Problem List 2
Multivariate Calculus
Unit 1 - Sequences and Series

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

. Let (x,)n a sequence of real numbers, and assume that it converges to a positive limit [ > 0.
Show that there exists some N € N such that z,, > 0Vn > N.

. Let x, 27?133 and y, = 42122. Are these sequences bounded? Are they increasing, strictly

increasing, decreasing or strictly decreasing?

. For each value of a > 0, study whether the following sequence converges. In the case that it
does, compute its limit.

2, = sin(an)
1+am
. Compute the following limits:
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. Let (zn)n and (yn)n two sequences of real numbers such that z, > 0 Vn € N and Ja,b € R
such that 0 < a <y, <bVn e N.

Let z, = (—1)"z,y,. Prove that (z,), converges if and only if lim z, = 0.
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. Let (z,,), the sequence of real numbers defined by
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Study its convergence. If it converges, compute its limit.

. Let (an)n a sequence such that a,, > 0 for all n, and let us define the sequence (b,),, such that
ban = a2 — 6 and by, 11 = a,, for all n.

Show that if (b, ), converges then (ay), also converges. Compute the limits.

. (Equivalent infinitesimals): Let (x,,)n a sequence such that lim z, = 0. Show that
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(Hint: For the first two limits, use the fact that, if 0 < x < T, then sinz < x < tanz, and find
a way to apply the sandwich convergence criterion)

. Let (ax)r a sequence such that a; > 0. Prove that

E aj convergent = E ai convergent.
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Show that this assertion is false if (aj)x is not always positive.

. Study the convergence of the following series:
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. Let z > 0, and take A,, = sz and B,, = Zk’zk_l.
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a) Prove that B,,, 1 = zB,, + A, Yn > 0.
+

(b) For which values of z does (By,),, converge? Compute the limit if it exists.

oo
. Study the convergence of Z k%a* with respect to the parameter a.
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. Study the convergence of the series Z
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3 with respect to the parameter a.
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. Let (ag)x and (by )k sequences such that ag, by, > 0VEk > 0, and assume that Z ay is convergent.
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(a) Prove that if (bg)y is bounded then Z aiby is convergent.
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(b) Prove that if Z by, is convergent then Z v/ apby is convergent.
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(¢) In particular, show that Z Tk converges.
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15. (Banach spaces): Let (E, | -||) a normed vector space. Prove that (E, | -||) is a Banach space
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if and only if for any sequence (a)r C E we have that Z aj, absolutely convergent = Z ay
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convergent.

16. Compute the convergence radius for the following power series
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(d) Zrkzxk, where |r| < 1.
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