
Talk notes on bk-symplectic geometry

Joaquim Brugués Mora

These are the notes of the talk done for the seminar of Geometry and Analysis at the University
of Antwerp on 25/06/2019. Here we intend to provide an introduction to bk-geometry, and the
construction of symplectic structures in this context.

1 Motivation

This is a example taken from [3]. Consider the restricted planar three body problem on R2, which
in the context of symplectic geometry is given by the standard symplectic form on T ∗R2 ∼= R4,

ωst = dq1 ∧ dp1 + dq2 ∧ dp2,

and the Hamiltonian given by the mechanical energy of the system,

H(q, p) = Ekinetic + Epotential =
‖p‖2

2
+

1− µ
‖q − q1‖

+
µ

‖q − q2‖
.

If we transform this system to polar coordinates (q1, q2) = (r cosα, r sinα) (and the canonical change
to the momenta), the Hamiltonian gets transformed to

H(r, α, Pr, Pα) =
P 2
r

2
+
P 2
α

2r2
+ U(r cosα, r sinα),

In this context, we might apply the McGehee change of coordinates to study the behaviour of orbits
“escaping” to infinity:

r =
2

x2
.

If do not impose the condition that the change of coordinates is canonical (this means, we allow it
to change the symplectic structure), we see that the symplectic form gets transformed to

ω =
4

x3
dx ∧ dPr + dα ∧ dPα,

which is not defined when x = 0. However, this structure can be made sense of in the context of
b3-symplectic geometry.

2 b-geometry

2.1 The b-tangent bundle

A thorough introduction to b-geometry can be found in the second chapter of [2], although here
we follow the scheme of [1].

In what follows, M will denote a smooth manifold of dimension n, and Z will denote a smooth
hypersurface Z ⊂ M . Let bX(M) denote the set of vector fields which are tangent to Z. It can be
easily seen that this is a Lie subalgebra of X(M).
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Remark 2.1 Consider (U, (x1, ..., xn)) a local chart such that Z ∩ U = {x1 = 0}. Then, we can
see that bX(U) = 〈x1∂x1

, ∂x2
, ..., ∂xn

〉.

Let us recall the following theorem from [5]:

Theorem 2.2 Consider P a C∞(M) module. There exists a finite dimensional vector bundle

E
π−→M such that P = Γ(E) if, and only if, P is projective and finitely generated.

In this context, it is clear that bX(M) satisfies the conditions of the theorem, so there exists a
vector bundle that has the elements of this subalgebra as sections:

Definition 2.3 The b-tangent bundle bTM is the vector bundle such that Γ(bTM) = bX(M).

Remark 2.4 It can be seen that, fiberwise,

bTpM ∼=
{
〈x1∂x1 |p〉 ⊕ TpZ if p ∈ Z
TpM if p /∈ Z ,

bTpM
∗ ∼=

{
〈 dx1

x1

∣∣∣
p
〉 ⊕ TpZ∗ if p ∈ Z

TpM
∗ if p /∈ Z

,

where x1 is a defining function for Z1.

A generalization of this bundle can be constructed for more restrictive clases of vector fields if a
defining function x1 ∈ C∞(M) is fixed for Z ⊂M :

Definition 2.5 The bk-tangent bundle bkTM is the vector bundle induced by the submodule
generated locally by 〈xk1∂x1 , ∂x2 , ..., ∂xn〉. Thus, fiberwise this vector bundle has the form

bkTpM ∼=
{
〈xk1∂x1

∣∣
p
〉 ⊕ TpZ if p ∈ Z

TpM if p /∈ Z
,

bkT ∗pM
∼=

{
〈 dx1

xk
1

∣∣∣
p
〉 ⊕ T ∗pZ if p ∈ Z

T ∗pM if p /∈ Z
,

2.2 Relationship between TM and bTM

A natural question to ask ourselves is whether the b-tangent bundle is isomorphic to the usual
tangent bundle for some choices of a manifold M and a hypersurface Z. There are cases in which
both bundles are isomorphic. For instance:

Example 2.6 Let T2 denote the thorus, considered as the quotient of R2 with respect to Z2, with
coordinates (θ1, θ2), and let Z = {θ1 = 0} ∪ {θ1 = 1

2}. If we take the vector fields X1 = sin(2πθ1)∂θ1
and X2 = ∂θ2 , we see that bX(M) = 〈X1, X2〉, so bTT2 is parallelizable, and thus it is isomorphic to
TT2.

There are, however, plenty of cases in which the bundles are not isomorphic:

Proposition 2.7 2 Let M an orientable manifold and Z a hypersurface. Let G be the graph
whose vertices are the connected components M\Z, and such that the edges between two vertices C1

and C2 are the connected components of Z adjacent to both C1 and C2. If bTM is parallelizable,
then G is 2-colorable.

1We say that f ∈ C∞(M) is a defining function of a hypersurface Z if f−1(0) = Z and f vanishes transversally in
Z.

2This is a joint result with other members of the lab: Robert Cardona, Anastasia Matveeva, and Arnau Planas.
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This result is analogous to the main theorem in [4], where the authors deduce the necessary
condition for symplectic structures to exist in a bk-manifold.

This result gives a necessary condition for the b-tangent bundle to be parallelizable, so there are
cases in which we can prove that the bundles are not isomorphic. For instance, if we take M = T2

again and take Z = {θ1 = 1
2}, we see that T2\Z has one connected component, so the graph G has

one node and one edge that connects it to itself, so bTM cannot be parallelizable. Thus, bTT2 6∼= TT2.

3 Symplectic geometry on bk-manifolds

bk-geometry provides a context in which we can define a class of structures that generalize the
usual symplectic structure, staying within the setting of Poisson geometry. We can define this
generalization in two equivalent ways. We begin by defining it as a concrete case of a Poisson
structure.

Definition 3.1 A Poisson structure Π on a manifold M2n is bk-Poisson when:

1. Πn vanishes at order k in a hypersurface Z ⊂ M . This means that, locally, if we have a
coordinate system (x1, x2, ..., x2n) (with x1 a defining function for Z) in an open U ,

Πn|U (x1, x2, ..., x2n) = xk1∂x1
∧ ∂x2

∧ ... ∧ ∂x2n
.

2. (Πn)−1(0) = Z.

In order to tackle a different definition, as a generalization of symplectic structures, we need to

define the differential for bk-forms. Let b
k

Ωm(M) = Γ
(

Λm
(
bkT ∗M

))
, the set of bk-m-forms.

Lemma 3.2 For all η ∈ bkΩm(M) and for all f defining function of Z there exist α0, ..., αk−1 ∈
Ωm−1(M) and β ∈ Ωm(M) such that

η =
df

fk
∧

(
k−1∑
i=0

f iαi

)
+ β.

Using this we can define a differential d : b
k

Ωm(M)→ bkΩm+1(M) by imposing that the form df
fk

is closed.

Definition 3.3 A 2-form ω ∈ bkΩ2(M) is bk-symplectic if it is closed and non-degenerate.

Proposition 3.4 Definitions 3.1 and 3.3 are equivalent.

This proposition is proved in [1] using Weinstein’s theorem3.
From here, we can derive results that reproduce the rigidity of symplectic geometry to the bk-

symplectic case:

Theorem 3.5 (Darboux Theorem for bk-symplectic manifolds): For all p ∈ Z there is a
coordinate system centered at p, (U, (x1, y1, ..., xn, yn)), such that x1 is a defining function for Z ∩U
and

ω|U =
dx1

xk1
∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn,

or, equivalently,
Π|U = xk1∂x1

∧ ∂y1 + ∂x2
∧ ∂y2 + · · ·+ ∂xn

∧ ∂yn .
3Weinstein’s theorem asserts that, if (M,Π) is a Poisson manifold and p ∈ M , there exists a local chart

(U, (x1, ..., xn, y1, ..., yn, z1, ..., zm)) such that

Π|U =

n∑
i=1

∂xi ∧ ∂yi +
∑

1≤j<k≤m

fjk(z1, ..., zm)∂zj ∧ ∂zk ,

where fjk vanish at 0. This can be seen as the best possible analogous to Darboux theorem for Poisson geometry.
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As a particular case of a Poisson manifold, a bk-symplectic manifold has a symplectic foliation. It
is clear that the connected components of M\Z are symplectic leaves of dimension 2n of the foliation,
but what happens inside the hypersurface is more particular to bk-symplectic manifolds:

Theorem 3.6 The symplectic foliation F associated to a bk-symplectic form

ω =
df

fk
∧

(
k−1∑
i=0

f iαi

)
+ β

has maximal rank on Z, this means, rank(F) = 2n− 2 on Z.
Moreover, the symplectic foliation on Z coincides with the foliation given by the 1-form i∗Zα0,

and the symplectic structure for each leaf L ∈ F is the one given by i∗Lβ.

4 Topological obstructions for b-symplectic manifolds

In this section we list some results which can be found in [1], where we can see more analogies of
the restrictive behaviour of symplectic topology in the b1-symplectic case.

Theorem 4.1 (Mazzeo-Melrose): The b-De Rham cohomology of (M,Z) satisfies that

bHm
DR(M) = Hm−1

DR (Z)⊕Hm
DR(M)

This has two indirect consequences in the compact case:

Proposition 4.2 For a compact b-symplectic manifold with Z 6= ∅, H1
DR(Z) 6= 0. Therefore, as

a consequence of 4.1, bH2
DR(M) 6= 0.

Proposition 4.3 For a compact b-symplectic manifold of dimension greater than 2 with Z 6= ∅,
H2
DR(Z) 6= 0. Therefore, as a consequence of 4.1, bH3

DR(M) 6= 0.

Finally, we can see that, looking at b-symplectic manifolds as a particular case of Poisson mani-
folds, we are able to compute the Poisson cohomology (which is usually very complicated, in particular
because the Poisson cohomology groups may have infinite rank):

Theorem 4.4 Let (M,Z,Π) a b-Poisson manifold. Then, the Poisson cohomology given by Π is
isomorphic to the b-De Rham cohomology:

H•Π(M) ∼= bH•DR(M).
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