
Notes on symplectic homology

Joaquim Brugués Mora

In this document we review the theory of symplectic homology, particularly its construction from
Floer homology.

This is a summary of Section 6 of Floer homologies, with applications by Alberto Abbondandolo
and Felix Schlenk.

1 Liouville domains

Definition 1 Let (M,ω) a compact symplectic manifold with boundary, and let ω be exact, so
that ω = dλ. Let Xλ ∈ X(M) be a Liouville vector field, this means, such that

iXλω = λ⇔ LXλω = ω.

We say that (M,λ) is a Liouville domain if Xλ is transverse to the boundary ∂M .
If j∂M denotes the natural inclusion of ∂M into M , then we will denote α = j∗∂Mλ ∈ Ω1(∂M).

Remark 2 Under these assumptions (∂M,α) is a contact manifold.

Remark 3 Let LM denote the space of loops {x : S1 → M | x is smooth} for any exact1

symplectic manifold (M,ω = dλ). Then, the action functional has the expression

AH : LM −→ R

γ 7−→
∫
S1

(
−H(γ(t)) + λγ(t)

(
dγ

dt
(t)

))
dt

.

Definition 4 (Completion): As Xλ is a Liouville vector field, we know that
(
ϕsXλ

)∗
ω = esω.

Therefore, as ϕsXλ is defined for all s ≤ 0, we have a natural embedding

j : (0, 1]× ∂M −→ M

(ρ, x) 7−→ ϕlog ρ
Xλ

(x)
.

Then, j∗λ = ρα and j∗ Xλ|Imj = ρ∂ρ.

The completion of (M,λ) is the exact symplectic manifold M̂ = M
⋃
∂M ([1,+∞)× ∂M), where

the Liouville form can be naturally extended by

λ|[1,+∞)×∂M = ρα.

Intuitivelly, (M̂, λ) is obtained by gluing along ∂M the symplectization of the contact manifold
(∂M,α).

1As the symplectic manifold is exact, we do not require the space to be composed of contractible loops as usual.
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2 Construction of the symplectic homology

Let H : M̂ → R a Hamiltonian vanishing on M and such that its restriction to M̂\M depends only
on the coordinate ρ,

H = h(ρ) ∀ρ ≥ 1.

Here, h is a function from [1,+∞) to R such that

1. h(1) = h′(1) = 0.

2. h′′(ρ) > 0 ∀ρ > 1.

3. lim
ρ→∞

h′(ρ) = +∞.

Under these conditions, we are interested on the dynamics of the Hamiltonian vector field XH .
First of all, it is obvious that XH |M = 0, so all the points of M are fixed points.

Claim 1 On M̂\M = (1,+∞)× ∂M , the Hamiltonian vector field has the form

XH(ρ, x) = h′(ρ)Rα(x),

where Rα ∈ X(∂M) is the Reeb vector field of (∂M,α).

Proof. First, notice that dH = h′(ρ)dρ, and let XH = a∂ρ+Y , where a is a function and Y ∈ X(∂M).
As

ω = dλ = dρ ∧ α+ ρdα,

We get that
iXHω = aα− α(Y )dρ+ ρiY dα.

Thus, as iXHω = −dH, we get that a = 0 and, moreover,{
α(Y ) = h′(ρ)
iY dα = 0

⇒ XH = Y = h′(ρ)Rα.

Therefore, for each periodic orbit γ of Rα with period T > 0, the equation

h′(ρ) = T

has a unique solution ρ0 > 1. Then, the orbit

γ̄(t) = (ρ0, γ(Tt))

is a 1-periodic orbit of XH . The correspondence, moreover, is bidirectional, so we know that for each
periodic orbit of Rα there is a unique 1-periodic orbit of XH .

Claim 2 For such periodic orbits,

AH(γ̄) = ρ0h
′(ρ0)− h(ρ0).

Proof. If we derive, we get that

˙̄γ(t) = (0, Tγ(Tt)) = TRα(γ(Tt)) = h′(ρ0)Rα(γ(Tt)).

Recall also that, in the completion, λ = ρα. Using the expression of the action functional in Remark
3, we get that

AH(γ̄) =

∫ 1

0

(−h(ρ0) + λγ̄( ˙̄γ)) dt = −h(ρ0) +

∫ 1

0

h′(ρ0)iRα(ρ0α)dt = −h(ρ0) + ρ0h
′(ρ0).
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It is interesting to note that

d

dρ
(ρh′(ρ)− h(ρ)) = ρh′′(ρ) > 0,

so the correspondence is a positive and strictly increasing function.
Therefore, the correspondence Period 7→ Action is strictly monotone (and thus one to one).

There are two obstacles we must overcome before being able to define a Floer complex over these
periodic orbits:

1. H is a highly degenerate function in the sense that all the points of M are degenerate (and
furthermore non isolated) periodic orbits. We must guarantee that these degenerate periodic
orbits do not appear in our construction.

2. M̂ is a non-compact space, so it is impossible to guarantee that there is a finite number of
generators2.

Both problems can be avoided using a small perturbation of H by a C2-small periodic function
we will not descrive the construction here, but we will point at the consequences of such construction.

Problem 1: If we assume that Rα is non-degenerate in the sense that the linearization of its
flow at the periodic orbits does not have 1 as an eigenvalue, then the perturbation of H achieves
the intended purpose. However, after the perturbation the correspondence between periodic orbits
of Rα and XH is no longer one-to-one. Instead, for every closed orbit of Rα we will have exactly two
1-periodic orbits of XH close to γ̄ the 1-periodic orbit corresponding to the flow of the unperturbed
Hamiltonian.

Problem 2: Even if M̂ is non-compact, the set of critical points of AH intersected with any
sublevel set {AH ≤ a | a > 0} is finite. A way to interpret this is that imposing an upper bound on
the period of the Reeb orbits guarantees finiteness on the number of orbits.

The only thing that remains to prove is that mathcalMH,J(gamma, ta) is compact for all pe-
riodic orbits x and y. To do this, it is enough to prove that the images of the elements of
mathcalMH,J(gamma, ta) are contained in a compact subset of M̂\M .

To this end, it will be enough to prove that for any solution of the Floer equation u, ρ̃ := ρ ◦ u
is bounded. This, however, is true because

∆ρ̃ = ‖∂su‖2Jt + ρ̃h′′(ρ̃)∂sρ̃ > 0,

(in the region where ρ ≥ ρ0), and we can apply the maximum principle.

Therefore, we can define a Floer complex with the periodic orbits of the Hamiltonian flow of the
perturbed H̃. We will denote this complex by (CFk(H), ∂k). It is important to highlight that, even
though CFh(H) may be infinitely generated, ∂kγ is always well defined because the set MH,J(γ, η)
is non-empty only for a finite number of η’s (because AH(η) ≤ AH(γ) and critical points within
sublevel sets of AH are finite).

Therefore, the homology of the complex may be defined. With this, we are well equiped to
formalize the object of study of this document

Definition 5 The symplectic homology of the Liouville domain (M,λ) is

SH•(M,λ) := HF•(M̂).

2This is not necessarily an obstacle to generate the groups of the complex, but to define the boundary map.
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As implied by the notation, this homology depends not only on the topology of M , but also on the
Liouville form λ.

However, the homology is invariant under smooth perturbations of the symplectic form under
the condition that ∂M remains of contact type throghout the whole deformation.

3 Symplectic homology homomorphism

Proposition 6 There is a natural homomorphism from the singular relative homology to the
symplectic homology of a Liouville domain,

c• : H•+n(M,∂M) −→ SH•(M,λ) .

Proof. Let us start by recalling that, for the function H constructed at the beginning of Section 2,
the critical points of the action functional belong to either of these two sets:

1. Fixed points with action 0. These are all the points of M .

2. Non-constant loops in M̂\M with strictly positive action. Let ε > 0 such that AH(γ) > 2ε for
all loops belonging to this category.

As SH•(M,λ) does not depend on the Hamiltonian H, we can take a different perturbation,
which we will denote by H̃, such that

1. H̃
∣∣∣
∂M

= 0.

2. H̃
∣∣∣
M̊
< 0.

3. H̃ is C2-small on M .

Then, the critical points of AH̃ inside of M are isolated fixed points and they can be taken with
action strictly lower than ε.

Let us denote by K• the subcomplex of CF•(M̂) generated by the critical points with action
strictly less that ε. As the boundary map of the Floer complex follows the path of the negative
gradient, (K•, ∂•) is a well defined subcomplex.

Moreover, K• is precisely the Morse complex of −H̃ (with an index shift of n), so the homology
of this complex is the same as the Morse homology of the manifold with boundary (M,∂M) with
the gradient transverse to the boundary, and this homology is isomorphic to the relative singular
homology.

Then, the inclusion K• ↪→ CF•(M̂, H̃) induces the map c• : H•+n(M,∂M) → SF•(M,λ) at the
homology level.

Remark 7 It is relevant to point out that the generators left out of K• are precisely the ones
corresponding to the periodic orbits of the Reeb vector field on the boundary. Therefore, we can
already establish the following result:

Theorem 8 Let (M,λ) a Liouville domain. If the map c• : H•+n(M,∂M) → SH•(M,λ) is not
an isomorphism, then the Weinstein conjecture is true for the contact manifold (∂M,α = j∗∂Mλ),
this means, the Reeb vector field Rα has at least one periodic orbit.

Example: For any starshaped domain M ⊂ R2n, the symplectic homology SH• vanishes, whereas
H•(M,∂M) 6= 0. Thus, Weinstein’s conjecture is true for (M,λst).
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4 Viterbo functoriality

Definition 9 A Liouville embedding is an embedding of Liouville domains i : (M ′, λ′) →
(M,λ) of codimension 0 such that

i∗λ = cλ′ + df

for some c > 0 and f ∈ C∞(M ′,R).

A Liouville embedding induces a homomorphism SH•(i) : SH•(M,λ)→ SH•(M
′, λ′).

Moreover, we have functoriality with respect to the homomorphism c•,

H•+n(M,∂M)
i! //

c•

��

H•+n(M ′, ∂M ′)

c•

��
SH•(M,λ)

SH•(i) // SH•(M
′, λ′)

,

where i! : H•+n(M,∂M) ∼= Hn−•(M)
i∗−→ Hn−•(M ′) ∼= H•+n(M ′, ∂M ′).

5 Obstructions to symplectic embeddings

Definition 10 A symplectic capacity is a correspondence

C : {symplectic manifolds of dimension 2n} −→ R≥0 ∪ {+∞}

such that it has the following properties:

1. Monotonicity: If there exists some ϕ : (M1, ω1) ↪→ (M2, ω2) symplectic embedding, then

C(M1, ω1) ≤ C(M2, ω2).

2. Scaling: C(M,kω) = |k|C(M,ω).

3. Normalization: If we denote

B(r) = {x ∈ R2n | |x| = r}

Z(r) = {x ∈ R2n | x2
1 + y2

1 = r2}

then C(B(1), ωst) = C(Z(1), ωst) = π.

We will see that the symplectic homology can be used to define something analogous to a sym-
plectic capacity (using Liouville embeddings instead of symplectic embeddings).

Definition 11 A filtering of a Floer complex is the sequence of chain complexes CFa•(M,H)
generated by the critical points

Crita(AH) = {γ ∈ Crit(AH) | AH(γ) ≤ a}.

As the boundary map of the chain complex follows the flow of the negative gradient of the action
functional, we conclude that ∂• maps CFa•(M,H) to itself for any a > 0. This induces the sequence
of homologies SHa

•(M,λ) for a > 0.

Remark 12 The Viterbo functoriality can be refined to the filtered case.

Let us define

Γ(M,λ) := inf {a > 0 | cn : H2n(M,∂M)→ SHa
n(M,λ) vanishes} ∈ [0,+∞].
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Remark 13 If the morphism c• vanishes, then Γ(M,λ) < +∞.

Remark 14 The correspondence Γ is monotone with respect to Liouville embeddings.

Remark 15 The maps c• are isomorphisms on the filtration as long as a is smaller than the
action of the shortest Reeb orbit on ∂M , which we can denote bu γmin. Thus, Γ(M,λ) ≥ AH(γmin).

As an interesting application, this “Liouville capacity” can be used to prove Gromov’s non-
squeezing theorem:

Theorem 16 (Gromov): Let us assume that there exists a symplectic embedding ϕ : B(a) →
Z(b). Then, a ≤ b.

Lemma 17 Let E(a1, ..., an) denote the Liouville domain

E(a1, ..., an) = {x ∈ R2n | x2
i + y2

i ≤ a2
i 1 ≤ i ≤ n},

with the convention that a1 ≤ a2 ≤ · · · ≤ an. Then,

Γ(M,λst) = a1.

Proof. (Theorem): Our hypothesis is that we have an embedding ϕ : B(a)→ Z(b). Take ε > 0, and
let us construct the ellipsoids

• E = E(a1, ..., an), with
a− ε < a1 < · · · < an < a.

• E′ = E(b1, ..., bn), with
b = b1 < · · · < bn.

And in such a way that ϕ(E) ⊂ E′, so it is a Liouville embedding.
Then, by our lemma, Γ(E) = a1 and Γ(E′) = b, and by monotonicity Γ(E) ≤ Γ(E′).
Thus,

a− ε < b ∀ε > 0,

so, as a consequence,
a ≤ b.
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