Problem List 4

Multivariate Calculus

Unit 3 - Differentiability in multiple variables

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

- 1. For each of the following functions, compute the maximal domain. Compute the partial derivatives at an arbitrary point of the domain.
 - (a) $u(x,y) = \frac{x^2 + y^2}{x^2 y^2}$.
 - (b) $v(x, y, z) = \left(\sqrt{1 y^2 z^2}, \sqrt{1 z^2 x^2}, \sqrt{1 x^2 y^2}\right)$
 - (c) $v(x_1, ..., x_n) = \sum_{i=1}^n x_i + \sum_{i=1}^n x_i^2$.
- 2. Let f be the function

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}.$$

- (a) Is it continuous at (0,0)?
- (b) Compute $\frac{\partial f}{\partial x}$. Is it continuous?
- (c) Compute $\frac{\partial f}{\partial y}$. Is it continuous?
- (d) Compute the directional derivative at 0 with respect to a generic vector v = (a, b).
- (e) Is f differentiable at (0,0)?
- 3. Let f be the function

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}.$$

- (a) Is it continuous at (0,0)?
- (b) Compute $\frac{\partial f}{\partial x}$. Is it continuous?
- (c) Compute $\frac{\partial f}{\partial y}$. Is it continuous?
- (d) Is f differentiable at (0,0)?
- 4. Is the function $f(x,y) = x^{\frac{1}{3}}y^{\frac{1}{3}}$ continuous at the point (0,0)? Do directional derivatives exist at (0,0)? Is it differentiable at (0,0)?
- 5. Study the continuity and differentiability at (0,0) of the function

$$f(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

6. Study the continuity and differentiability at (0,0) of the function

$$f(x,y) = \begin{cases} \frac{(x+y)^2}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) \end{cases}$$

7. Let $\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ the space of 2×2 matrices. We can identify this space with \mathbb{R}^4 with the mapping $F: \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2) \to \mathbb{R}^4$ given by

$$F\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a, b, c, d)^T$$

Consider the map det : $\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2) \to \mathbb{R}$ that associates the determinant for each matrix.

- (a) Show that det is differentiable.
- (b) Compute the differential of det at the matrix $Id = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- (c) Compute the directional derivative of det at Id with direction $v = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- 8. Compute the directional derivatives at the specified points and directions,
 - (a) $f(x,y) = \log(\sqrt{x^2 + y^2}), p = (1,0), v = (2,1).$
 - (b) $g(x,y) = e^x \cos(\pi y), p = (0,-1), v = (-1,2).$
- 9. Compute all the points in \mathbb{R}^2 where the plane tangent to the graphic of the function $f(x,y) = (1 \sin x)y + y^3$ is parallel to the XY-plane. What is the equation for the tangent plane at those points?
- 10. Compute the partial derivatives of the following functions at an arbitrary point of their domain:
 - (a) $f(x, y, z) = y \arcsin(x \log y) + 2^{\frac{x}{y}}$.
 - (b) $g(x, y, z) = xy^2 + y^2z^3 + xz^3$.
 - (c) $h(x, y, z) = x^{yz}$.
- 11. Use the chain rule to compute the partial derivatives of the following composite functions:
 - (a) $F = f \circ g$, where $f(x, y, z) = x^2y + y^2z xyz$ and g(u, v) = (u + v, u v, u).
 - (b) $F = f \circ g$, where $f(x,y) = \frac{x+y}{1-xy}$ and $g(u,v) = (\tan u, \tan v)$.
- 12. Let $f: \mathbb{R} \to \mathbb{R}$ differentiable. Take $\varphi(x,y) = f(2x+3y)$. Show that this function satisfies the partial differential equation

$$3\frac{\partial \varphi}{\partial x} - 2\frac{\partial \varphi}{\partial y} = 0.$$

13. Let us consider the map giving the polar change of coordinates,

$$G: \quad]0, +\infty[\times]0, 2\pi[\quad \longrightarrow \quad \mathbb{R}^2$$

$$(r, \theta) \quad \longmapsto \quad (r\cos\theta, r\sin\theta) \quad .$$

Let $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ a \mathcal{C}^1 function satisfying the Cauchy-Schwarz equations,

$$\begin{cases} \frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y} \\ \frac{\partial f}{\partial y} = -\frac{\partial f_2}{\partial x} \end{cases}.$$

Show that the function $F = f \circ G$ satisfies the equations

$$\left\{ \begin{array}{l} \frac{\partial F_1}{\partial r} = \frac{1}{r} \frac{\partial F_2}{\partial \theta} \\ \frac{\partial F_1}{\partial \theta} = -r \frac{\partial F_2}{\partial r} \end{array} \right. .$$

2

- 14. Let $F: \mathbb{R} \to \mathbb{R}^2$ the function given by $F(t) = (t^2, t^3)$. Is there any value $t_0 \in]0, 1[$ such that $F(1) F(0) = DF|_{t_0} \cdot (1 0)$? Does this contradict the Mean Value Theorem?
- 15. Let f the function given by

$$f(x,y) = \begin{cases} xy^2 \sin\left(\frac{1}{y}\right) & \text{if } y \neq 0 \\ 0 & \text{if } y = 0 \end{cases}.$$

Can we apply the Clairaut-Schwarz theorem to this function at the point (0,0)? Is it true that $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$?

- 16. Find the Taylor polynomial of degree 2 of the following functions:
 - (a) $f(x,y) = e^x \cos y$, around p = (0,0).
 - (b) $g(x, y) = x^y$, around p = (1, 1).
 - (c) $h(x,y) = e^{x^2 + \sin y}$, around p = (0,0).
 - (d) $i(x, y, z) = \frac{1}{1+x+y+z}$, around p = (0, 0, 0).
- 17. Find and classify the critical points of the following functions:
 - (a) $f(x,y) = e^{1-x^2-y^2}$.
 - (b) $g(x,y) = x^2 + y^2 + 3xy$.
 - (c) $h(x,y) = y^2 x^3$.
 - (d) $i(x,y) = (x-1)^2 + (x-y)^2$.
 - (e) $j(x,y) = \log(1+x^2+y^2)$.
 - (f) $k(x, y, z) = \cos(2x)\sin y + z^2$.
 - (g) $l(x, y, z) = x^2 y^2 + (z 1)^4$.
 - (h) $m(x, y, z) = x + \frac{1+yz}{x}$.
 - (i) $n(x,y) = (x-y)^3 + (x+y)^2$.
- 18. Classify the critical points of the function

$$f(x,y) = \frac{1}{2}(x^2 + y^2) + \alpha xy$$

with respect to the parameter $\alpha \in \mathbb{R}$.

- 19. Consider the function $f(x,y) = (y-3x^2)(y-x^2)$.
 - (a) Show that (0,0) is its only critical point. Use the Hessian matrix to study its character.
 - (b) Consider the function $g = f \circ \gamma$, where $\gamma(t) = (at, bt)$ is any straight line through the origin. Show that g has a minimum at 0 independently of the chosen line.
 - (c) Prove that (0,0) is not a minimum for f. (Hint: Try to find a different curve through the origin such that the restriction of f to this curve does not have (0,0) as a minimum.)

Solutions

1. (a) $Dom(u) = \{(x, y) \in \mathbb{R}^2 \mid |x| \neq |y|\}.$

$$\frac{\partial u}{\partial x} = \frac{-4xy^2}{(x^2 - y^2)^2} , \ \frac{\partial u}{\partial y} = \frac{4yx^2}{(x^2 - y^2)^2}$$

(b) $Dom(h) = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, y^2 + z^2 \le 1, x^2 + z^2 \le 1\}.$

$$\begin{split} \frac{\partial h}{\partial x} &= \left(0, \frac{-x}{\sqrt{1 - z^2 - x^2}}, \frac{-x}{\sqrt{1 - x^2 - y^2}}\right) \\ \frac{\partial h}{\partial y} &= \left(\frac{-y}{\sqrt{1 - y^2 - z^2}}, 0, \frac{-y}{\sqrt{1 - x^2 - y^2}}\right) \\ \frac{\partial h}{\partial z} &= \left(\frac{-z}{\sqrt{1 - y^2 - z^2}}, \frac{-z}{\sqrt{1 - z^2 - x^2}}, 0\right) \end{split}$$

(c) $Dom(v) = \mathbb{R}^n$.

$$\frac{\partial v}{\partial x_i} = 1 + 2x_i$$

- 2. (a) f is continuous at (0,0).
 - (b) $\frac{\partial f}{\partial x}$ is not continuous at the origin.

$$\frac{\partial f}{\partial x} = \frac{2xy^3}{(x^2 + y^2)^2}$$

(c) $\frac{\partial f}{\partial y}$ is not continuous at the origin.

$$\frac{\partial f}{\partial y} = \frac{x^2(x^2 - y^2)}{(x^2 + y^2)^2}$$

(d) The directional derivative is

$$Df|_{(0,0)} \cdot v = \frac{a^2b}{a^2 + b^2}.$$

- (e) f is not differentiable at (0,0).
- 3. (a) f is continuous at (0,0).
 - (b) $\frac{\partial f}{\partial x}$ is not continuous at the origin.

$$\frac{\partial f}{\partial x} = 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

(c) $\frac{\partial f}{\partial y}$ is not continuous at the origin.

$$\frac{\partial f}{\partial y} = 2y \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{y}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

(d) f is differentiable at (0,0), and its differential is (0,0).

- 4. The function is continuous at the origin. Directional derivatives do not exist, and thus it is not differentiable at the origin.
- 5. The function is continuous at the origin, but not differentiable.
- 6. The function is not continuous at the origin, and thus it is not differentiable.
- 7. (b) In vector form, $Ddet|_{Id} = (1, 0, 0, 1)$.
 - (c) Again using vector notation, $D\det|_{\mathrm{Id}} \cdot (0, -1, 1, 0)^T = 0$.
- 8. (a) $Df|_{(1,0)} \cdot {2 \choose 1} = 2$.
 - (b) $Dg|_{(0,-1)} \cdot {\binom{-1}{2}} = 1.$
- 9. The plane is tangent at all the points $(2\pi k + \frac{\pi}{2}, 0)$, where $k \in \mathbb{Z}$. The equation of the tangent plane at any of these points is z = 0.
- 10. (a)

$$\begin{split} \frac{\partial f}{\partial x}(x,y,z) &= \frac{y \log y}{\sqrt{1-(x \log y)^2}} + \frac{\log 2}{y} 2^{\frac{x}{y}}, \\ \frac{\partial f}{\partial y}(x,y,z) &= \arcsin(x \log y) + \frac{x}{\sqrt{1-(x \log y)^2}} - \frac{(\log 2)x}{y^2} 2^{\frac{x}{y}} \\ \frac{\partial f}{\partial z}(x,y,z) &= 0 \end{split}$$

(b)
$$\frac{\partial g}{\partial x}(x,y,z)=y^2+z^3\ ,\ \frac{\partial g}{\partial y}(x,y,z)=2xy+2yz^3\ ,\ \frac{\partial g}{\partial z}(x,y,z)=3y^2z^2+3xz^2$$

(c)
$$\frac{\partial h}{\partial x}(x,y,z) = yzx^{yz-1} , \frac{\partial h}{\partial y}(x,y,z) = z(\log x)x^{yz} , \frac{\partial h}{\partial z}(x,y,z) = y(\log x)x^{yz}$$

- 11. (a) $DF|_{(u,v)} = (3u^2 2uv + v^2, -u^2 + 2uv 3v^2)$
 - (b)

$$DF|_{(u,v)} = \frac{(1 + \tan^2 u)(1 + \tan^2 v)}{(1 - \tan u \tan v)^2} (1, 1).$$

If we develop the expression and apply a trigonometric identity, we get that

$$DF|_{(u,v)} = \frac{1}{\cos^2(u+v)}(1,1).$$

- 12. The result follows from a direct application of the chain rule.
- 13. The result follows from applying the chain rule.
- 14. There exists no t_0 such that $F(1) F(0) = DF|_{t_0} \cdot (1-0)$. This does not contradict the Mean Value Theorem because it only applies to functions whose image lies in \mathbb{R} .
- 15. The conditions of the Clairaut-Schwarz theorem are not satisfied because $\frac{\partial^2 f}{\partial x \partial y}$ is not continuous at (0,0). However, it is true that $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$.

- 16. (a) $P_{f,2,(0,0)}(x,y) = 1 + x + \frac{x^2}{2} \frac{y^2}{2}$.
 - (b) $P_{q,2,(1,1)}(x,y) = 1 + x + xy$.
 - (c) $P_{h,2,(0,0)}(x,y) = 1 + y + x^2 + \frac{y^2}{2}$.
 - (d) $P_{i,2,(0,0,0)}(x,y,z) = 1 x y z + x^2 + y^2 + z^2 + 2(xy + yz + xz).$
- 17. (a) There is only one critical point, (0,0), a global maximum.
 - (b) There is only one critical point, (0,0), a saddle point.
 - (c) There is only one critical point, (0,0), a saddle point.
 - (d) There is only one critical point, (1,1), a global minimum.
 - (e) There is only one critical point, (0,0), a global minimum.
 - (f) There are two infinite families of critical points, $p_k = (n\frac{\pi}{2}, n\pi + \frac{\pi}{2}, 0)$ and $q_n = (k\frac{\pi}{2} + \frac{\pi}{4}, k\pi, 0)$. All points are saddle points.
 - (g) There is only one critical point, (0,0,1), a saddle point.
 - (h) There are two critical points, (1,0,0) and (-1,0,0). Both are saddle points.
 - (i) There is only one critical point, (0,0), a saddle point.
- 18. We can classify as follows:
 - If $|\alpha| > 1$, the only critical point, (0,0), is a saddle.
 - If $\alpha \in]-1,1[$, the only critical point, (0,0), is a minimum.
 - If $\alpha = \pm 1$, there are infinite critical points, given by $y = \mp x$, which are local minima.