Problem List 6

Multivariate Calculus

Unit 4 - Integration in multiple variables

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

- 1. Draw the following sets, and determine which ones are compact:
 - (a) $A = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1\}.$
 - (b) $B = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 < 1\}.$
 - (c) $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 4, z \in [-1, 1]\}.$
 - (d) $D = \{(x, y) \in \mathbb{R}^2 \mid x \ge 1, \ 0 \le y \le \frac{1}{x} \}.$
 - (e) $E = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y = 5\}.$
 - (f) $F = \{(x, y) \in \mathbb{R}^2 \mid x^2 + |y| = 5\}.$
 - (g) $G = \{(x, y, z) \in \mathbb{R}^3 \mid x \in [-2, 1], y \in [0, 1], z = 5\}.$
 - (h) $H = \{(0,0,0), (-1,0,1), (1,0,0)\}.$
 - (i) $I = \{(r\cos\theta, r\sin\theta) \in \mathbb{R}^2 \mid 1 \le r \le 2\}.$
 - (j) $J = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4, (x-1)^2 + y^2 > 1\}.$
- 2. Argue which of the following functions are uniformly continuous in the given domains:
 - (a) $f(x) = \frac{1}{x}$ in $D = [1, +\infty[$.
 - (b) $g(x,y) = x^2y xy^2$ in $E = [0,2] \times [0,2]$.
 - (c) $h(x,y) = x^2 + y^2$ in $F = \mathbb{R}^2$.
 - (d) $i(x) = \cos(x)$ in $H = \mathbb{R}$.
 - (e) $j(x) = \cos(x^2)$ in $I = \mathbb{R}$.
 - (f) $k(x) = \ln(x)$ in J =]1, 2[.
- 3. Let $F:A\subset\mathbb{R}^m\to\mathbb{R}^n$ a uniformly continuous function.
 - (a) Prove that, if $(x_k)_k$ and $(y_k)_k$ are sequences contained in A such that $\lim_{k\to\infty} (x_k y_k) = 0$, then $\lim_{k\to\infty} (F(x_k) F(y_k)) = 0$.
 - (b) Prove that if $(x_k)_k \subset A$ is a Cauchy sequence, then $(F(x_k))_k$ is also a Cauchy sequence.
- 4. Compute the integrals of the following functions in the given rectangles:
 - (a) $f(x,y) = y^2$; in $|x| \le 1$, $|y| \le 2$.
 - (b) f(x,y) = x|y|; in $0 \le x \le 2, -1 \le y \le 3$.
 - (c) $f(x, y, z) = x^2 + y^2 + z^2$; in $-1 \le x, y, z \le 1$.
 - (d) f(x, y, z) = xyz; in 0 < x, y, z < 1.

- 5. Compute the integrals of the following functions in the given sets. It might be helpful to draw the set in each case.
 - (a) f(x,y) = x y; in $A = \{(x,y) \in \mathbb{R}^2 \mid x + y \le 1, x \ge 0, y \ge 0\}$.
 - (b) $f(x,y) = x^2y^2$; in $B = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, |x| + |y| \le 1\}$.
 - (c) $f(x,y) = xy^2$; in $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, \ x \ge 0, \ y \ge 0\}$.
 - (d) f(x,y) = xy; where D is the region of the plane limited by the lines $\{x = 2\}$, $\{x = 4\}$, $\{y = x 1\}$ and $\{y = 2x\}$.
 - (e) $f(x,y) = x^2 y$; where E is the region of the plane limited by the parabolas $\{y = x^2\}$ and $\{y = -x^2\}$ and the lines $\{x = -1\}$ and $\{x = 1\}$.
 - (f) f(x,y) = y; in $F = \{(x,y) \in \mathbb{R}^2 \mid y \ge 0, \ x^2 + y^2 \le 4, \ y^2 \le 3x\}$.
 - (g) f(x, y, z) = z; in $G = \{(x, y, z) \in \mathbb{R}^3 \mid |x| \le 1, |y| \le 1, 0 \le z \le 2 x^2 y^2\}$.
 - (h) $f(x,y,z) = \frac{1}{(1+x+y+z)^3}$; in $H = \{(x,y,z) \in \mathbb{R}^3 \mid x,y,z \ge 0, \ x+y+z \le 1\}.$
- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ a continuous function. For each of the following integrals, draw the domain of integration and compute the expression of the integral changing the order of the variables.

(a)
$$\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{1-y} f(x,y) dx dy.$$

(b)
$$\int_{0}^{4} \int_{3x^{2}}^{12x} f(x,y) dy dx.$$

7. Let $\varphi: U \subset \mathbb{R}^n \to V \subset \mathbb{R}^n$ a change of coordinates, this means, a diffeomorphism. Let $f: K \subset V \subset \mathbb{R}^n \to \mathbb{R}$ a continuous function, and let us denote $g = f \circ \varphi$ and $K' = \varphi^{-1}(K)$. For each of the following changes of coordinates, find the expression of the integral

$$I = \int_{K} f(x_1, ..., x_n) dx_1 \cdots dx_n$$

after changing the coordinates.

(a) (Polar coordinates):

$$\varphi: \quad [0, +\infty[\times]0, 2\pi[\subset \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2 \\ (r, \theta) \quad \longmapsto \quad (r\cos\theta, r\sin\theta) \ .$$

(b) (Cylindrical coordinates):

$$\varphi: \quad [0, +\infty[\times]0, 2\pi[\times \mathbb{R} \subset \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3 \\ (r, \theta, z) \qquad \longmapsto \quad (r\cos\theta, r\sin\theta, z) \ .$$

(c) (Spherical coordinates):

$$\varphi: \quad [0, +\infty[\times]0, 2\pi[\times]0, \pi[\subset \mathbb{R}^3 \quad \longrightarrow \qquad \mathbb{R}^3 \\ (r, \theta, \phi) \qquad \longmapsto \quad (r\cos\theta\sin\phi, r\sin\theta\sin\phi, r\cos\phi) \ .$$

- 8. Compute the area of the following subsets of \mathbb{R}^2 :
 - (a) $A = \{(x, y) \mid x^2 \le y \le x\}.$
 - (b) $B = \{(x, y) \mid x + y > 1, \ x^2 + y^2 < 1\}.$

- (c) $C = \{(x,y) \mid (x+y)^2 + (2x-y+1)^2 \le 1\}.$
- (d) D the ellipse with radii a and b, this means, $D = \left\{ (x,y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}$.
- 9. Compute the volume of the following subsets of \mathbb{R}^3 :
 - (a) A the ellipsoid with radii a, b and c, this means, $A = \left\{ (x, y, z) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}$.
 - (b) $B = \{(x, y, z) \mid x^2 + y^2 \le 1, \ x + 2z \ge 0, \ y + 2z \le 2\}.$
- 10. If $a, b, c \in [0, 1]$ are picked at random, what is the probability that the polynomial $p(x) = ax^2 + bx + c$ has real roots?
- 11. Compute

$$\iint_D (x^2 + y^2) dx dy,$$

where $D = \{(x, y) \in \mathbb{R}^2 \mid 2x \le x^2 + y^2 \le 4\}.$

12. Compute

$$\iint_{D} x dx dy,$$

where $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2x, \ y^2 \ge x\}.$

13. Compute

$$\iint_{D} \sqrt{1+x^2} dx dy,$$

where D is the region of the plane delimited by the curves $y^2 - x^2 = 1$, x = 0 and x = 1.

14. Compute

$$\iint_D \sqrt{xy} dx dy,$$

where D is the region of \mathbb{R}^2 delimited by the curves $xy=1, xy=2, y^2=x$ and $y^2=2x$. (Hint: Try to use the new coordinates $u=xy, v=\frac{y^2}{x}$)

15. Use an appropriate change of coordinates to compute

$$\iint_{T} e^{x-y} dx dy,$$

where T is the triangle with vertices (0,0), (1,3) and (2,2).

16. Use polar coordinates to compute the integral

$$\iint_D \frac{x}{x^2 + y^2} dx dy,$$

where D is the region delimited by $y \le x^2$, $x^2 + y^2 \le 2$ and $y \ge 0$.

17. Let

$$I = \int_0^{\frac{\pi}{2}} \int_0^{2\cos\theta} r dr d\theta.$$

Write I in Cartesian coordinates and compute it.

18. Compute the area enclosed by a *simple rose petal*, described in polar coordinates by the equation $r = a \sin \theta$, where a > 0.

3

19. Let

$$I = \int_0^6 \int_{\frac{3}{2}x - 3}^x e^{(3x - 2y)^2} dy dx.$$

- (a) Write the integral after changing the order of integration.
- (b) Find a suitable change of coordinates and compute the integral.
- 20. Let $0 < a < b \text{ and } 0 < c < d \text{ and } D = \{(x, y) \in \mathbb{R}^2 \mid ax^2 \le y \le bx^2, \ cx \le y \le dx\}$. Compute

$$\iint_D \frac{1}{x} dx dy$$

using a suitable change of coordinates.

21. Compute

$$\iiint_A \sqrt{x^2 + y^2} dx dy dz,$$

where $A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1, \ x^2 + y^2 \le z^2, \ z \ge 0\}.$

- 22. Compute the volume of A, the region limited by the surfaces $\{(x,y,z)\in\mathbb{R}^3\mid z=4-y^2\}$ and $\{(x,y,z)\in\mathbb{R}^3\mid z=x^2+3y^2\}.$
- 23. Let $V = \{(x, y, z) \mid x, y, z \ge 0, z \le x + y, x + y \le 1\}$. Compute the integral

$$\iiint_V x dx dy dz.$$

24. Let V be the region of \mathbb{R}^3 comprised between the spheres $S_1: x^2+y^2+z^2=1$ and $S_2: x^2+y^2+z^2=4$. Compute the integral

$$\iiint_V \sqrt{x^2 + y^2 + z^2} dx dy dz.$$

- 25. Compute the length of the following curves using line integrals:
 - (a) A circumference of radius R.
 - (b) $\gamma(t) = (a\cos t, a\sin t, bt), 0 < t < 4\pi, a, b > 0$ (a helix).
 - (c) The *astroid*, which satisfies the equation $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 26. Compute the following line integrals:
 - (a) $\int_C \sqrt{a^2 y^2} dl$, where C is the curve given by $x^2 + y^2 = a^2$, y > 0.
 - (b) $\oint_C (x^2 + y^2) dl$, where C is the circumference of center (0,0) and radius R.
 - (c) $\int_C (xy+z^2)dl$, where C is the helix arc parametrized as $x=\cos t$, $y=\sin t$, z=t and comprised between the points (1,0,0) and $(-1,0,\pi)$.
- 27. Compute the line integrals of the following vector fields:
 - (a) $\int_C F \cdot dl$, where F(x,y) = (x+y,y-x) and C is a part of the ellipse $x^2 + \frac{y^2}{4} = 1$ oriented from the point (1,0) to (0,2).

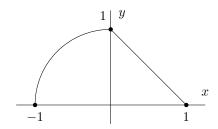
- (b) $\int_L F \cdot dl$, where $F(x, y, z) = \left(\frac{1}{x y}, \frac{1}{y x}, z\right)$ and L is the segment from (1, 0, 0) to (2, 1, 2).
- (c) $\int_C F \cdot dl$, where F(x,y,z) = (2xy,3z,5yz) and C is the curve parametrized by $\gamma(t) = (t+1,t^3-1,t^2)$ from (0,-2,1) to (2,0,1).
- (d) $\int_L F \cdot dl$, where F(x, y, z) = (x, y, xz y) and L is the segment from (0, 0, 0) to (1, 2, 4).
- (e) $\int_C F \cdot dl$, where $F(x,y) = \left(\frac{x+y}{x^2+y^2}, \frac{y-x}{x^2+y^2}\right)$ and C is the circumference of center (0,0) and radius R > 0 (taken in anticlockwise direction).
- (f) $\int_C F \cdot dl$, where $F(x,y,z) = (3xy,-y^2,e^z)$ and C is the curve defined by the equations $z=0,y=2x^2$ from the point (0,0,0) to the point (1,2,0).
- 28. Let C be a curve on the surface of a sphere $\{(x,y,z) \in \mathbb{R}^3 \mid x^2+y^2+z^2 \leq R^2\}$ and in the first octant, this means, such that x,y,z>0. Prove that the line integral

$$\int_C \left(\frac{1}{yz}, \frac{1}{xz}, \frac{1}{xy} \right) \cdot dl = 0$$

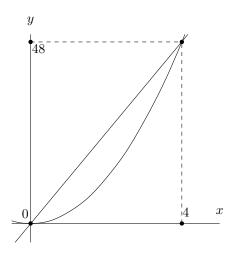
for any choice of C and R.

Solutions

- 1. (a) A is compact.
 - (b) B is not compact because it is not closed.
 - (c) C is compact.
 - (d) D is not compact because it is not bounded.
 - (e) E is not compact because it is not bounded.
 - (f) F is compact.
 - (g) G is compact.
 - (h) H is compact.
 - (i) I is compact.
 - (j) J is not compact because it is not closed.
- 2. (a) f is uniformly continuous in D.
 - (b) g is uniformly continuous in E.
 - (c) h is not uniformly continuous in F.
 - (d) i is uniformly continuous in H.
 - (e) j is not uniformly continuous in I.
 - (f) k is uniformly continuous in J.
- 3. Use the definition of uniform continuity, convergence of sequences and Cauchy sequence.
- 4. (a) $\frac{32}{3}$.
 - (b) 10.
 - (c) 8.
 - (d) $\frac{1}{8}$.
- 5. (a) 0.
 - (b) $\frac{1}{90}$.
 - (c) $\frac{1}{15}$.
 - (d) $\frac{317}{3}$.
 - (e) $\frac{4}{5}$.
 - (f) $\frac{19}{12}$.
 - (g) $\frac{176}{45}$.
 - (h) $\ln(\sqrt{2}) \frac{5}{16}$.
- 6. (a) The domain has the following form:



$$\int_{-1}^{0} \int_{0}^{\sqrt{1-x^2}} f(x,y) dy dx + \int_{0}^{1} \int_{0}^{1-x} f(x,y) dy dx.$$



(b) The domain has the following form:

$$\int_{0}^{48} \int_{\frac{y}{12}}^{\sqrt{\frac{y}{3}}} f(x,y) dx dy.$$

7. (a)

$$I = \int_{K'} g(r,\theta) r dr d\theta.$$

(b)

$$I = \int_{K'} g(r,\theta,z) r dr d\theta dz.$$

(c)

$$I = \int_{K'} g(r, \theta, \phi) r^2 \sin \phi dr d\theta d\phi.$$

8. (a)
$$\frac{1}{6}$$
.
(b) $\frac{\pi}{4} - \frac{1}{2}$.

(d) πab .

9. (a) $\frac{4}{3}\pi abc$.

(b) π .

10. $\frac{5}{36} + \frac{1}{6} \ln 2 \approx 25.44\%$.

11.

$$\iint_D (x^2 + y^2) dx dy = \frac{13}{2}\pi.$$

12.

$$\iint_{D} x dx dy = \frac{\pi}{2} - \frac{22}{15} \approx 0.1041.$$

13.

$$\iint_D \sqrt{1+x^2} dx dy = \frac{8}{3}.$$

$$\iint_{D} \sqrt{xy} dx dy = \frac{2 \ln 2}{9} \left(2\sqrt{2} - 1 \right).$$

15. The change of coordinates is u = x - y, v = y - 3x. The value of the integral is

$$\iint_T e^{x-y} dx dy = e^{-2}.$$

16. The integral expressed in polar coordinates is

$$\int_0^{\frac{\pi}{4}} \int_{\frac{\sin \theta}{\cos^2 \theta}}^{\sqrt{2}} \cos \theta dr d\theta,$$

and its value is $1 - \frac{\ln 2}{2}$.

17. In Cartesian coordinates the integral has the form

$$\int_0^2 \int_0^{\sqrt{1 - (x - 1)^2}} 1 dy dx,$$

and its value is $\frac{\pi}{2}$.

18.
$$\frac{a^2\pi}{4}$$
.

$$\int_0^6 \int_y^{\frac{2}{3}y+2} e^{(3x-2y)^2} dx dy.$$

(b) The change of coordinates is u = 3x - 2y, v = x - y. After changing variables the integral has the expression

$$\int_0^6 \int_0^{\frac{u}{2}} e^{u^2} dv du = \frac{e^{36} - 1}{4}.$$

20. A possible change of coordinates is $u = \frac{y}{x^2}$, $v = \frac{y}{x}$. Then, the integral has the form

$$I = \int_{a}^{b} \int_{c}^{d} \frac{v}{u^{2}} dv du = \frac{1}{2} (d^{2} - c^{2}) \left(\frac{1}{a} - \frac{1}{b} \right).$$

21.
$$\frac{\pi^2}{16} - \frac{\pi}{8}$$
.

22.
$$4\pi$$
.

23.
$$\frac{1}{8}$$
.

24.
$$15\pi$$
.

25. (a)
$$2\pi R$$
.

(b)
$$4\pi\sqrt{a^2+b^2}$$
.

26. (a)
$$2a^2$$
.

(b)
$$2\pi R^3$$
.

(c)
$$\frac{\sqrt{2}}{3}\pi^3$$
.

- 27. (a) $\frac{3}{2} \pi$.
 - (b) 2.
 - (c) $\frac{114}{35}$.
 - (d) $\frac{23}{6}$.
 - (e) -2π .
 - (f) $-\frac{7}{6}$.
- 28. If we take a parametrization of C, $\gamma(t)=(x(t),y(t),z(t))$. As this curve lies on the surface of an sphere,

$$x^{2}(t) + y^{2}(t) + z^{2}(t) = R^{2} \Rightarrow 2x(t)x'(t) + 2y(t)y'(t) + 2z(t)z'(t) = 0.$$

Then,

$$\int_{C} \left(\frac{1}{yz}, \frac{1}{xz}, \frac{1}{xy} \right) \cdot dl = \int_{t_{0}}^{t_{1}} \left\langle \left(\frac{1}{yz}, \frac{1}{xz}, \frac{1}{xy} \right), (x', y', z') \right\rangle dt =$$

$$= \int_{t_{0}}^{t_{1}} \left(\frac{x'}{yz} + \frac{y'}{xz} + \frac{z'}{xy} \right) dt = \int_{t_{0}}^{t_{1}} \frac{xx' + yy' + zz'}{xyz} dt = 0.$$