sum (5.5) we have that |jγ − J (j)| is not as small as the Diophantine condition gives. In
fact, this rough estimate can be improved, giving us that Wk is bounded by an expression of
order O(k2 log (k + 1)), which proves the bound claimed in the statement. This fact comes
immediately from the result given in lemma A.5. �

Provided with this result, we are in a position to estimate the size of w̄(x) close to its
radius of convergence, or, in an equivalent way, the size of w(0)(τ ) close to the boundary of its
strip of analyticity.

Lemma 5.2. For any δ > 0,

‖w(0)‖− logR0+δ,+∞ � M2e−δ
(

log (1/δ)

δ2
+ 1

)
(5.6)

where M2 > 0 is independent of δ.
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Proof. From lemma 5.1, we have that

‖w(0)‖− logR0+δ,+∞ � M1

∑
k�1

k2 log (k + 1)mkR
k
0e−δk ≡ M1f (δ)

then, we only need to bound f (δ). To do that, let us take δ > 0 fixed, and let us define for
t � 1

gδ(t) = t2 log (t + 1) e−δt .

Then, we have that

f (δ) �
(

sup
t�1

gδ(t)

)∑
k�1

mkR
k
0

where we recall the convergent character of the sum above (see lemma 3.2). In order to bound
this expression, we look for the zeros of g′

δ(t), with t � 1. We obtain for these zeros the
equation h(t) = δ, where

h(t) = 2

t
+

1

(t + 1) log (t + 1)
.

We note that h(t) is well defined for any t > 0, and it is strictly decreasing with t . If we define

δ0 = h(1) = 2 +
1

2 log 2

it can be immediately checked that if δ � δ0, then gδ(t) � e−δ log 2. If δ < δ0, we have that
h(2/δ) > δ, and h(4/δ) < δ. Hence, it is clear that, in this case, the only value of t � 1 giving
rise to the maximum of gδ(t) is between 2/δ and 4/δ. This allows one to obtain the estimate
gδ(t) � 16

δ2 log
(

4
δ

+ 1
)
e−2δ , if δ < δ0.

As both behaviours, when δ → 0 or when δ → +∞, are completely different, it is not
easy to find a compact expression matching them uniformly. However, it is straightforward to
check that the expression given in the statement plays the desired role. �

5.2. Convergence of the modified Newton method

In this section we are going to prove that the modified Newton method of section 4 can be
applied to equation (5.1), giving a sequence v(n)(τ ) which converges to the solution v(τ) in
a suitable domain, and that in this domain it is a small perturbation of the solution v(0)(τ )

corresponding to the unperturbed case ε = 0.
As has been seen in section 3.1, the solution of ε = 0 (the inner equation) is given by

v(0)(τ ) = τ+l(0)(τ ), with l(0)(τ ) = m(τ), wherem(τ), defined as the periodic solution of (3.1),
is convergent if Im(τ ) � − logR0 (see lemma 3.2). On the other hand, from lemma 5.2 we
have that if we make a small reduction of the lower border of the domain ofm(τ), thenw(0)(τ )

(defined as the periodic solution of equation (5.3)) exists and it is bounded. Nevertheless, the
error associated with v(0)(τ ), if we ask it to verify equation (5.1), increases unboundedly when
Im(τ ) → +∞. So, it is clear that we have to restrict the upper boundary of the domain by
taking a finite border. Then, in order to proceed with the modified iterative method, let us
consider the following initial domain D(0) for the variable τ :

D(0) = D(ρ(0)1 , ρ
(0)
2 ) = {τ ∈ C : ρ

(0)
1 � Im(τ ) � ρ

(0)
2 }
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where we take

ρ
(0)
1 = − logR0 + δ(0) ρ

(0)
2 = logB.

Here we can allow, in principle, any arbitrary B > 1/R0 and any 0 < δ(0) < logB + logR0.
Nevertheless, for technical reasons, we will add other restrictions to B and δ(0). Let us point
out that even though v(0)(τ ) andw(0)(τ ) are bounded inD(0), the estimate (5.6) for the norm of
w(0)(τ ) grows unboundedly when δ(0) → 0. However, we recall that our purpose is to prove
convergence of the method for δ(0) as small as possible, in order to establish the existence of the
solution of equation (5.1) in a domain as close as possible to the initial one. This forces us to
control the asymptotic behaviour ofw(0)(τ ) as a function of the distance to the lower boundary.
Moreover, this control has to be extended to the successive iterates w(n)(τ ), as well as to other
functions that will appear in the following (for instance, v′ (0)(τ )). To do that, we introduce
the following notation for the weighted norm (2.29) of a 2π -periodic analytic function f (τ):

‖f ‖D(0)−δ = ‖f ‖
ρ
(0)
1 +δ,ρ(0)2 −δ

for any 0 � δ � (ρ
(0)
2 − ρ

(0)
1 )/2. Expressing the norm as a function of δ, we can describe the

size of f (τ) as a function of the distance to the boundary of D(0), and hence, we can manage
quantitative estimates for the asymptotic behaviour of this norm for different values of δ.

Provided with this notation, and by using the analysis that we have made in section 3.1, the
bound (5.6) and the Cauchy estimates for the derivatives, we find that there exists a constant
M � 1, independent of ε, δ, δ(0) and B, such that

‖l(0)‖D(0)−δ � Me−(δ+δ(0))

‖v′ (0)‖D(0)−δ � M

δ(0) + δ
+ 1

‖w(0)‖D(0)−δ � Me−(δ+δ(0))

(
log

(
1/(δ(0) + δ)

)
(δ(0) + δ)2

+ 1

)

‖e(0)‖D(0)−δ � MBε2

‖f (0)‖D(0)−δ � MBε2e−(δ+δ(0))

(
log

(
1/(δ(0) + δ)

)
(δ(0) + δ)2

+ 1

)
(5.7)

where e(0)(τ ) and f (0)(τ ) are defined in (4.5) and (4.6), respectively.
To state theorem 5.3, in analogy to theorem 2.1 (see (2.30)), first of all we have to

introduce several constants to control the size of the objects involved in the proof. For the
initial approximation we use

‖l(0)‖D(0)−δ � µ
(0)
1 ‖v′ (0)‖D(0)−δ � µ

(0)
2

δ + δ(0)
+ 1

‖e(0)‖D(0)−δ � µ
(0)
3 0 < µ

(0)
5 � |a(0)| � µ

(0)
6

‖w(0)‖D(0)−δ � µ
(0)
4

(
log

(
1/(δ + δ(0))

)
(δ + δ(0))2

+ 1

)
‖f (0)‖D(0)−δ � µ

(0)
9

‖V ′′‖
D(0)+µ(0)

1 +1 � µ
(0)
7 ‖V ′′′‖

D(0)+µ(0)
1 +1 � µ

(0)
8

(5.8)

where we recall that a(0) has been introduced in such a way that 〈det(P (0))〉 = 1 (see (4.7)).
In fact, for this initial approximation, and using that v(0)(τ ) is an exact solution of the inner
equation, one can easily check that det(P (0))(τ ) = 1, and that a(0) = 1 (to check this we only
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have to consider Im(τ ) going to +∞). We remark that the bounds for l(0)(τ ) and for the error
function f (0)(τ ) are taken as independent of δ, despite the expressions given in (5.8) depending
on δ, in order to simplify the recursive bound in the proof. Then, by assuming 0 � ε < 1, we
have the following values for the expressions µ(0)

j , j = 1, . . . , 9:

µ
(0)
1 = M µ

(0)
2 = M µ

(0)
3 = MBε2 µ

(0)
4 = M

µ
(0)
5 = 1 µ

(0)
6 = 1 µ

(0)
7 = 1

2 (R0 + B) µ
(0)
8 = 1

2 (R0 + B)

µ
(0)
9 = MBε2

(
log(1/δ(0))

(δ(0))2
+ 1

)
= µ

(0)
3

(
log(1/δ(0))

(δ(0))2
+ 1

)
.

(5.9)

Now, we apply the iterative method introduced in section 4, obtaining the following quantitative
result (see section A.3 for the proof).

Theorem 5.3. We assume the notation introduced before in this section, and we put ω = 2πγ ,
where γ is the golden mean. We consider the sequences v(n)(τ ), w(n)(τ ) and a(n) defined
recursively in section 4, starting with v(0)(τ ), w(0)(τ ) and a(0) = 1 as defined above. We
take as an initial domain D(0) = D(− logR0 + δ(0), logB), where B is any constant verifying
B > max{e2/R0, 1}, and

0 < δ(0) < min
{
1, 1

21 (logB + logR0 − 2)
}
. (5.10)

Then, there exists a constant c � 1, depending on µ
(0)
1 , µ

(0)
2 , µ

(0)
4 , µ

(0)
5 , µ

(0)
6 , µ

(0)
7 and µ

(0)
8 ,

such that if µ(0)
3 is small enough in order to have

4 ≡ 12cµ(0)
3

(
log

(
1/δ(0)

))2

(δ(0))8
� 1

4 (5.11)

we can ensure that these sequences converge to v(τ) = τ + l(τ ), w(τ) and a, with v(τ) and
w(τ) analytic functions, defined at least in the complex strip D̃ = D(− logR0 +11δ(0), logB−
10δ(0)), 2π -periodic in τ and with 〈l〉 = 0. They verify that v(τ) is a solution of the Lagrangian
equation (5.1), and z(τ ) = w(τ) + a

ω
τv′(τ ) is a solution of the variationals of (5.1) around

v(τ), with the constant a ∈ R given in such a way that det(P (τ)) = 1 (see (4.3)).
Moreover, in this domain we have for l(τ ), w(τ) and a the bounds (5.8), now with

µj = µ
(0)
j + 6cµ(0)

3 log(1/δ(0))/(δ(0))4, for j = 1, 2, µ4 = µ
(0)
4 + 6cµ(0)

3 (log(1/δ(0)))2/(δ(0))8,

µ5 = µ
(0)
5 /2 and µ6 = 2µ(0)

6 , where µj � µ
(0)
j + 1, for j = 1, 2, 4.

On the other hand, l(τ ) and w(τ) are small perturbations of l0(τ ) and w(0)(τ ), in the
sense that

‖l − l(0)‖D̃−δ � 6cµ(0)
3

log
(
1/δ(0)

)
(δ(0))4

‖l′ − l′ (0)‖D̃−δ �
6cµ(0)

3

[
log

(
1/δ(0)

)]
/
(
δ(0)

)4

δ + δ(0)

‖w − w(0)‖D̃−δ � 6cµ(0)
3

(
log

(
1/δ(0)

))2

(δ(0))8

log
(
1/(δ + δ(0))

)
(δ + δ(0))2

.

Now, by using the values of the constants µ(0)
j given in (5.9), we can give a more quantitative

result. Let us take δ(0) = ε1/4−α , for any value 0 < α < 1
4 (fixed from now on). With this

choice, it is clear that (5.10) is achieved if ε is small enough, and for (5.11) we have

4 = 12cMB
(

1
4 − α

)2
ε8α (log(1/ε))2 < 1

4 (5.12)
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provided that ε is small enough. Then, we have that the solution v(τ) exists in a domain that
is O(ε1/4−α) close to the initial one D (− logR0, logB). More concretely, going back to the
original variables given by (1.6) and (1.7), we obtain the following result.

Corollary 5.4. Let us take α as any constant verifying 0 < α < 1
4 . Then, if ε is small enough

to verify (5.12), the Lagrangian equation (1.5), for V (q) = −ε cos q and ω = 2πγ , has a
solution ū(θ) = θ + �̄(θ), where �̄(θ) is analytic, 2π -periodic in θ and with 〈�̄〉 = 0. Moreover,
ū(θ) is defined at least for θ ∈ D̄, where

D̄ = D(− log(1/ε)− logR0 + 11ε1/4−α,− log(1/ε) + logB − 10ε1/4−α).
Moreover, in this domain we have the estimate

‖�̄(θ)−m(θ + i log(1/ε)− π)‖D̄ � ε

√
3
4McB

where c � 1 is the constant provided by theorem 5.3 (that is an increasing function of B).

Proof. The proof is straightforward from theorem 5.3 and the condition for ε obtained in
(5.12). �

5.3. Proof of theorem 1.1: complex matching

Now, we are in a position to prove theorem 1.1. To do this, we only have to show that
the solutions u(θ) (provided by corollary 2.4) and ū(θ) (provided by corollary 5.4) of
equation (1.5), for V (q) = −ε cos q and ω = 2πγ , are both defined in a suitable common
domain, and that in this domain they are close enough. So, we only have to apply proposition 2.3
to ensure that ū(θ) is the analytic continuation of u(θ). The proof can be summarized in the
following steps.

(a) We consider a fixed value of 0 < α < 1
4 .

(b) Let us call c the constant given by corollary 2.4, and let us consider the value 4̄ = 1
16ce

provided by proposition 2.3, with σ = 2, µ(0)
7 = e/2 and ρ̄2 − ρ̄1 = 1.

(c) Let us take A(0) to be any constant verifying A(0) < min
{

1
16c ,

34̄2

4c

}
. From corollary 2.4

we have that, if ε is small enough (depending on A(0)), then ‖�‖− log(A/ε),log(A/ε) � 4̄/2,
for any 0 < A � A(0).

(d) We define B0 = 4M/4̄, where M � 1 is the constant introduced in (5.7). Thus, we
have that if B � B0, then ‖m‖− logR0+logB,+∞ � 4̄/4, and so we have the same bound for
m(θ + i log(1/ε)− π) in the domain D(− log(1/ε)− logR0 + logB,+∞) (we recall that
l(0)(τ ) ≡ m(τ) in (5.7)).

(e) We consider a fixed B defined by means of the equality logB = − logA + 2, where we
take 0 < A � A(0) small enough, in such a way B � max{B0, e2/R0, 1}. Provided
with this value of B, we apply theorem 5.3, with the formulation stated in corollary 5.4,
obtaining for the solution �̄(θ) the estimate ‖�̄(θ)−m(θ + i log(1/ε)−π)‖D̄ � 4̄/4, if ε
is small enough, depending on M , B and c (c is now the value provided by theorem 5.3).
Let us point out that D(− log(1/ε) − logA,− log(1/ε) + logB − 1) ⊂ D̄, at least for
small values of ε (we note that A � R0).

(f) So, we can do the complex matching applying proposition 2.3 in the domain D(ρ̄1, ρ̄2),
where ρ̄1 = − log(A/ε) and ρ̄2 = − log(A/ε) + 1, with 4̄ as given in (b) because we
have ρ̄2 − ρ̄1 = 1. To do that, let us point out that in this case µ(0)

1 = 0, and it is clear that
‖�̄‖− log(A/ε),− log(A/ε)+1 � 4̄/4 + ‖�̄(θ)−m(θ + i log(1/ε)− π)‖D̄ � 4̄/2 � 1.
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Figure 1. Domains of analyticity of u(θ) and ū(θ) and the matching domain.

To obtain the analytic continuation of the function u(θ) in the upper plane, we have only to
make an analogous construction, or to use the symmetries of the standard map, in order to
obtain a symmetric domain with respect to the real axis.

Finally, the estimates provided by corollary 5.4 give that �̄(θ) (or �(θ), as we have proved
that both are the same function), is asymptotic to m(θ + i log(1/ε)− π), as ε → 0, at least in
the domain D̄, as stated in item (c) of theorem 1.1. �
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Appendix. Proof of the convergence theorems

In order to help the readability of this paper, we have placed the proof of the most technical
results in this appendix. So, here we give the proof of theorem 2.1 and proposition 2.3 (see
section A.2), as well the proof of theorem 5.3 (see section A.3). Moreover, in section A.4 we
have also included the proof of some estimates on small divisors related to the golden mean,
that have been used to prove lemma 5.1.

A.1. Some basic properties of the norm

First of all we recall some definitions we have introduced to work with 2π -periodic analytic
functions. We have considered functions defined in complex domains of the form

D(ρ1, ρ2) = {z ∈ C: ρ1 � Im(θ) � ρ2}
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with −∞ � ρ1 � ρ2 � +∞. Moreover, given an analytic function f (θ), 2π -periodic in θ ,
and defined in this domain, we have introduced (from its Fourier expansion (2.14)) the norm

‖f ‖ρ1,ρ2 = |f0| +
∑
k>0

|fk| e−kρ1 +
∑
k<0

|fk| e−kρ2 .

As we have mentioned before, this definition keeps several properties of the supremum norm.
In the present section we are going to display some of these properties, the proof of which can
be checked by using the definition of this norm and the basic properties of Fourier series.

Lemma A.1. Let us take F(θ), g(θ) and h(θ) as analytic functions, 2π -periodic in θ , and
with ‖g‖ρ1,ρ2 � δ and ‖h‖ρ1,ρ2 � δ. Then, if all the estimates on F involved in the following
expressions are well defined, we have:

• ‖ · ‖ρ1,ρ2 is a multiplicative norm,

‖gh‖ρ1,ρ2 � ‖g‖ρ1,ρ2‖h‖ρ1,ρ2 .

• It is preserved by the composition

‖F(θ + g(θ))‖ρ1,ρ2 � ‖F‖ρ1−δ,ρ2+δ.

• We have the following ‘mean value theorem’:

‖F(θ + g(θ))− F(θ + h(θ))‖ρ1,ρ2 � ‖F ′‖ρ1−δ,ρ2+δ‖g − h‖ρ1,ρ2 .

• The standard bounds for the remainder of the Taylor formula up to order one are also
true:

‖F(θ + g(θ))− F(θ + h(θ))− F ′(θ + h(θ))(g(θ)− h(θ))‖ρ1,ρ2

� 1
2‖F ′′‖ρ1−δ,ρ2+δ‖g − h‖2

ρ1,ρ2
.

• We have the following Cauchy-like estimates for the derivative:

‖F ′‖ρ1+δ,ρ2−δ � ‖F̃‖ρ1,ρ2

eδ

where we recall that F̃ (θ) is defined in (2.13).
• If 〈F 〉 = 0, then we have

‖L−1
ω (F )‖ρ1+δ,ρ2−δ � 1

4cω

(
σ − 1

eδ

)σ−1

‖F‖ρ1,ρ2

where the operator L−1
ω is defined in (2.15), provided that ω verifies the Diophantine

condition (1.4). The proof follows from some estimates on the small divisors that have
also been used to prove lemma 5.1.

A.2. Proof of theorem 2.1 and proposition 2.3

In this section we are going to prove that, under the conditions displayed in theorem 2.1,
the sequence u(n)(θ) constructed in section 2.3 converges to a solution of equation (1.5).
Moreover, we will also prove proposition 2.3, that gives conditions to ensure the uniqueness
of this solution.
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A.2.1. Iterative lemma. First of all, we study the effect of one step of the Newton method on
a given approximation.

Lemma A.2. We consider a fixed ω ∈ R of Diophantine type (1.4), for certain σ � 2 and
cω > 0, and V (q) an entire function, 2π -periodic in q. Let �(n)(θ) be an analytic function
defined on D(ρ(n)1 , ρ

(n)
2 ), for certain −∞ � ρ

(n)
1 < ρ

(n)
2 � +∞, 2π -periodic in θ and with

〈�(n)〉 = 0. We put u(n)(θ) = θ + �(n)(θ), and we assume the following bounds:

‖�(n)‖
ρ
(n)
1 ,ρ

(n)
2

� µ
(n)
1 ‖�′ (n)‖

ρ
(n)
1 ,ρ

(n)
2

� µ
(n)
2 ‖e(n)‖

ρ
(n)
1 ,ρ

(n)
2

� µ
(n)
3∥∥∥∥ 1

u′ (n)

∥∥∥∥
ρ
(n)
1 ,ρ

(n)
2

� µ
(n)
4 0 < µ

(n)

5 � |a(n)| � µ
(n)

6 (A.1)

‖V ′′′‖
ρ
(n)
1 −µ(0)

1 −1,ρ(n)2 +µ(0)
1 +1 � µ

(n)
7

with µ
(n)
1 < µ

(0)
1 + 1, µ(n)

2 < µ
(0)
2 + 1, for certain µ

(0)
1 � 0 and µ

(0)
2 � 0, and µ

(n)
3 � 1,

where e(n)(θ) is defined in (2.2) and a(n) is given in (2.11). Then, there exist c(n) � 1,
c(n) ≡ c(µ

(0)
1 , µ

(0)
2 , µ

(n)
4 , 1/µ(n)

5 , µ
(n)

6 , µ
(n)
7 ), that is an increasing function of all of its

arguments, such that given any δ(n), with

0 < δ(n) � min
{
1, 1

6 (ρ
(n)
2 − ρ

(n)
1 )

}
for which

c(n)
µ
(n)
3

(δ(n))2σ−1
� min

{
1
2 , 1 + µ

(0)
2 − µ

(n)
2

}

c(n)
µ
(n)
3

(δ(n))2(σ−1)
� 1 + µ

(0)
1 − µ

(n)
1

(A.2)

then we can apply a step of the Newton method formulated in section 2.2 to compute a new
iterate u(n+1)(θ) = θ + �(n+1)(θ), with 〈�(n+1)〉 = 0, verifying

‖�(n+1) − �(n)‖
ρ
(n+1)
1 ,ρ

(n+1)
2

� c(n)
µ
(n)
3

(δ(n))2(σ−1)

‖�′ (n+1) − �′ (n)‖
ρ
(n+1)
1 ,ρ

(n+1)
2

� c(n)
µ
(n)
3

(δ(n))2σ−1

‖e(n+1)‖
ρ
(n+1)
1 ,ρ

(n+1)
2

� c(n)
(µ

(n)
3 )2

(δ(n))4(σ−1)
(A.3)

∥∥∥∥ 1

u′ (n+1)

∥∥∥∥
ρ
(n+1)
1 ,ρ

(n+1)
2

� µ
(n)
4

1 − c(n)
(
µ
(n)
3 /(δ(n))2σ−1

)
|a(n+1) − a(n)| � c(n)

µ
(n)
3

(ρ
(n)
2 − ρ

(n)
1 )2σ−1

where ρ(n+1)
1 = ρ

(n)
1 + 3δ(n) and ρ(n+1)

2 = ρ
(n)
2 − 3δ(n).

Proof. In order to simplify the notation, we will skip the superscript (n) everywhere along the
proof, and we will use the superscript (1) to label the (n + 1)th iteration. First of all, let us
explain the role played by the constant c in the statement. We are always going to use the same
notation, c, for the different bounds appearing in the proof, that are a function of the arguments
on which c depends. So, this constant has to be redefined in a recurrent way along the proof
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of this lemma, in order to meet all the bounds where it is involved (a finite number of them),
and the value of c obtained after the last bound is the one claimed in the statement. Moreover,
except when it is explicitly mentioned, during the proof we will avoid the restriction δ < 1.
Then, the remaining bounds hold for any value of δ for which the expressions involved are
well defined.

In the following estimates we will use the properties of the weighted-norm given in
lemma A.1. First of all, going back to (2.11) and (2.12), we have

‖h‖ρ1,ρ2 � c ‖h̃‖ρ1,ρ2 � c ‖ν‖ρ1+δ,ρ2−δ � c

δσ−1
.

These bounds give

‖u′e‖ρ1,ρ2 � cµ3 ‖νu′e‖ρ1+δ,ρ2−δ � c
µ3

δσ−1
|〈νu′e〉| � c

µ3

(ρ2 − ρ1)σ−1
.

Let us point out that when bounding the average by the norm, we use the Cauchy estimates
given in lemma A.1 with the maximum reduction allowed in the width of the strip of analyticity,
which in this case is δ = (ρ2 − ρ1)/2. Now, we solve (2.20), with the conditions (2.22) and
(2.23), and we compute ξ (n)(θ) from (2.19). Then, using the same kind of arguments, one
obtains

‖η̃2‖ρ1+δ,ρ2−δ � c
µ3

δσ−1
, |〈η2〉| � c

µ3

(ρ2 − ρ1)σ−1

‖η2‖ρ1+δ,ρ2−δ � c
µ3

δσ−1
, ‖η̃1‖ρ1+2δ,ρ2−2δ � c

µ3

δ2(σ−1)

|〈η1〉| � c
µ3

(ρ2 − ρ1)2(σ−1)
, ‖η1‖ρ1+2δ,ρ2−2δ � c

µ3

δ2(σ−1)

‖ξ‖ρ1+2δ,ρ2−2δ � c
µ3

δ2(σ−1)
, ‖ξ ′‖ρ1+3δ,ρ2−3δ � c

µ3

δ2σ−1
.

(A.4)

Thus, the bounds (A.3) for ‖�(1)−�‖ and ‖�′ (1)−�′‖ are clear. To bound the new error e(1)(θ),
we recall the decomposition

e(1)(θ) = e
(1)
1 (θ) + e

(1)
2 (θ)

that we have done in (2.24) and (2.25). To estimate e(1)2 (θ), we remark that condition (A.2)
guarantees that ‖�(1)‖ρ1+2δ,ρ2−2δ � µ

(0)
1 + 1. Then, we can use lemma A.1 to bound the

remainder of the Taylor formula up to order one in the domain D(ρ1 −µ
(0)
1 − 1, ρ2 +µ(0)

1 + 1).
On the other hand, e(1)1 (θ) can be bounded by looking at its equivalent expression (2.27), having

‖e(1)1 ‖
ρ
(1)
1 ,ρ

(1)
2

� c
µ2

3

δ2σ−1
‖e(1)2 ‖

ρ
(1)
1 ,ρ

(1)
2

� c
µ2

3

δ4(σ−1)
.

Recalling that to display the results we will take 0 < δ � 1, the worst bound is that given by
e
(1)
2 (θ), and that is taken into account in (A.3).

The next step is to consider 1/u′ (1)(θ). For this purpose, we write

1

u′ (1)(θ)
= 1

u′(θ) + ξ ′(θ)
= 1

u′(θ)

(
1

1 + (ξ ′(θ)/u′(θ))

)

and from here, we derive the estimate∥∥∥∥ 1

u′ (1)

∥∥∥∥
ρ1+3δ,ρ2−3δ

� µ4

1 − c(µ3/δ2σ−1)
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where we use that cµ3/δ
2σ−1 � 1

2 (see (A.2)). Finally, to complete this proof we only have to
estimate a(1) − a, or in an equivalent way, 〈h(1) − h〉. Then, we note that

h(1)(θ)− h(θ) = u′(θ)u′(θ + ω)− u′ (1)(θ)u′ (1)(θ + ω)

u′(θ)u′(θ + ω)u′ (1)(θ)u′ (1)(θ + ω)
.

To bound this expression, we add and subtract u′(θ)u′ (1)(θ + ω) at the numerator of this
fraction. Now, using that ‖�′ (1)‖ρ1+3δ,ρ2−3δ � 1 +µ(0)

2 , which is also guaranteed by the proved
bounds (A.3) and hypotheses (A.2), we have

|〈h(1) − h〉| � c
µ3

(ρ2 − ρ1)2σ−1
.

To obtain this estimate, we point out that again we have taken the maximum reduction allowed
in the width of the strip of analyticity, in order to bound |〈ξ ′〉| by ‖ξ ′‖. �

A.2.2. Proof of the convergence. The proof of theorem 2.1 relies on the convergence of the
sequence u(n)(θ), that will be proved by induction using the iterative lemma A.2.

We put δ(n) = δ(0)/2n, and we have
∑∞

n=0 δ
(n) = 2δ(0). Then, we want to apply lemma A.2

iteratively, starting with u(0)(θ) in D(ρ(0)1 , ρ
(0)
2 ), and using at any step δ ≡ δ(n). Hence, it is

clear that ρ(n)1 < ρ
(0)
1 + 6δ(0) and ρ(n)2 > ρ

(0)
2 − 6δ(0).

Let us proceed by induction. We assume that n steps of this iterative method have been
performed, and that for u(n)(θ) we have that the constants µ(n)

j , j = 1, . . . , 7, defined as

in (A.1), verify µ
(n)
1 � µ

(0)
1 + 1, µ(n)

2 � µ
(0)
2 + 1, µ(n)

3 � 1, µ(n)
4 � eµ(0)

4 , 1/µ(n)

5 � 2/µ(0)
5 ,

µ
(n)

6 � 2µ(0)
6 . Moreover, it is clear that µ(n)

7 � µ
(0)
7 . We also assume that

c
µ
(n)
3

(δ(n))2σ−1
� min

{
1
2 , 1 + µ

(0)
2 − µ

(n)
2

}
c

µ
(n)
3

(δ(n))2(σ−1)
� 1 + µ

(0)
1 − µ

(n)
1 (A.5)

where c is the function provided by the iterative lemma valued in

c = c
(
µ
(0)
1 + 1, µ(0)

2 + 1, eµ(0)
4 , 2/µ(0)

5 , 2µ(0)
6 , µ

(0)
7

)
.

Let us note that this choice of c implies that c(j) � c, if j � n, and then conditions (A.5)
guarantee that lemma A.2 can be applied, giving the following constants for the (n+ 1)th step:

µ
(n+1)
1 = µ

(n)
1 + c

µ
(n)
3

(δ(n))2(σ−1)
µ
(n+1)
2 = µ

(n)
2 + c

µ
(n)
3

(δ(n))2σ−1

µ
(n+1)
3 = c

(µ
(n)
3 )2

(δ(n))4(σ−1)
µ
(n+1)
4 = µ

(n)
4

1 − cµ
(n)
3 /(δ(n))

2σ−1

µ
(n+1)
5 = µ

(n)

5 − c
µ
(n)
3

(ρ
(n)
2 − ρ

(n)
1 )2σ−1

µ
(n+1)
6 = µ

(n)

6 + c
µ
(n)
3

(ρ
(n)
2 − ρ

(n)
1 )2σ−1

.

Thus, the induction implies

µ
(n+1)
1 = µ

(0)
1 +

n∑
j=0

c
µ
(j)

3

(δ(j))2(σ−1)
µ
(n+1)
2 = µ

(0)
2 +

n∑
j=0

c
µ
(j)

3

(δ(j))2σ−1

and hence, the key point is to control µ(j)

3 , that, from the definition of δ(j), verifies

µ
(j+1)
3 = 24j (σ−1)c

(µ
(j)

3 )2

(δ(0))4(σ−1)
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for any j = 0, . . . , n. This expression, and the definition of 4 given in (2.32), imply that

µ
(j)

3 � (2σ−1)2j+2−4(j+1)

(
c

(δ(0))4(σ−1)

)2j−1

(µ
(0)
3 )2j = 24(σ−1)

24(j+1)(σ−1)
42j−1µ

(0)
3

for j = 0, . . . , n + 1. As we ask that 4 < 1 in (2.32), then we can ensure that the bound of
µ
(j)

3 is strictly decreasing to zero with j . Consequently, the sums defining µ
(n+1)
1 and µ

(n+1)
2

can be bounded by geometric sums of ratios 4/22(σ−1) and 4/22σ−3, respectively, and both
are smaller than 1

2 . Hence, we derive the estimates

µ
(n+1)
1 � µ

(0)
1 + 2c

µ
(0)
3

(δ(0))2(σ−1)
= µ

(0)
1 + 24

(δ(0))2(σ−1)

24(σ−1)

µ
(n+1)
2 � µ

(0)
2 + 2c

µ
(0)
3

(δ(0))2σ−1
= µ

(0)
2 + 24

(δ(0))2σ−3

24(σ−1)

which, as δ(0) < 1, are bounded, respectively, by 1 + µ
(0)
1 and 1 + µ

(0)
2 . Let us observe that

the arguments presented also guarantee inequalities (A.5) for n + 1. Now we consider µ(n+1)
4 ,

which verifies

µ
(n+1)
4 =

(
n∏

j=0

1

1 − c
(
µ
(j)

3 /(δ(j))2σ−1
)
)
µ
(0)
4

where we recall that we have cµ(j)

3 /(δ(j))2σ−1 � 1
2 , j = 0, . . . , n, by hypothesis (A.5). If we

take log(·) of this product, and we use that

− log(1 − x) � 2x if 0 � x � 1
2

we obtain

µ
(n+1)
4 � exp

(
2

n∑
j=0

c
µ
(j)

3

(δ(j))2σ−1

)
µ
(0)
4 � eµ(0)

4 .

To control µ(n+1)
5 and µ(n+1)

6 , we remark that ρ(n)2 − ρ
(n)
1 � (ρ

(0)
2 − ρ

(0)
1 )/2, and hence, we only

have to bound
∑n

j=0 µ
(j)

3 by a geometric sum of ratio 4/24(σ−1) � 1
2 , obtaining

µ
(n+1)
5 � µ

(0)
5 − 2cµ(0)

3

(
2

ρ
(0)
2 − ρ

(0)
1

)2σ−1

µ
(n+1)
6 � µ

(0)
6 + 2cµ(0)

3

(
2

ρ
(0)
2 − ρ

(0)
1

)2σ−1

.

By using (2.32) we have that µ(n+1)
5 � µ

(0)
5 /2 and µ

(n+1)
6 � 2µ(0)

6 , and then all the inductive
hypotheses also hold for n + 1. Hence, we can take n going to infinity, which ensures the
convergence of the process in the domain D(ρ(0)1 + 6δ(0), ρ(0)2 − 6δ(0)). Moreover, the different
bounds obtained along the proof also give those claimed in the statement of the theorem for
the limit function u(θ) = θ + �(θ) in the final domain. �
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A.2.3. Proof of proposition 2.3. In this section we are going to prove proposition 2.3 to
establish the (local) uniqueness of the solution of (1.5).

Let ū(θ) = θ + �̄(θ) be another (analytic) solution of (1.5), defined in D(ρ̄1, ρ̄2),
a domain which is contained in the domain of u(θ) provided by theorem 2.1, that is,
D(ρ(0)1 + 6δ(0), ρ(0)2 − 6δ(0)), 2π -periodic in θ and with 〈�̄〉 = 0. We want to check that
if ‖�̄− �‖ρ̄1,ρ̄2 is small enough, in the sense that they verify (2.33), then u(θ) and ū(θ) have to
coincide.

For this purpose we define U(θ) = ū(θ) − u(θ), then, using that both functions are
solutions of (1.5), we can write

L2
ωU(θ) = V ′(ū(θ))− V ′(u(θ)) = V ′′(u(θ))U(θ)− ē(θ) (A.6)

where

ē(θ) = V ′(u(θ))− V ′(ū(θ)) + V ′′(u(θ))U(θ).

Now, we can use the explicit reducibility of the invariant curve u(θ) (see section 2.1), to solve
(A.6) for U(θ), and to express it as a function of ē(θ). More concretely, if we write

U(θ) = u′(θ)η1(θ) + ν(θ)u′(θ)η2(θ)

we have that η(θ) = (η1(θ), η2(θ)) is obtained as the 2π -periodic solution of the equations

Lωη(θ) =
(

0 a

0 0

)
η(θ) +

(
ν(θ + ω)

−1

)
u′(θ + ω)ē(θ + ω) (A.7)

(see (2.20)) where a and ν(θ) are defined from u(θ) (see (2.11) and (2.12)). We recall that the
only indetermination in this equation is the choice of 〈η1〉, which has to be defined in such a
way thatU(θ) has a zero average. However, let us also recall that to guarantee the well defined
character of this construction, we need 〈u′ē〉 = 0. To check this, we note that as u(θ) and ū(θ)
verify (1.5), we can write

u′(θ)ē(θ) = V ′(u(θ))u′(θ)− L2
ω�̄(θ)− �′(θ)L2

ω�̄(θ) + (�̄(θ)− �(θ))L2
ω�

′(θ)

= V ′(u(θ))u′(θ)− L2
ω�̄(θ) +

[
�′(θ + ω)�̄(θ)− �′(θ)�̄(θ − ω)

]
+
[
2�′(θ)�(θ)

]
+
[
�′(θ − ω)�̄(θ)− �′(θ)�̄(θ + ω)

]− [
(�′(θ + ω) + �′(θ − ω))�(θ)

]
and from here is not difficult to check that 〈u′ē〉 = 0.

It is clear from (A.7) that if ē(θ) is zero, so is U(θ). In principle, we only have, from the
definition of ē(θ), that ē ≡ O(U 2), but from the hypothesis (2.33), it can be quantified by

‖ē‖
ρ̄
(0)
1 ,ρ̄

(0)
2

� 1
2µ

(0)
7 ‖U‖2

ρ̄
(0)
1 ,ρ̄

(0)
2

≡ µ̄
(0)
3

where we define ρ̄
(0)
1 = ρ̄1 and ρ̄

(0)
2 = ρ̄2, and where we have used lemma A.1, and the

definition of µ(0)
7 (see (2.30)). Now, let c � 1 be the constant provided by lemma A.2,

corresponding to µ
(0)
1 , µ

(0)
2 , µ

(0)
4 , µ

(0)
5 , µ

(0)
6 and µ

(0)
7 , that is the same as that appearing in the

statement of theorem 2.1. Then, by using that the definition of U(θ) is done in the same way
as ξ(θ) in (2.19), we obtain for U(θ) the same bound as for ξ(θ) in (A.4), giving

‖U‖
ρ̄
(1)
1 ,ρ̄

(1)
2

� c
µ̄
(0)
3

(δ̄(0))2(σ−1)
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where we take δ̄(0) = (ρ̄
(0)
2 − ρ̄

(0)
1 )/4, with ρ̄(1)1 = ρ̄

(0)
1 + 2δ̄(0) and ρ̄(2)1 = ρ̄

(0)
1 − 2δ̄(0). Hence,

we have the new estimate

‖ē‖
ρ̄
(1)
1 ,ρ̄

(1)
2

� 1
2µ

(0)
7 ‖U‖2

ρ̄
(1)
1 ,ρ̄

(1)
2

� 1
2µ

(0)
7

(
c

µ̄
(0)
3

(δ̄(0))2(σ−1)

)2

≡ µ̄
(1)
3 .

And from now on, we can reiterate the same construction iteratively by taking, for instance,
δ̄(n) = δ̄(0)/2n, obtaining that ‖ē‖

ρ̄
(n)
1 ,ρ̄

(n)
2

� µ̄
(n)
3 , n � 0, with

µ̄
(n+1)
3 = 1

2µ
(0)
7

(
c

22n(σ−1)µ̄
(n)
3

(δ̄(0))2(σ−1)

)2

n � 0.

From here, we derive that

µ̄
(n)
3 =

(
c
µ
(0)
7 22(σ−1)‖U‖

ρ̄
(0)
1 ,ρ̄

(0)
2

2(δ̄(0))2(σ−1)

)2n+1−2

1
2µ

(0)
7

‖U‖2
ρ̄
(0)
1 ,ρ̄

(0)
2

24(σ−1)n

=
(‖U‖

ρ̄
(0)
1 ,ρ̄

(0)
2

4̄

)2n+1−2

1
2µ

(0)
7

‖U‖2
ρ̄
(0)
1 ,ρ̄

(0)
2

24(σ−1)n

with 4̄ defined in (2.34). Thus, if we have that ‖U‖
ρ̄
(0)
1 ,ρ̄

(0)
2

� 4̄, we can claim the required
uniqueness. �

A.3. Proof of theorem 5.3

The next result to be considered is the proof of theorem 5.3, that gives conditions to ensure
convergence of the modified Newton method formulated in section 4.

As we have mentioned before (see section 2.3), despite the fact that the statement of
theorem 2.1 has been formulated for a ‘generic’ set of ω and V (q) (for which the conditions
of the statement are fulfilled), in theorem 5.3 we have adapted the application of the modified
iterative method to the case in which we are interested, that is, the invariant curve of the
standard map where its rotation number is the golden mean.

The proof of theorem 5.3 will be done by applying the modified Newton method to
equation (5.1). This method has been constructed in section 4 in terms of some variables
called θ , u(θ) and �(θ). Hence, in order to simplify the readability of the proof of theorem 5.3,
as a direct application of the formulation done in section 4, we will also use this notation during
the proof, even though the statement has been made in terms of the variables τ , v(τ) and l(τ ).
It is important to remark that now the variables θ and τ and the corresponding functions are
not related by any change of variables, but they are just the same.

A.3.1. Iterative lemma. To prove theorem 5.3 we follow the same basic scheme as in the
proof of theorem 2.1. Then, first of all we will formulate an iterative lemma in order to control
the bounds of the corrections of the functions u(n)(θ), u′ (n)(θ) and w(n)(θ), of the constant
a(n), as well as the new errors e(n+1)(θ), f (n+1)(θ), and after that, in section A.3.2 we will prove
the theorem.

Before giving the concrete statement of this (iterative) lemma, let us outline some technical
details to be taken into account in the formulation of the result. Then, we resume the discussion
of section 5.2. We recall that we have to deal with several estimates on functions that
become unbounded when we approach the lower boundary of the corresponding strip of
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analyticity. To help in the control of the functions giving rise to these estimates, we recall
the notation introduced in section 5.2. Then, given the domain D = D(ρ1, ρ2), and any
0 < δ � (ρ2 − ρ1)/2, we put ‖ · ‖D−δ = ‖ · ‖ρ1+δ,ρ2−δ . This notation will allow us to
control the size of the functions close to the boundary of the domain (for small values of δ),
and also to control the size of its corresponding average (by choosing the biggest value for
δ, δ = (ρ2 − ρ1)/2). We point out that with this notation we are not able to distinguish the
different behaviour of the function in the lower and upper boundary, and in fact, in our context
everything can be more easily controlled in the upper boundary. However, we have preferred
this approach instead of one carrying a separate control of both behaviours, as we are only
interested in obtaining careful estimates at the lower boundary. In the following lemma we
summarize some properties related to this notation for the norm, which will be used in the
following.

Lemma A.3. Let f (θ) be an analytic function defined in D = D(ρ1, ρ2), for certain
−∞ � ρ1 < ρ2 � +∞, and 2π -periodic in θ . Then, for any 0 < δ0 � (ρ2 − ρ1)/2,
and for any 0 � δ � (ρ2 − ρ1 − 2δ0)/2, we have:

• ‖f ′‖D−δ−δ0 � ‖f ‖D−δ/2

(δ/2+δ0) e

• If ω ∈ R is a Diophantine number (1.4), and 〈f 〉 = 0, then

‖L−1
ω (f )‖D−δ0−δ � 1

4cω

(
σ − 1

(δ/2 + δ0) e

)σ−1

‖f ‖D−δ/2.

Right after these remarks, we can formulate the result describing the effect of one step of the
modified Newton method on a given approximation.

Lemma A.4. We consider ω = 2πγ , with γ the golden mean, which is of Diophantine type
(1.4), with σ = 2 and for certain cγ ≡ cω > 0. Also let V (q) be a 2π -periodic entire
function. Let �(n)(θ) and w(n)(θ) be analytic functions defined on D(n) = D(ρ(n)1 , ρ

(n)
2 ), for

certain −∞ < ρ
(n)
1 < ρ

(n)
2 < +∞, with (ρ

(n)
2 − ρ

(n)
1 )/2 > 1, 2π -periodic in θ and with

〈�(n)〉 = 0. We put u(n)(θ) = θ + �(n)(θ), and we assume that for certain 0 < δ(0) < 1, and for
any 0 � δ � (ρ

(n)
2 − ρ

(n)
1 )/2, we have the following bounds:

‖�(n)‖D(n)−δ � µ
(n)
1 ‖u′ (n)‖D(n)−δ � µ

(n)
2

δ + δ(0)
+ 1 ‖e(n)‖D(n)−δ � µ

(n)
3

‖w(n)‖D(n)−δ � µ
(n)
4

[
log

(
1/(δ + δ(0))

)
(δ + δ(0))2

+ 1

]
0 < µ

(n)

5 � |a(n)| � µ
(n)

6 (A.8)

‖f (n)‖D(n)−δ � µ
(n)
9 ‖V ′′‖

D(n)+µ(0)
1 +1 � µ

(n)
7 ‖V ′′′‖

D(n)+µ(0)
1 +1 � µ

(n)
8

with µ(n)
j < µ

(0)
j + 1, for certain µ(0)

j > 0, for j = 1, 2, 4, and µ(n)
3 � µ

(n)
9 < 1, where e(n)(θ)

is defined in (4.5), f (n)(θ) in (4.6) and a(n) is given in such a way that 〈det(P (n))〉 = 1 in (4.8).
Then, there exists c(n) � 1, c(n) ≡ c(µ

(0)
1 , µ

(0)
2 , µ

(0)
4 , 1/µ(n)

5 , µ
(n)

6 , µ
(n)
7 , µ

(n)
8 ), which is an

increasing function of all of its arguments, such that given any δ(n), with

0 < δ(n) � min
{
δ(0), 1

5

(
1
2

(
ρ
(n)
2 − ρ

(n)
1

)− 1
)}

(A.9)
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for which

c(n)
µ
(n)
3 log

(
1/δ(0)

)
(δ(0))2(δ(n))2

� min
{
1, µ(0)

1 + 1 − µ
(n)
1

}
c(n)

µ
(n)
9

(δ(n))2
� µ

(0)
4 + 1 − µ

(n)
4

2

c(n)
µ
(n)
3 log

(
1/δ(0)

)
δ(0)(δ(n))3

� min
{
1, µ(0)

2 + 1 − µ
(n)
2

}
c(n)µ

(n)
9 � 1

2 (A.10)

c(n)
µ
(n)
3

(
log

(
1/δ(0)

))2

(δ(0))3(δ(n))5
� µ

(0)
4 + 1 − µ

(n)
4

2

then we can apply a step of the modified Newton method to compute a new iterate given by
u(n+1)(θ) = θ + �(n+1)(θ), with 〈�(n+1)〉 = 0, w(n+1)(θ) and a(n+1), with the estimates

‖�(n+1) − �(n)‖D(n+1)−δ � c(n)
µ
(n)
3 log

(
1/δ(0)

)
(δ(0))2(δ(n))2

‖�′ (n+1) − �′ (n)‖D(n+1)−δ � c(n)
µ
(n)
3 log

(
1/δ(0)

)
δ(0)(δ(n))3

1

δ + δ(0)

‖w(n+1) − w(n)‖D(n+1)−δ � c(n)

[
µ
(n)
9

(δ(n))2
+
µ
(n)
3

(
log

(
1/δ(0)

))2

(δ(0))3(δ(n))5

]

×
(

log
(
1/(δ + δ(0))

)
(δ + δ(0))2

+ 1

)

|a(n+1) − a(n)| � c(n)µ
(n)
9

(A.11)

which hold for any 0 � δ � (ρ
(n+1)
2 −ρ

(n+1)
1 )/2, whereρ(n+1)

2 = ρ
(n)
2 −5δ(n), ρ(n+1)

1 = ρ
(n)
1 +5δ(n)

and D(n+1) = D(ρ(n+1)
1 , ρ

(n+1)
2 ). Moreover, if we replace u(n)(θ), w(n)(θ) and a(n) by the

corrected expressions a(n+1), u(n+1)(θ) and w(n+1)(θ), we have that 〈det(P (n+1))〉 = 1 in (4.7),
and the following bounds for the new errors e(n+1)(θ) and f (n+1)(θ) (see (4.5) and (4.6)):

‖e(n+1)‖D(n+1)−δ � c(n)
µ
(n)
3

δ(0)δ(n)

[
µ
(n)
3

(
log

(
1/δ(0)

))2

(δ(0))3(δ(n))3
+ µ

(n)
9

]

‖f (n+1)‖D(n+1)−δ � c(n)
1

δ(0)δ(n)

[
µ
(n)
3

(
log

(
1/δ(0)

))2

(δ(0))3(δ(n))3
+ µ

(n)
9

]2

.

(A.12)

Proof. To prove this result we will make an analogous simplification on the notation as in the
proof of lemma A.2, that is, we will skip the superscript (n) of the nth iteration and use the
superscript (1) to label the (n+1)th iteration. However, in the present context we will leave the
superscript (n) of the quantity δ(n) controlling the reduction of the domain at the nth step, in
order to distinguish it from δ, which is used to display the bounds as a function of the distance
to the boundary. Moreover, the role played by the constant c of the statement is the same as
in the iterative lemma A.2. More concretely, this constant will be redefined in a recurrent way
(but always keeping the same name) to achieve the different bounds appearing in the proof and
that are a function of the arguments on which c depends. Then, the value for c in the statement
is the one that follows from the last bound.

It is important to note that, in the bounds that will appear during the proof, we will keep
only the dominant terms with respect to δ, even for small and for big values of δ.
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First of all, we solve (4.14) and we compute ξ(θ) from (4.13). Then, we have

‖u′e‖D−δ � cµ3

(
1

δ(0) + δ
+ 1

)

‖we‖D−δ � cµ3

(
log

(
1/(δ + δ(0))

)
(δ + δ(0))2

+ 1

)

|〈we〉| � cµ3.

‖η̃2‖D−δ(n)−δ � cµ3

δ(n) + δ/2

(
1

δ(0) + δ/2
+ 1

)
|〈η2〉| � cµ3

‖η2‖D−δ(n)−δ � cµ3

(
1

(δ(0) + δ/2)(δ(n) + δ/2)
+ 1

)

‖η̃1‖D−2δ(n)−δ � cµ3

δ(n) + δ/2

(
log

(
1/(δ(0) + δ/2)

)
(δ(0) + δ/4)(δ(n) + δ/4)

+
1

δ(n) + δ/4

)

|〈u′η̃1〉| � cµ3

|〈wη2〉| � cµ3

|〈η1〉| � cµ3

‖η1‖D−2δ(n)−δ � cµ3

(
log

(
1/(δ(0) + δ/2)

)
(δ(0) + δ/4)(δ(n) + δ/4)2

+ 1

)

‖ξ‖D−2δ(n)−δ � cµ3

(
log

(
1/(δ(0) + δ/2)

)
(δ(0) + δ/4)2(δ(n) + δ/4)2

+ 1

)

‖ξ ′‖D−3δ(n)−δ � cµ3

δ/2 + δ(n)

(
log

(
1/(δ(0) + δ/4)

)
(δ(0) + δ/8)2(δ(n) + δ/8)2

+ 1

)
.

Thus, these bounds imply the new bounds for ‖�(1) − �‖ and ‖�′ (1) − �′‖ given in (A.11). To
bound e(1)(θ), we go back to the decomposition

e(1)(θ) = e
(1)
1 (θ) + e

(1)
2 (θ)

that we have done in (2.24), but now we have to use (2.25) for e(1)2 (θ) and (4.30) for e(1)1 (θ). The
estimate for e(1)1 (θ) follows directly. For e(1)2 (θ), we remark that from hypotheses (A.10) on the
statement, we have ‖�(1)‖D−2δ(n) � µ

(0)
1 +1. Then, we can use the bound for the remainder of the

Taylor formula up to order one given in lemma A.1 in the domain D(ρ1−µ
(0)
1 −1, ρ2 +µ(0)

1 +1),
obtaining

‖e(1)1 ‖D−2δ(n)−δ � cµ3

(
µ3 log

(
1/(δ(0) + δ/2)

)
(δ(0) + δ/4)(δ(n) + δ/4)3

+
µ9

(δ(0) + δ/2)(δ(n) + δ/2)
+ µ9

)

and

‖e(1)2 ‖D−2δ(n)−δ � cµ2
3

( (
log

(
1/(δ(0) + δ/2)

))2

(δ(0) + δ/4)4(δ(n) + δ/4)4
+ 1

)
.
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Then, we obtain

‖e(1)‖D−2δ(n)−δ � cµ3

(
µ3
(
log

(
1/(δ(0) + δ/2)

))2

(δ(0) + δ/4)4(δ(n) + δ/4)4
+

µ9

(δ(0) + δ/2)(δ(n) + δ/2)
+ µ9

)

and from here, we derive the bound (A.12).
At this point, and in order to bound the new iterate w(n+1)(θ) and its associated error

f (n+1)(θ), we need some intermediate bounds. From (4.18), and using the ‘mean value
theorem’ given in lemma A.1, we obtain

‖g‖D−3δ(n)−δ � c

(
µ3
(
log

(
1/(δ(0) + δ/4)

))2

(δ(0) + δ/8)3(δ(n) + δ/8)3
+ µ9

)
.

Going back to the system of equations (4.24), that define α(θ) and β(θ), we have

‖e′ (1)w − u′ (1)g‖D−3δ(n)−δ � c

(
µ3
(
log

(
1/(δ(0) + δ/2)

))2

(δ(0) + δ/8)4(δ(n) + δ/8)3
+

µ9

δ(0) + δ
+ µ9

)

where we have used the fact that hypotheses (A.10) on the statement guarantee that we have
for u′ (1)(θ) the same estimate as for u′(θ), just by replacing µ2 by µ

(0)
2 + 1 in the domain

D − 2δ(n) − δ, and also that the contribution due to the ‘quadratic terms’ e′ (1)(θ)w(θ) can be
controlled by the one due to u′ (1)(θ)g(θ). Moreover, we also have

‖wg‖D−3δ(n)−δ � c

(
µ3
(
log

(
1/(δ(0) + δ/4)

))3

(δ(0) + δ/8)5(δ(n) + δ/8)3
+
µ9 log

(
1/(δ(0) + δ)

)
(δ(0) + δ)2

+ µ9

)

|〈wg〉| � cµ9

and so,

‖β̃‖D−4δ(n)−δ � c

δ(n) + δ/2

(
µ3
(
log

(
1/(δ(0) + δ/4)

))2

(δ(0) + δ/16)4(δ(n) + δ/16)3
+

µ9

δ(0) + δ/2
+ µ9

)

|〈β〉| � cµ9

‖β‖D−4δ(n)−δ � c

(
µ3
(
log

(
1/(δ(0) + δ/4)

))2

(δ(0) + δ/16)4(δ(n) + δ/16)4
+

µ9

(δ(0) + δ/2)(δ(n) + δ/2)
+ µ9

)

‖α‖D−5δ(n)−δ � c

δ(n) + δ/2

(
µ3
(
log

(
1/(δ(0) + δ/8)

))3

(δ(0) + δ/32)4(δ(n) + δ/32)4
+
µ9 log

(
1/(δ(0) + δ/2)

)
(δ(0) + δ/4)(δ(n) + δ/4)

+ µ9

)
.

Then, we have for χ̂(θ) (see (4.20)):

‖χ̂‖D−5δ(n)−δ � c

(
µ3
(
log

(
1/(δ(0) + δ/8)

))3

(δ(0) + δ/32)5(δ(n) + δ/32)5
+

µ9 log
(
1/(δ(0) + δ/2)

)
(δ(0) + δ/4)2(δ(n) + δ/4)2

+ µ9

)
.

We point out that all of these bounds are valid for any value of δ, not necessarily small, with
the only restriction that 0 � δ � (ρ2 − ρ1 − 10δ(n))/2.

In order to bound the new iteratew(1)(θ), we need to control the average of the determinant
of the intermediate Floquet matrix P̂ (θ) defined in (4.26). We can do this if we put the
maximum value allowed for δ in the bounds of ξ(θ) and χ̂(θ). Then, by using condition (A.9)
for δ(n), we obtain that 4d̂(θ) (defined in (4.27)) verifies

|〈4d̂〉| � cµ9
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that is bounded by 1
2 by hypotheses (A.10) of the statement. So, for w(1)(θ), we have

∥∥w(1) − w
∥∥
D−5δ(n)−δ =

∥∥∥∥∥ χ̂ − 〈4d̂〉w
1 + 〈4d̂〉

∥∥∥∥∥
D−5δ(n)−δ

� c

(
µ3
(
log

(
1/(δ(0) + δ/8)

))3

(δ(0) + δ/32)5(δ(n) + δ/32)5
+

µ9 log
(
1/(δ(0) + δ/2)

)
(δ(0) + δ/4)2(δ(n) + δ/4)2

+ µ9

)
.

From here, we deduce the bound given in (A.11) for the new function w(1)(θ), and then,
conditions (A.10) on the statement guarantee that ‖w(1)‖D−5δ(n)−δ verifies the same estimate
as ‖w‖D−δ in (A.8), just by replacing µ4 by µ(0)

4 + 1. Moreover, equation (4.28) gives that

|a(1) − a| = |〈4d̂〉||a|
|1 + 〈4d̂〉| � cµ9.

Now, it only remains to bound the error of w(1)(θ) in (4.6) that is given by formulae (4.29)
and (4.35). To do that, we also need several intermediate bounds. First of all, from (4.10), we
have

‖d‖D−2δ(n)−δ � c

δ(n) + δ/2

(
µ3 log

(
1/(δ(0) + δ/2)

)
(δ(0) + δ/2)2(δ(n) + δ/4)

+
µ9

δ(0) + δ/2
+ µ9

)
.

We recall that we have written 1−det(P̄ (θ)) = 4d̄(θ)−d(θ), with P̄ (θ) introduced in (4.15)
and 4d̄(θ) defined in (4.34). For 4d̄(θ) we have

‖4d̄‖D−3δ(n)−δ � cµ3

δ(n) + δ/2

( (
log

(
1/(δ(0) + δ/4)

))2

(δ(0) + δ/8)4(δ(n) + δ/8)2
+ 1

)
.

Thus, we obtain

‖1 − det P̄ ‖D−3δ(n)−δ � c

δ(n) + δ/2

(
µ3
(
log

(
1/(δ(0) + δ/4)

))2

(δ(0) + δ/8)4(δ(n) + δ/8)2
+

µ9

δ(0) + δ/2
+ µ9

)
.

By using this bound on (4.33), we have

‖ê2‖D−5δ(n)−δ � c

(
µ2

3

(
log

(
1/(δ(0) + δ/4)

))4

(δ(0) + δ/16)7(δ(n) + δ/16)7
+
µ3µ9

(
log

(
1/(δ(0) + δ/4)

))2

(δ(0) + δ/16)4(δ(n) + δ/16)4

+
µ2

9

(δ(0) + δ/2)(δ(n) + δ/2)
+ µ2

9

)
.

Here, hypotheses (A.10) allow one to control the terms e′ (1)(θ)α(θ) and e′ (1)(θ)β(θ)), which
have ‘cubic size’ in µ3 and µ9, by means of the size of the other ones. On the other hand,
formula (4.32) gives

‖ê1‖D−3δ(n)−δ � c

(
µ2

3

(
log

(
1/(δ(0) + δ/4)

))4

(δ(0) + δ/8)8(δ(n) + δ/8)5
+
µ3µ9

(
log

(
1/(δ(0) + δ)

))2

(δ(0) + δ/4)5(δ(n) + δ/4)2
+

µ3µ9

δ(n) + δ/2

)
.

Then, by (4.35)

‖f̂ ‖D−5δ(n)−δ � c

(
µ2

3

(
log

(
1/(δ(0) + δ/4)

))4

(δ(0) + δ/16)7(δ(n) + δ/16)7
+
µ3µ9

(
log

(
1/(δ(0) + δ/4)

))2

(δ(0) + δ/16)4(δ(n) + δ/16)4

+
µ2

9

(δ(0) + δ/2)(δ(n) + δ/2)
+ µ2

9

)
.

Now, from the definition off (1)(θ) in (4.29), and using again that |〈4d̂〉| � 1
2 , the bound (A.12)

claimed in the statement for f (1)(θ) follows. �
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A.3.2. Proof of the convergence. In this section we are going to prove theorem 5.3, showing
the convergence of the sequences u(n)(θ), w(n)(θ) and a(n) constructed in section 4. We will
prove this convergence by applying lemma A.4 iteratively, taking δ(n) = δ(0)/2n, and showing
that u(n)(θ), w(n)(θ) and a(n) are small perturbations of u(0)(θ), w(0)(θ) and a(0).

Now, we proceed by induction. We assume that n steps of the iterative method have
been performed, and that for u(n)(θ), w(n)(θ) and a(n) the constants µ

(n)
j , j = 1, . . . , 9,

defined in (A.8) verify µ
(n)
j < µ

(0)
j + 1, for j = 1, 2, 4, 1/µ(n)

5 � 2/µ(0)
5 , µ(n)

6 � 2µ(0)
6 and

µ
(n)
3 � µ

(n)
9 < 1. We note that conditions (5.9) and (5.11) ensure the last inequality when

n = 0. On the other hand, it is clear that µ(n)
j � µ

(0)
j , for j = 7, 8. We also assume that

c
µ
(n)
3 log

(
1/δ(0)

)
(δ(0))2(δ(n))2

< min
{
1, µ(0)

1 + 1 − µ
(n)
1

}

c
µ
(n)
9

(δ(n))2
<

µ
(0)
4 + 1 − µ

(n)
4

2

c
µ
(n)
3 log

(
1/δ(0)

)
δ(0)(δ(n))3

< min
{
1, µ(0)

2 + 1 − µ
(n)
2

}
(A.13)

c
µ
(n)
3

(
log

(
1/δ(0)

))2

(δ(0))3(δ(n))5
<

µ
(0)
4 + 1 − µ

(n)
4

2

cµ
(n)
9 < min

{
1
2 , µ

(n)

5 − 1
2µ

(0)
5 , 2µ(0)

6 − µ
(n)

6

}
where c is the function provided by lemma A.4 evaluated in

c ≡ c
(
µ
(0)
1 , µ

(0)
2 , µ

(0)
4 , 2/µ(0)

5 , 2µ(0)
6 , µ

(0)
7 , µ

(0)
8

)
.

So, from the inductive hypotheses we have that c(j) � c for any j � n. Moreover, from
the recursive definition of ρ(n)1 and ρ

(n)
2 (see lemma A.4), and using hypothesis (5.10) on the

statement, we also have that
1
2

(
ρ
(n)
2 − ρ

(n)
1

)
> 1

2

(
ρ
(0)
2 − ρ

(0)
1 − 20δ(0)

)
� 1

for any n � 0. Then, conditions (A.13) imply that (A.10) is fulfilled for the present n and
lemma A.4 can be applied, giving

µ
(n+1)
1 = µ

(n)
1 + c

µ
(n)
3 log

(
1/δ(0)

)
(δ(0))2(δ(n))2

µ
(n+1)
2 = µ

(n)
2 + c

µ
(n)
3 log

(
1/δ(0)

)
δ(0)(δ(n))3

µ
(n+1)
3 = c

µ
(n)
3

δ(0)δ(n)

(
µ
(n)
3

(
log

(
1/δ(0)

))2

(δ(0))3(δ(n))3
+ µ

(n)
9

)

µ
(n+1)
4 = µ

(n)
4 + c

(
µ
(n)
9

(δ(n))2
+
µ
(n)
3

(
log

(
1/δ(0)

))2

(δ(0))3(δ(n))5

)
(A.14)

µ
(n+1)
5 = µ

(n)

5 − cµ
(n)
9

µ
(n+1)
6 = µ

(n)

6 + cµ
(n)
9

µ
(n+1)
9 = c

µ
(n)
3

δ(0)δ(n)

(
µ
(n)
3

(
log

(
1/δ(0)

))2

(δ(0))3(δ(n))3
+ µ

(n)
9

)2

.
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Moreover, conditions (A.13) give that µ(n+1)
j < µ

(0)
j + 1, for j = 1, 2, 4, µ(n+1)

5 > µ
(0)
5 /2 and

µ
(n+1)
6 < 2µ(0)

6 .
As we want to prove convergence, the first thing we have to do is to study the behaviour of

the errors, that in this modified method come from two different sources, given by the constants
µ
(n)
3 and µ(n)

9 . In order to control both simultaneously, let us define a new error constant

µ
(n)
10 = µ

(n)
3

(
log

(
1/δ(0)

))2

(δ(0)δ(n))3
+ µ

(n)
9 (A.15)

which, from (A.14), verifies

µ
(n+1)
10 � 2c

δ(0)δ(n)
(µ

(n)
10 )

2.

So, we can control µ(j)

10 , for any j � n, having

µ
(j+1)
10 � c2j+1

(δ(0))2
(µ

(j)

10 )
2.

By using the expressions for µ(0)
1 and µ(0)

2 given in (5.9), we can take

µ
(0)
10 = 3µ(0)

3

(
log

(
1/δ(0)

))2

(δ(0))6

and then, from the definition of 4 on the statement, we have

µ
(j)

10 � µ
(0)
10

2j

(
4cµ(0)

10

(δ(0))2

)2j−1

= 3µ(0)
3

(
log

(
1/δ(0)

))2

2j (δ(0))6
42j−1.

Then, as4 � 1 by hypotheses (5.11), we can ensure that the bound ofµ(j)

10 is strictly decreasing
to zero with j . Moreover, the same happens for the bounds of the errors µ(j)

3 and µ(j)

9 , as we

have for µ(j)

9 the same bound as for µ(j)

10 , and

µ
(j)

3 � 3µ(0)
3

24j
42j−1.

This implies that iteratively we can keep the condition µ(n)
3 � µ

(n)
9 � 1. Now, we only have

to use the induction to control the remaining constants µ(n+1)
j . For instance, for µ(n+1)

1 we have
that

µ
(n+1)
1 � µ

(0)
1 +

n∑
j=0

c
µ
(j)

3 log
(
1/δ(0)

)
(δ(0))2(δ(j))2

� µ
(0)
1 + c

3µ(0)
3 log

(
1/δ(0)

)
(δ(0))4

n∑
j=0

42j−1

22j

< µ
(0)
1 + 6c

µ
(0)
3 log

(
1/δ(0)

)
(δ(0))4

where we have bounded the sum by a geometric one of ratio 4/4, using that 4/4 � 1
2 by

hypotheses (5.11). Repeating the same process for the other constants, we also obtain that

µ
(n+1)
2 < µ

(0)
2 + 6c

µ
(0)
3 log

(
1/δ(0)

)
(δ(0))4

, µ
(n+1)
4 < µ

(0)
4 + 6c

µ
(0)
3

(
log

(
1/δ(0)

))2

(δ(0))8

µ
(n+1)
5 > µ

(0)
5 − 6c

µ
(0)
3

(
log

(
1/δ(0)

))2

(δ(0))6
, µ

(n+1)
6 > µ

(0)
6 + 6c

µ
(0)
3

(
log

(
1/δ(0)

))2

(δ(0))6
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where we have compared the corresponding sums with geometric ones of ratios4/2, 24,4/2
and 4/2, respectively. In any of these cases, from (5.11), the ratio is not bigger than 1

2 . Now,
also using (5.11), we can ensure that conditions (A.13) are verified iteratively, and hence, we
can take n → +∞. So, the convergence follows immediately, and we also obtain the bounds
for the limit claimed in the statement. �

A.4. Some sharp estimates on the small divisors for the golden mean

The only thing that remains to end the paper is to prove the estimates on the small divisors
associated with the golden mean, that have been used to prove lemma 5.1. The concrete result
that we need is stated in lemma A.5. Let us point out that this estimate can be deduced from
a more general result stated in [13]. Nevertheless, in [13] this result is used without giving
the proof, which does not seem to be available anywhere. So, for this reason, and in order to
make the paper self-contained, we have decided to include the proof of this result, but only in
the concrete case of the golden mean.

Lemma A.5. We consider γ = (
√

5 − 1)/2, the golden mean. Then, there exists a constant
K > 0, such that for any M ∈ N we have

M∑
m=1

max
n∈Z

{|mγ − n|−1} � KM log (M + 1).

The proof of this result follows as a consequence of the following auxiliary results, which are
devoted to studying some basic properties of the Fibonacci numbers:

F0 = 1 F1 = 1 Fk+1 = Fk + Fk−1 k � 1

or in an explicit way

Fk = A

(
1

γ

)k

+ B(−γ )k A = 1

1 + γ 2
B = γ 2

1 + γ 2
. (A.16)

Lemma A.6. For any m ∈ N, m can be decomposed as a sum of non-consecutive Fibonacci
numbers; that is,

m = Fj1 + · · · + Fjs(m)

with 1 � js(m) < · · · < j1. Moreover, this decomposition is unique.

Proof. If m is a Fibonacci number the proof is complete. Although we have that Fj1 < m <

Fj1+1, and so, 0 < m − Fj1 < Fj1−1. Then, it implies that Fj2 � m − Fj1 < Fj1−1, with
j2 < j1 − 1. Now, if m− Fj1 �= Fj2 we only have to reiterate the same process. �

At this point we can give the basic idea to prove lemma A.5: if we look at the Diophantine
condition (1.4) for ω = 2πγ , which is verified for σ = 2, the estimate that we obtain for
maxn∈Z{|mγ − n|−1} is of order O(m). However, we are going to see that, in fact, it is
O(Fjs(m) ), where Fjs(m) is the smaller Fibonacci number in the decomposition of m provided
by lemma A.6. In the case when m is a Fibonacci number Fk , the value of the ‘small divisor’
maxn∈Z{|mγ − n|−1} can be easily computed. It is obtained by taking n = Fk−1:

Fkγ − Fk−1 = (−1)kγ k+1.

For the general case, we have the following result.
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Lemma A.7. Let m ∈ N. Then, for any n ∈ Z we have

|mγ − n| � γ js(m)+1

(
1 − 2γ 2

1 − γ 2

)
where js(m) is provided by lemma A.6.

Proof. We consider the decomposition ofm in Fibonacci numbers given by lemma A.6. Then,
we have

|mγ − n| � |Fjs(m)γ − (n− Fj1 − · · · − Fjs(m)−1)|
−|Fj1γ − Fj1−1| − · · · − |Fjs(m)−1γ − Fjs(m)−1−1|

� γ js(m)+1 − γ j1+1 − · · · − γ js(m)−1+1 � γ js(m)+1 − γ js(m)−1+1

1 − γ 2

� γ js(m)+1

(
1 − γ 2

1 − γ 2

)
= γ js(m)+1

(
1 − 2γ 2

1 − γ 2

)
where we have strongly used the fact that the decomposition of lemma A.6 does not contain
consecutive Fibonacci numbers. �

As a consequence of this result, it is clear that now the key point is to bound the cardinal
of the following sets:

R(j, k) = #{m ∈ N: 1 � m < Fk, js(m) = j}.
Lemma A.8. For any k � 1 and for any j � k, we have that R(j, k + 1) � Fk−j .

Proof. Let us consider 1 � m < Fk+1 such that js(m) = j . If we consider the decomposition
of m in Fibonacci numbers of lemma A.6, then we have that m = Fjs(m) , and we have the
following possibilities for js(m)−1: js(m)−1 = js(m) + 2, . . . , k. Then, we can give the following
(pessimistic) estimate for R(j, k + 1):

R(j, k + 1) � 1 + R(j + 2, k + 1) + R(j + 3, k + 1) + · · · + R(k, k + 1).

Moreover, it is clear that R(k, k + 1) = 1 and R(k − 1, k + 1) = 1. Now, in order to obtain a
more explicit estimate for R(j, k + 1), we define a new sequence of numbers R(j, k + 1) by
means of the equality

R(j, k + 1) = 1 + R(j + 2, k + 1) + · · · + R(k, k + 1)

with R(k, k + 1) = R(k − 1, k + 1) = 1. From this definition, it is clear that R(j, k + 1) �
R(j, k + 1). Moreover, we have

R(j, k + 1) = R(j + 1, k + 1) + R(j + 2, k + 1)

and thus R(·, k + 1) verifies the Fibonacci recurrence, but with respect to a decreasing index.
This implies that R(j, k + 1) = Fk−j . �

From here, it is not difficult to obtain the following result, which is basically equivalent
to the desired bound.

Lemma A.9. There exists a constant K1 > 0, such that for any k � 1, we have

Fk+1−1∑
m=1

max
n∈Z

{|mγ − n|−1} � K1kFk+1.
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Proof. We only have to apply the results of lemmas A.7 and A.8,

Fk+1−1∑
m=1

max
n∈Z

{|mγ − n|−1} �
k∑

j=1

R(j, k + 1)γ−j−1

(
1 − γ 2

1 − 2γ 2

)

=
(

1 − γ 2

1 − 2γ 2

)
A

(
1

γ

)k+1 k∑
j=1

(
1 + (−1)k−j

B

A
γ 2k−2j

)

� K2

(
1

γ

)k

(k + K3)

where K2 and K3 are constants independent of k. From here the result follows. �
Now, the proof of lemma A.5 is clear. We only have to apply lemma A.9 with k taken in

such a way thatFk � M < Fk+1, and to use that k � K4 log(M+1), for certainK4 independent
of M (look at the explicit expression (A.16) for Fk).
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