Problem List 2 Multivariate Calculus Unit 1 - Sequences and Series

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

- 1. Let $(x_n)_n$ a sequence of real numbers, and assume that it converges to a positive limit l > 0. Show that there exists some $N \in \mathbb{N}$ such that $x_n > 0 \ \forall n \geq N$.
- 2. Let $x_n = \frac{2n+3}{n+3}$ and $y_n = \frac{n+2}{4n+2}$. Are these sequences bounded? Are they increasing, strictly increasing, decreasing or strictly decreasing?
- 3. For each value of $\alpha > 0$, study whether the following sequence converges. In the case that it does, compute its limit.

$$x_n = \frac{\sin(\alpha n)}{1 + \alpha^n}$$

4. Compute the following limits:

(a)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2}} + \frac{1}{\sqrt{n^2 + 4}} + \dots + \frac{1}{\sqrt{n^2 + 2n}}$$

(b)
$$\lim_{n \to \infty} \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}$$

5. Let $(x_n)_n$ and $(y_n)_n$ two sequences of real numbers such that $x_n \ge 0 \ \forall n \in \mathbb{N}$ and $\exists a, b \in \mathbb{R}$ such that $0 < a < y_n < b \ \forall n \in \mathbb{N}$.

Let $z_n = (-1)^n x_n y_n$. Prove that $(z_n)_n$ converges if and only if $\lim_{n \to \infty} x_n = 0$.

6. Let $(x_n)_n$ the sequence of real numbers defined by

$$x_0 = \frac{1}{2} \\ 7x_{n+1} = x_n^3 + 6$$

Study its convergence. If it converges, compute its limit.

7. Let $(a_n)_n$ a sequence such that $a_n \ge 0$ for all n, and let us define the sequence $(b_n)_n$ such that $b_{2n} = a_n^2 - 6$ and $b_{2n+1} = a_n$ for all n.

1

Show that if $(b_n)_n$ converges then $(a_n)_n$ also converges. Compute the limits.

8. (Equivalent infinitesimals): Let $(x_n)_n$ a sequence such that $\lim_{n\to\infty} x_n = 0$. Show that

(a)
$$\lim_{n \to \infty} \frac{\sin(x_n)}{x_n} = 1.$$

(b)
$$\lim_{n \to \infty} \frac{\tan(x_n)}{x_n} = 1.$$

(c)
$$\lim_{n \to \infty} \frac{1 - \cos(x_n)}{x_n^2} = \frac{1}{2}$$
.

(Hint: For the first two limits, use the fact that, if $0 < x < \frac{\pi}{2}$, then $\sin x \le x \le \tan x$, and find a way to apply the sandwich convergence criterion)

9. Let $(a_k)_k$ a sequence such that $a_k \geq 0$. Prove that

$$\sum_{k>k_0} a_k \text{ convergent} \Rightarrow \sum_{k>k_0} a_k^2 \text{ convergent.}$$

Show that this assertion is false if $(a_k)_k$ is not always positive.

10. Study the convergence of the following series:

(a)
$$\sum_{k=2}^{\infty} \frac{1}{k - \sqrt{k}}.$$

(b)
$$\sum_{k=1}^{\infty} \frac{\log k}{k}.$$

(c)
$$\sum_{k=2}^{\infty} \frac{1}{(\log k)^k}.$$

(d)
$$\sum_{k=1}^{\infty} (-1)^k \frac{\log k}{k}.$$

(e)
$$\sum_{k=0}^{\infty} \frac{\arctan k}{k^3 + 1}.$$

(f)
$$\sum_{k=1}^{\infty} k \left(\frac{3}{4}\right)^k.$$

(g)
$$\sum_{k=1}^{\infty} \frac{e^k}{k!}.$$

(h)
$$\sum_{k=1}^{\infty} \frac{\cos^2 k}{\sqrt{k}}.$$

(i)
$$\sum_{k=2}^{\infty} \frac{1}{k \log k}.$$

- 11. Let z > 0, and take $A_n = \sum_{k=0}^n z^k$ and $B_n = \sum_{k=1}^n k z^{k-1}$.
 - (a) Prove that $B_{n+1} = zB_n + A_n \ \forall n \ge 0$.
 - (b) For which values of z does $(B_n)_n$ converge? Compute the limit if it exists.
- 12. Study the convergence of $\sum_{k=1}^{\infty} k^2 \alpha^k$ with respect to the parameter α .
- 13. Study the convergence of the series $\sum_{k=1}^{\infty} \frac{(\tan \alpha)^k}{k^3}$ with respect to the parameter α .
- 14. Let $(a_k)_k$ and $(b_k)_k$ sequences such that $a_k, b_k \ge 0 \ \forall k \ge 0$, and assume that $\sum_{k=0}^{\infty} a_k$ is convergent.

- (a) Prove that if $(b_k)_k$ is bounded then $\sum_{k=0}^{\infty} a_k b_k$ is convergent.
- (b) Prove that if $\sum_{k=0}^{\infty} b_k$ is convergent then $\sum_{k=0}^{\infty} \sqrt{a_k b_k}$ is convergent.
- (c) In particular, show that $\sum_{k=0}^{\infty} \frac{\sqrt{a_k}}{k}$ converges.
- 15. (Banach spaces): Let $(E, \|\cdot\|)$ a normed vector space. Prove that $(E, \|\cdot\|)$ is a Banach space if and only if for any sequence $(a_k)_k \subset E$ we have that $\sum_{k=0}^{\infty} a_k$ absolutely convergent $\Rightarrow \sum_{k=0}^{\infty} a_k$ convergent.
- 16. Compute the convergence radius for the following power series
 - (a) $\sum_{k=0}^{\infty} x^{5k}$
 - (b) $\sum_{k=0}^{\infty} \frac{(-1)^k x^k}{k^3}$
 - (c) $\sum_{k=0}^{\infty} x^{k!}$
 - (d) $\sum_{k=0}^{\infty} r^{k^2} x^k$, where |r| < 1.