Problem List 3 Multivariate Calculus

Unit 2 - Continuity, norms and metrics

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

- 1. Let (U, d_U) and (V, d_V) metric spaces, and $f: U \to V$ a continuous map.
 - (a) Prove that, if $C \subset V$ is a closed subset, then $f^{-1}(C) \subset U$ is closed.
 - (b) Prove that, if $O \subset V$ is an open subset, then $f^{-1}(O) \subset U$ is open.
 - (c) Use this to conclude that, if $f,g:\mathbb{R}^n\to\mathbb{R}$ are continuous functions, then
 - i. The set $A = \{x \in \mathbb{R}^n \mid f(x) > g(x)\}$ is open.
 - ii. The set $B = \{x \in \mathbb{R}^n \mid f(x) \ge g(x)\}$ is closed.

(Hint: Prove one of the assertions, and use the fact that for any map $f: A \to B$ and any subset $C \subset B$, we have that $f^{-1}(C^c) = (f^{-1}(C))^c$)

2. Study the existence of the following limits:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^4y^4}{\sqrt{x^2+y^2}}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{3\sin xy}{xy}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^6}$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{x^5}{x^4+y^3}$$

(f)
$$\lim_{(x,y,z)\to(0,0,0)} e^{\frac{-1}{x^2+y^2+z^2}}$$

3. Let $A = \{(x, y) \in \mathbb{R}^2 \mid 0 < y < x^2\}$ and

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) \in A \\ 1 & \text{if } (x,y) \notin A \end{cases}.$$

Prove that there exists a limit to (0,0) for any straight line going through the origin and it is equal to 1, but that the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

- 4. (Uniform continuity): Let (U, d_U) and (V, d_V) metric spaces, $A \subset U$ a subset and $f: A \to V$ a map. We say that f is uniformly continuous if $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $d_U(x, y) < \delta \Rightarrow d_V(f(x), f(y)) \ \forall x, y \in U$. Prove that
 - (a) If $(x_n)_n \subset A$ is a Cauchy sequence, then $(f(x_n))_n$ is a Cauchy sequence.

- (b) Use this result to show that the function $f:]0,1[\to \mathbb{R}$ given by $f(x) = \frac{1}{x}$ is not uniformly continuous.
- (c) Is the function $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = \sin x$ uniformly continuous?
- (d) Let M > 0. Is the function $h: [-M, M] \to \mathbb{R}$ given by $h(x) = x^2$ uniformly continuous?
- (e) Is the function $\tilde{h}: \mathbb{R} \to \mathbb{R}$ given by $\tilde{h}(x) = x^2$ uniformly continuous?
- 5. (Equivalence of norms): Let the usual norms in \mathbb{R}^n :

$$||x||_{\Sigma} = \sum_{i=1}^{n} |x_i| ||x||_E = \sqrt{\sum_{i=1}^{n} x_i^2} ||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

In this problem we shall see that the three norms are equivalent between them.

- (a) Show that $||x||_{\infty} \leq ||x||_{E}$ and $||x||_{\infty} \leq ||x||_{\Sigma}$ for any $x \in \mathbb{R}^{n}$.
- (b) Show that $||x||_E \leq \sqrt{n} ||x||_{\infty}$.
- (c) Show that $||x||_{\Sigma} \leq n||x||_{\infty}$.
- 6. Consider the normed space $(\mathcal{C}([-1,1],\mathbb{R}),\|\cdot\|_{\infty})$ of continuous functions $f:[-1,1]\to\mathbb{R}$, where the norm is

$$||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)|.$$

Show that the following maps are continuous:

- (a) $E_{\alpha}: \mathcal{C}([-1,1],\mathbb{R}) \to \mathbb{R}$ given by $E_{\alpha}(f) = f(\alpha)$, where $\alpha \in [-1,1]$.
- (b) $I: \mathcal{C}([-1,1],\mathbb{R}) \to \mathbb{R}$ given by $I(f) = \int_{-1}^{1} f(x)dx$.

(Hint: Prove that both are linear and bounded linear operators)