Talk notes on b*-symplectic geometry

Joaquim Brugués Mora

These are the notes of the talk done for the seminar of Geometry and Analysis at the University
of Antwerp on 25/06/2019. Here we intend to provide an introduction to b*-geometry, and the
construction of symplectic structures in this context.

1 Motivation

This is a example taken from [3]. Consider the restricted planar three body problem on R?, which
in the context of symplectic geometry is given by the standard symplectic form on T*R? = R*,

wst = dq1 N dpr + dga A dp,
and the Hamiltonian given by the mechanical energy of the system,
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H(qap) = Flinetic + Epotential =

If we transform this system to polar coordinates (q1,¢2) = (r cos o, rsin ) (and the canonical change
to the momenta), the Hamiltonian gets transformed to

pP? P2
H(r,a, P, P,) = 7’“ + 2—% + U(rcosa,rsina),
r

In this context, we might apply the McGehee change of coordinates to study the behaviour of orbits
“escaping” to infinity:
2
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If do not impose the condition that the change of coordinates is canonical (this means, we allow it
to change the symplectic structure), we see that the symplectic form gets transformed to

4
w= —de AdP, +da A dP,,
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which is not defined when x = 0. However, this structure can be made sense of in the context of
b3-symplectic geometry.

2 b-geometry

2.1 The b-tangent bundle

A thorough introduction to b-geometry can be found in the second chapter of [2], although here
we follow the scheme of [1].

In what follows, M will denote a smooth manifold of dimension n, and Z will denote a smooth
hypersurface Z C M. Let ®X(M) denote the set of vector fields which are tangent to Z. It can be
easily seen that this is a Lie subalgebra of X(M).



Remark 2.1 Consider (U, (21, ...,2,)) a local chart such that ZNU = {z; = 0}. Then, we can
see that °X(U) = (210,,, Oy, oy On,, ).

Let us recall the following theorem from [5]:

Theorem 2.2 Consider P a C®(M) module. There exists a finite dimensional vector bundle
E 5 M such that P =T(E) if, and only if, P is projective and finitely generated.

In this context, it is clear that X (M) satisfies the conditions of the theorem, so there exists a
vector bundle that has the elements of this subalgebra as sections:

Definition 2.3 The b-tangent bundle *T'M is the vector bundle such that T'(°TM) = *X(M).

Remark 2.4 It can be seen that, fiberwise,
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where z is a defining function for Z1.

A generalization of this bundle can be constructed for more restrictive clases of vector fields if a
defining function z; € C*°(M) is fixed for Z C M:

Definition 2.5 The b*-tangent bundle " TM is the vector bundle induced by the submodule
generated locally by (z%0,,,04,, ..., 0z, ). Thus, fiberwise this vector bundle has the form

b o <m’f8x1 |p> eT,Z ifpeZz ,
P T,M ifpdg Z
dx * .
ka;M% <T’f1p>@TpZ ifpeZz
M itp¢ 7z

2.2 Relationship between T'M and *TM

A natural question to ask ourselves is whether the b-tangent bundle is isomorphic to the usual
tangent bundle for some choices of a manifold M and a hypersurface Z. There are cases in which
both bundles are isomorphic. For instance:

Example 2.6 Let T? denote the thorus, considered as the quotient of R? with respect to Z2, with
coordinates (61, 62), and let Z = {f; = 0} U{f; = 3}. If we take the vector fields X; = sin(276;)dp,
and Xy = 9p,, we see that *X(M) = (X1, Xo), so *T'T? is parallelizable, and thus it is isomorphic to
TT?.

There are, however, plenty of cases in which the bundles are not isomorphic:

Proposition 2.7 2 Let M an orientable manifold and Z o hypersurface. Let G be the graph
whose vertices are the connected components M\Z, and such that the edges between two vertices Cq
and Cy are the connected components of Z adjacent to both Ci and Ca. If °TM is parallelizable,
then G is 2-colorable.

IWe say that f € C>°(M) is a defining function of a hypersurface Z if f~1(0) = Z and f vanishes transversally in
Z

2This is a joint result with other members of the lab: Robert Cardona, Anastasia Matveeva, and Arnau Planas.




This result is analogous to the main theorem in [4], where the authors deduce the necessary
condition for symplectic structures to exist in a b*-manifold.

This result gives a necessary condition for the b-tangent bundle to be parallelizable, so there are
cases in which we can prove that the bundles are not isomorphic. For instance, if we take M = T2
again and take Z = {61 = 3}, we see that T?\Z has one connected component, so the graph G has
one node and one edge that connects it to itself, so 7'M cannot be parallelizable. Thus, *7'T? % TT?.

3 Symplectic geometry on b*-manifolds

bF-geometry provides a context in which we can define a class of structures that generalize the
usual symplectic structure, staying within the setting of Poisson geometry. We can define this
generalization in two equivalent ways. We begin by defining it as a concrete case of a Poisson
structure.

Definition 3.1 A Poisson structure IT on a manifold M2" is b*-Poisson when:

1. II"™ vanishes at order k£ in a hypersurface Z C M. This means that, locally, if we have a
coordinate system (z1,xa, ..., Ta,) (with 2 a defining function for Z) in an open U,

", (w1, 22, ..., T2p) = X0, NOyy A N Dy

2. (II")~1(0) = Z.
In order to tackle a different definition, as a generalization of symplectic structures, we need to
define the differential for b*-forms. Let *" Qm(M)=T (Am (ka*M)), the set of b*-m-forms.

Lemma 3.2 For all n € ** QM (M) and for all f defining function of Z there exist ag, ..., cp—1 €
Qm=Y(M) and B € Q™(M) such that

k—1
0= jfi,i A (fom) + 5.
=0

Using this we can define a differential d : *" Q™ (M) — " Qm+1(M) by imposing that the form }i—{
is closed.

Definition 3.3 A 2-form w € *" 02 (M) is b¥-symplectic if it is closed and non-degenerate.

Proposition 3.4 Definitions 3.1 and 3.3 are equivalent.

This proposition is proved in [1] using Weinstein’s theorem3.

From here, we can derive results that reproduce the rigidity of symplectic geometry to the b*-
symplectic case:

Theorem 3.5 (Darboux Theorem for b*-symplectic manifolds): For all p € Z there is a
coordinate system centered at p, (U, (X1,Y1, --s Tn,Yn)), such that x1 is a defining function for ZNU
and

dJCl
wly = x—k/\dyl +dry Ndya + - -+ + dxy A dyn,
1
or, equivalently,
I, = 2§80, ANy, + 0uy ADyy + -+ 0y Ny,

3Weinstein’s theorem asserts that, if (M,II) is a Poisson manifold and p € M, there exists a local chart
(U, (21, -+, Zny Y1, -y Yny 21, .o, Zm)) such that

H'U = Zaxl Aayi + Z fjk(zlwn,zm)azj /\azk,

i=1 1<j<k<m

where fj vanish at 0. This can be seen as the best possible analogous to Darboux theorem for Poisson geometry.



As a particular case of a Poisson manifold, a b*-symplectic manifold has a symplectic foliation. It
is clear that the connected components of M\ Z are symplectic leaves of dimension 2n of the foliation,
but what happens inside the hypersurface is more particular to b*-symplectic manifolds:

Theorem 3.6 The symplectic foliation F associated to a b*-symplectic form

k—1
w:%/\ (Zfiai> + 5
i=0

has mazimal rank on Z, this means, rank(F) =2n —2 on Z.
Moreover, the symplectic foliation on Z coincides with the foliation given by the I-form i% oy,
and the symplectic structure for each leaf L € F is the one given by i} 3.

4 Topological obstructions for b-symplectic manifolds

In this section we list some results which can be found in [1], where we can see more analogies of
the restrictive behaviour of symplectic topology in the b'-symplectic case.

Theorem 4.1 (Mazzeo-Melrose): The b-De Rham cohomology of (M, Z) satisfies that
"HER(M) = Hiyp ' (Z) © Hpp(M)
This has two indirect consequences in the compact case:

Proposition 4.2 For a compact b-symplectic manifold with Z # 0, H},r(Z) # 0. Therefore, as
a consequence of 4.1, le%R(M) #0.

Proposition 4.3 For a compact b-symplectic manifold of dimension greater than 2 with Z # 0,
H%,(Z) # 0. Therefore, as a consequence of 4.1, "H3 (M) # 0.

Finally, we can see that, looking at b-symplectic manifolds as a particular case of Poisson mani-
folds, we are able to compute the Poisson cohomology (which is usually very complicated, in particular
because the Poisson cohomology groups may have infinite rank):

Theorem 4.4 Let (M, Z,11) a b-Poisson manifold. Then, the Poisson cohomology given by II is
isomorphic to the b-De Rham cohomology:

Hpy (M) = "H})p(M).
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