
Problem List 1

Multivariate Calculus

Unit 1 - Distances, norms and topology

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

1. Let A,B two nonempty subsets of Rn, and d the Euclidean distance. Define d(A,B) =
inf{d(a, b) | a ∈ A, b ∈ B}.

(a) Is it true that d(A,B) = 0⇔ A ∩B 6= ∅?
(b) If x ∈ Rn, let d(x,A) = d({x}, A). Show that |d(x,A)− d(y,A)| ≤ d(x, y) ∀x, y ∈ Rn.

2. Let A a nonempty subset of Rn, and consider DA = {d(x, y) | x, y ∈ A} ⊂ R. Prove that A is
a bounded set if and only if DA is bounded.

3. Take the discrete metric in Rn, so that

ρ(x, y) =

{
0 if x = y
1 if x 6= y

Show that for any point x ∈ Rn, the set {x} is open. Show that any subset A ⊂ Rn is open
with respect to the discrete metric.

4. Let (Rn, d) the Euclidian space. Show that for any point x ∈ Rn, the set {x} is closed.

5. Compute the interior and closure of the following sets:

(a) A = {(x, y) ∈ R2 | y > 0}.
(b) B = {(x, y) ∈ R2 | x = λy}.
(c) C = {(x, y) ∈ R2 | xy = 1}.
(d) D = {(x, y) ∈ R2 | 0 < x < 1, y = 0}.
(e) E = A\{(0, 1)}.
(f) F = B ∪ {(0,−1)}.
(g) G = {(x, y) ∈ R2 | x2 + y2 ≤ 1, x 6= 0}.
(h) H = Q ⊂ R.

(i) I = {A ∈ L(Rn,Rn) | AT = A}, the symmetric matrices.

(j) J = {A ∈ L(Rn,Rn) | det(A) 6= 0}, the regular matrices.

(k) K = {(x, y, z) ∈ R3 | x = 2, y = 3, z ∈]− 1, 1[}.
(l) L = {(x, y) ∈ R2 | x2 + y = 5}.

(m) M = {(x, y) ∈ R2 | x2 + |y| = 5}.
(n) N = {(x, y, z) ∈ R3 | x2 + y2 < 1, |z| < 1}.

6. (Characterizations) Let A a subset of a metric space.
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(a) Show that x ∈ Int(A) if and only if for all sequences (xn)n converging to x ∃N ∈ N such
that xn ∈ A ∀n ≥ N .

(b) Show that x ∈ A (the closure) if and only if there exists a sequence (xn)n contained in A
and such that xn −−−−→

n→∞
x.

7. Prove that, for any A subset of a metric space, Int(A) is the largest open set contained in A.
This means, for any O ⊂ A open, we have that O ⊂ Int(A).

8. Prove that, for any A subset of a metric space, A is the smallest closed set containing A. This
means, for any C ⊃ A closed, we have that A ⊂ C.

9. Let A ⊂ Rn nonempty and d the Euclidian metric. Prove that if A is complete, then it is
closed.

10. (Norms for continuous functions) Consider C[0, 1] the set of continuous functions f : [0, 1]→ R.

(a) Show that ‖f‖∞ := sup
x∈[0,1]

|f(x)| is well defined and it defines a norm on the vector space

C[0, 1] (Hint: Use the Weierstrass theorem).

(b) Show that the map ‖ · ‖I : C[0, 1]→ R given by

‖f‖I =

∫ 1

0

|f(x)|dx

is a norm.

(c) Compute ‖f‖∞ and ‖f‖I for the function f(x) = −x2 + 4x+ 4
3 .

(d) Compute ‖g‖∞ and ‖g‖I for the function g(x) = sin(πx).

(e) Show that for all f ∈ C[0, 1] we have ‖f‖I ≤ ‖f‖∞.

(f) Show that if a sequence (fn)n converges to f in the normed space (C[0, 1], ‖ · ‖∞), then it
also converges to the same limit f in the normed space (C[0, 1], ‖ · ‖I).

(g) Is there any constant C > 0 such that we have ‖f‖∞ ≤ C‖f‖I for all f ∈ C[0, 1]?

11. (Completion of the rational numbers) Consider the rational numbers as a normed space (Q, |·|).
We know that there are Cauchy sequences within this space that are not convergent, so it is
not complete. We may, however, perform a construction based on this space in a way that
completes it.

(a) Show that if (an)n and (bn)n are Cauchy sequences of rational numbers then (an + bn)n
and (anbn)n are also sequences of rational numbers.

(b) Let C denote the space of Cauchy sequences. Show that the relation (an)n ∼ (bn)n ⇔
(an − bn) −−−−→

n→∞
0 is an equivalence, this means,

i. It is reflexive, so (an)n ∼ (an)n.

ii. It is symmetric, so (an)n ∼ (bn)n ⇔ (bn)n ∼ (an)n.

iii. It is transitive, so if (an)n ∼ (bn)n and (bn)n ∼ (cn)n then (an)n ∼ (cn)n.

Also, prove that this relation respects the field operations, this means, if (an)n ∼ (bn)n
and (cn)n ∼ (dn)n, then (an + cn)n ∼ (bn + dn)n.

(c) Let R := C /∼ . Prove that it is a field with respect to the addition and the product of
sequences.

(d) Prove that there is an injection Q ↪→ R.

(e) Let a : N → R a sequence, and denote it as (am,n)m,n. This means that (am,n)n is an
equivalence class of Cauchy sequences for each fixed m. We say that it is Cauchy if, ∀ε > 0
there is some N such that |am,n − al,n| < ε ∀m, l, n ≥ N .

Prove that all Cauchy sequences in R converge.
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Solutions

1. (a) It is false. For instance, in R we have that d (]− 1, 0[, ]0, 1[) = 0 but ]− 1, 0[
⋂

]0, 1[= ∅.
(b) If x ∈ A or y ∈ A, the assertion is true because of the definition of the infimum. Otherwise,

construct the sequences (xn)n and (yn)n in such a way that

xn ∈ A
⋂
B

(
x, d(x,A) +

1

n

)
, yn ∈ A

⋂
B

(
x, d(y,A) +

1

n

)
.

This means that

d(x,A) = lim
n→∞

d(x, xn) , d(y,A) = lim
n→∞

d(y, yn).

Then, for all n we have that

d(x,A)− d(y, yn) ≤ d(x, yn)− d(y, yn) ≤ d(x, y) + d(y, yn)− d(y, yn) = d(x, y),

and
lim
n→∞

d(x,A)− d(y, yn) = d(x,A)− d(y,A).

Conversely, for all n we have that

d(y,A)− d(x, xn) ≤ d(y, xn)− d(x, xn) ≤ d(y, x) + d(x, xn)− d(x, xn) = d(x, y),

and
lim
n→∞

d(y,A)− d(x, xn) = d(y,A)− d(x,A).

2. (⇒) If A is bounded, then there exist x ∈ Rn, R > 0 such that A ⊂ B(x,R). Thus, by
definition DA ⊂ DB(x,R). Moreover, by construction DB(x,R) ⊆ [0, 2R[, which means that
DA ⊂ [0, 2R[, so DA is bounded.

(⇐) If DA is bounded, then there exists some M > supDA. Let us take some x ∈ A. Then,
we claim that A ⊂ B(x,M).

Let us argue by contradiction. Assuming that A 6⊂ B(x,M), we must have some y ∈ A with
y 6∈ B(x,M), so that d(x, y) ≥ M . However, M is strictly greater than the supremum of DA,
so we reach a contradiction.

Therefore A ⊂ B(x,M), so A is bounded.

3. By construction, {x} = Bρ
(
x, 12

)
, so it is open.

For any set A ⊂ Rn we have that

A =
⋃
a∈A
{a},

which as we just saw are open sets. Thus, A is open as well.

4. Let x ∈ Rn. Then,

{x}c = {y ∈ Rn | x 6= y} =
⋃
y 6=x

B(y, d(x, y)),

which is open.

5. (a) Int(A) = A, and A = {(x, y) ∈ R2 | y ≥ 0}.
(b) Int(B) = ∅, and B = B.

(c) Int(C) = ∅, and C = C.

(d) Int(D) = ∅, and D = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y = 0}.
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(e) Int(E) = E, and E = A.

(f) Int(F ) = ∅, and F = F .

(g) Int(G) = {(x, y) ∈ R2 | x2 + y2 < 1, x 6= 0}, and G = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.
(h) Int(H) = ∅, and H = R.

(i) Int(I) = ∅, and I = I.

(j) Int(J) = J , and J = L(Rn,Rn).

(k) Int(K) = ∅, and K = {(x, y, z) ∈ R3 | x = 2, y = 3, z ∈ [−1, 1]}.
(l) Int(L) = ∅, and L = L.

(m) Int(M) = ∅, and M = M .

(n) Int(N) = N , and N = {(x, y, z) ∈ R3 | x2 + y2 ≤ 1, |z| ≤ 1}.

6. (a) (⇒) Let (xn)n a sequence converging to x. As x ∈ Int(A), we know that ∃ε > 0 such
that B(x, ε) ⊂ Int(A). By the definition of convergence, there exists N ∈ N with xn ∈
B(x, ε) ∀n ≥ N , so xn ∈ Int(A) ∀n ≥ N .

(⇐) Let us prove the converse, so if x 6∈ Int(A) then there exists a sequence satisfying the
contrary to our statement. If x 6∈ Int(A), then ∀ε > 0 we have that

B(x, ε)
⋂
Ac 6= ∅.

Thus, for each n ∈ N we can pick

xn ∈ B
(
x,

1

n

)⋂
Ac.

This means that we can construct a sequence (xn)n such that xn 6∈ A ∀n.

(b) (⇒) As in the last proof, let us construct a sequence by

xn ∈ B
(
x,

1

n

)⋂
A 6= ∅.

By construction, (xn)n ⊂ A and lim
n→∞

xn = x. (⇐) Let (xn)n a sequence converging to x

and contained in A. Let r > 0. By the definition of convergence, there exists some N ∈ N
such that ∀n ≥ N , xn ∈ B(x, r). Thus,

xn ∈ A
⋂
B(x, r),

and therefore A
⋂
B(x, r) 6= ∅.

7. Let O ⊂ A an open subset. Then, for all x ∈ O there exists some r > 0 such that B(x, r) ⊂
O ⊂ A, which implies that x ∈ Int(A).

8. Let C ⊃ A a closed set. Let x ∈ A. Then, for all r > 0 we have that B(x, r) ∩ A 6= ∅, so
B(x, r) ∩ C 6= ∅. This means that x ∈ C, but, as C is closed, this means that x ∈ C.

9. Let x ∈ A. This means that ∃(xn)n ⊂ A such that lim
n→∞

xn = x. As (xn)n is convergent in Rn,

it is a Cauchy sequence. Moreover, as (xn)n ⊂ A is a Cauchy sequence and A is complete, it
has to be convergent in A. Thus, x ∈ A.

In conclusion, A = A, so A is closed.
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10. (a) By the Weierstrass Theorem, if f : [0, 1]→ R is continuous then it must attain a maximum
M1 and a minimum M2 within its domain. Thus, the norm is always well defined, and
‖f‖∞ = max{|M1|, |M2|}.
Regarding the properties of the norm,

i. ‖f‖∞ = 0 if and only if |f(x)| ≤ 0 for all x ∈ [0, 1], so f(x) = 0 for all x, and thus
f ≡ 0.

ii. ‖λf‖∞ = sup
x∈[0,1]

|λf(x)| = |λ| sup
x∈[0,1]

|f(x)| = |λ|‖f‖∞.

iii.

‖f + g‖∞ = sup
x∈[0,1]

|f(x) + g(x)| ≤ sup
x∈[0,1]

|f(x)|+ sup
y∈[0,1]

|g(y)| = ‖f‖∞ + ‖g‖∞.

(b) Again, let us go over the properties of a norm,

i. ‖f‖I = 0 implies that f ≡ 0. Otherwise, if ∃x ∈ [0, 1] such that |f(x)| > 0, then there
exists ε > 0 such that |f(y)| > 0 ∀y ∈]x− ε, x+ ε[, so∫ 1

0

|f(x)|dx ≥
∫ x+ε

x−ε
|f(x)|dx > 0.

Moreover, ‖0‖I = 0.

ii.

‖λf‖I =

∫ 1

0

|λf(x)|dx = |λ|
∫ 1

0

|f(x)|dx = |λ|‖f‖I .

iii.

‖f + g‖I =

∫ 1

0

|f(x) + g(x)|dx ≤
∫ 1

0

(|f(x)|+ |g(x)|) dx =

=

∫ 1

0

|f(x)|dx+

∫ 1

0

|g(x)|dx = ‖f‖I + ‖g‖I .

(c) f is a convex parabolla with the vertex at 2, so there is the global maximum of the
function. Moreover, f(0), f(1) > 0, so we deduce that there cannot be any root of f
within [0, 1], so therefore

‖f‖∞ = |f(1)| = 13

3
.

On the other hand,

‖f‖I =

∫ 1

0

|f(x)|dx =

∫ 1

0

−x2 + 4x+
4

3
dx =

[
−x

3

3
+ 2x2 +

4

3
x

]1
0

= 3.

(d) ‖g‖∞ = 1,

‖g‖I =

∫ 1

0

sin(πx)dx =

[
− 1

π
cos(πx)

]1
0

=
2

π
.

(e)

‖f‖I =

∫ 1

0

|f(x)|dx ≤
∫ 1

0

‖f‖∞dx = (1− 0)‖f‖∞ = ‖f‖∞
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