Problem List 1

Multivariate Calculus

Unit 1 - Distances, norms and topology

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

- 1. Let A, B two nonempty subsets of \mathbb{R}^n , and d the Euclidean distance. Define $d(A, B) = \inf\{d(a, b) \mid a \in A, b \in B\}$.
 - (a) Is it true that $d(A, B) = 0 \Leftrightarrow A \cap B \neq \emptyset$?
 - (b) If $x \in \mathbb{R}^n$, let $d(x,A) = d(\{x\},A)$. Show that $|d(x,A) d(y,A)| \le d(x,y) \ \forall x,y \in \mathbb{R}^n$.
- 2. Let A a nonempty subset of \mathbb{R}^n , and consider $D_A = \{d(x,y) \mid x,y \in A\} \subset \mathbb{R}$. Prove that A is a bounded set if and only if D_A is bounded.
- 3. Take the discrete metric in \mathbb{R}^n , so that

$$\rho(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Show that for any point $x \in \mathbb{R}^n$, the set $\{x\}$ is open. Show that any subset $A \subset \mathbb{R}^n$ is open with respect to the discrete metric.

- 4. Let (\mathbb{R}^n, d) the Euclidian space. Show that for any point $x \in \mathbb{R}^n$, the set $\{x\}$ is closed.
- 5. Compute the interior and closure of the following sets:
 - (a) $A = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}.$
 - (b) $B = \{(x, y) \in \mathbb{R}^2 \mid x = \lambda y\}.$
 - (c) $C = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}.$
 - (d) $D = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 1, y = 0\}.$
 - (e) $E = A \setminus \{(0,1)\}.$
 - (f) $F = B \cup \{(0, -1)\}.$
 - (g) $G = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, x \ne 0\}.$
 - (h) $H = \mathbb{O} \subset \mathbb{R}$.
 - (i) $I = \{A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) \mid A^T = A\}$, the symmetric matrices.
 - (j) $J = \{A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) \mid \det(A) \neq 0\}$, the regular matrices.
 - (k) $K = \{(x, y, z) \in \mathbb{R}^3 \mid x = 2, y = 3, z \in]-1, 1[\}.$
 - (1) $L = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y = 5\}.$
 - (m) $M = \{(x, y) \in \mathbb{R}^2 \mid x^2 + |y| = 5\}.$
 - (n) $N = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 < 1, |z| < 1\}.$
- 6. (Characterizations) Let A a subset of a metric space.

- (a) Show that $x \in \text{Int}(A)$ if and only if for all sequences $(x_n)_n$ converging to $x \exists N \in \mathbb{N}$ such that $x_n \in A \ \forall n \geq N$.
- (b) Show that $x \in \overline{A}$ (the closure) if and only if there exists a sequence $(x_n)_n$ contained in A and such that $x_n \xrightarrow[n \to \infty]{} x$.
- 7. Prove that, for any A subset of a metric space, Int(A) is the largest open set contained in A. This means, for any $\mathcal{O} \subset A$ open, we have that $\mathcal{O} \subset Int(A)$.
- 8. Prove that, for any A subset of a metric space, \overline{A} is the smallest closed set containing A. This means, for any $C \supset A$ closed, we have that $\overline{A} \subset C$.
- 9. Let $A \subset \mathbb{R}^n$ nonempty and d the Euclidian metric. Prove that if A is complete, then it is closed.
- 10. (Norms for continuous functions) Consider $\mathcal{C}[0,1]$ the set of continuous functions $f:[0,1]\to\mathbb{R}$.
 - (a) Show that $||f||_{\infty} := \sup_{x \in [0,1]} |f(x)|$ is well defined and it defines a norm on the vector space $\mathcal{C}[0,1]$ (Hint: Use the Weierstrass theorem).
 - (b) Show that the map $\|\cdot\|_I: \mathcal{C}[0,1] \to \mathbb{R}$ given by

$$||f||_I = \int_0^1 |f(x)| dx$$

is a norm.

- (c) Compute $||f||_{\infty}$ and $||f||_{I}$ for the function $f(x) = -x^2 + 4x + \frac{4}{3}$.
- (d) Compute $||g||_{\infty}$ and $||g||_{I}$ for the function $g(x) = \sin(\pi x)$.
- (e) Show that for all $f \in \mathcal{C}[0,1]$ we have $||f||_I \leq ||f||_{\infty}$.
- (f) Show that if a sequence $(f_n)_n$ converges to f in the normed space $(\mathcal{C}[0,1], \|\cdot\|_{\infty})$, then it also converges to the same limit f in the normed space $(\mathcal{C}[0,1], \|\cdot\|_I)$.
- (g) Is there any constant C > 0 such that we have $||f||_{\infty} \leq C||f||_{I}$ for all $f \in \mathcal{C}[0,1]$?
- 11. (Completion of the rational numbers) Consider the rational numbers as a normed space $(\mathbb{Q}, |\cdot|)$. We know that there are Cauchy sequences within this space that are not convergent, so it is not complete. We may, however, perform a construction based on this space in a way that completes it.
 - (a) Show that if $(a_n)_n$ and $(b_n)_n$ are Cauchy sequences of rational numbers then $(a_n + b_n)_n$ and $(a_n b_n)_n$ are also sequences of rational numbers.
 - (b) Let C denote the space of Cauchy sequences. Show that the relation $(a_n)_n \sim (b_n)_n \Leftrightarrow (a_n b_n) \xrightarrow[n \to \infty]{} 0$ is an equivalence, this means,
 - i. It is reflexive, so $(a_n)_n \sim (a_n)_n$.
 - ii. It is symmetric, so $(a_n)_n \sim (b_n)_n \Leftrightarrow (b_n)_n \sim (a_n)_n$.
 - iii. It is transitive, so if $(a_n)_n \sim (b_n)_n$ and $(b_n)_n \sim (c_n)_n$ then $(a_n)_n \sim (c_n)_n$.

Also, prove that this relation respects the field operations, this means, if $(a_n)_n \sim (b_n)_n$ and $(c_n)_n \sim (d_n)_n$, then $(a_n + c_n)_n \sim (b_n + d_n)_n$.

- (c) Let $\mathcal{R} := C/\sim$. Prove that it is a field with respect to the addition and the product of sequences.
- (d) Prove that there is an injection $\mathbb{Q} \hookrightarrow \mathcal{R}$.
- (e) Let $a: \mathbb{N} \to \mathcal{R}$ a sequence, and denote it as $(a_{m,n})_{m,n}$. This means that $(a_{m,n})_n$ is an equivalence class of Cauchy sequences for each fixed m. We say that it is Cauchy if, $\forall \varepsilon > 0$ there is some N such that $|a_{m,n} a_{l,n}| < \varepsilon \ \forall m,l,n \geq N$.

Prove that all Cauchy sequences in \mathcal{R} converge.

Solutions

- 1. (a) It is false. For instance, in \mathbb{R} we have that d([-1,0],[0,1])=0 but $[-1,0]\cap [0,1]=\emptyset$.
 - (b) If $x \in A$ or $y \in A$, the assertion is true because of the definition of the infimum. Otherwise, construct the sequences $(x_n)_n$ and $(y_n)_n$ in such a way that

$$x_n \in A \cap B\left(x, d(x, A) + \frac{1}{n}\right), y_n \in A \cap B\left(x, d(y, A) + \frac{1}{n}\right).$$

This means that

$$d(x,A) = \lim_{n \to \infty} d(x,x_n) , d(y,A) = \lim_{n \to \infty} d(y,y_n).$$

Then, for all n we have that

$$d(x, A) - d(y, y_n) \le d(x, y_n) - d(y, y_n) \le d(x, y) + d(y, y_n) - d(y, y_n) = d(x, y),$$

and

$$\lim_{n \to \infty} d(x, A) - d(y, y_n) = d(x, A) - d(y, A).$$

Conversely, for all n we have that

$$d(y, A) - d(x, x_n) \le d(y, x_n) - d(x, x_n) \le d(y, x) + d(x, x_n) - d(x, x_n) = d(x, y),$$

and

$$\lim_{n \to \infty} d(y, A) - d(x, x_n) = d(y, A) - d(x, A).$$

- 2. (\Rightarrow) If A is bounded, then there exist $x \in \mathbb{R}^n$, R > 0 such that $A \subset B(x,R)$. Thus, by definition $D_A \subset D_{B(x,R)}$. Moreover, by construction $D_{B(x,R)} \subseteq [0,2R[$, which means that $D_A \subset [0,2R[$, so D_A is bounded.
 - (\Leftarrow) If D_A is bounded, then there exists some $M > \sup D_A$. Let us take some $x \in A$. Then, we claim that $A \subset B(x, M)$.

Let us argue by contradiction. Assuming that $A \not\subset B(x, M)$, we must have some $y \in A$ with $y \notin B(x, M)$, so that $d(x, y) \geq M$. However, M is strictly greater than the supremum of D_A , so we reach a contradiction.

Therefore $A \subset B(x, M)$, so A is bounded.

3. By construction, $\{x\} = B_{\rho}\left(x, \frac{1}{2}\right)$, so it is open.

For any set $A \subset \mathbb{R}^n$ we have that

$$A = \bigcup_{a \in A} \{a\},\,$$

which as we just saw are open sets. Thus, A is open as well.

4. Let $x \in \mathbb{R}^n$. Then,

$$\{x\}^c = \{y \in \mathbb{R}^n \mid x \neq y\} = \bigcup_{y \neq x} B(y, d(x, y)),$$

which is open.

- 5. (a) $\operatorname{Int}(A) = A$, and $\overline{A} = \{(x, y) \in \mathbb{R}^2 \mid y \ge 0\}$.
 - (b) $Int(B) = \emptyset$, and $\overline{B} = B$.
 - (c) $Int(C) = \emptyset$, and $\overline{C} = C$.
 - (d) $\operatorname{Int}(D) = \emptyset$, and $\overline{D} = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, y = 0\}.$

- (e) $\operatorname{Int}(E) = E$, and $\overline{E} = \overline{A}$.
- (f) $Int(F) = \emptyset$, and $\overline{F} = F$.
- (g) $\operatorname{Int}(G) = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, x \neq 0\}, \text{ and } \overline{G} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$
- (h) $Int(H) = \emptyset$, and $\overline{H} = \mathbb{R}$.
- (i) $Int(I) = \emptyset$, and $\overline{I} = I$.
- (j) $\operatorname{Int}(J) = J$, and $\overline{J} = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$.
- (k) $Int(K) = \emptyset$, and $\overline{K} = \{(x, y, z) \in \mathbb{R}^3 \mid x = 2, y = 3, z \in [-1, 1]\}.$
- (1) $\operatorname{Int}(L) = \emptyset$, and $\overline{L} = L$.
- (m) $Int(M) = \emptyset$, and $\overline{M} = M$.
- (n) Int(N) = N, and $\overline{N} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, |z| \le 1\}$.
- 6. (a) (\Rightarrow) Let $(x_n)_n$ a sequence converging to x. As $x \in \text{Int}(A)$, we know that $\exists \varepsilon > 0$ such that $B(x,\varepsilon) \subset \text{Int}(A)$. By the definition of convergence, there exists $N \in \mathbb{N}$ with $x_n \in B(x,\varepsilon) \ \forall n \geq N$, so $x_n \in \text{Int}(A) \ \forall n \geq N$.
 - (\Leftarrow) Let us prove the converse, so if $x \notin \text{Int}(A)$ then there exists a sequence satisfying the contrary to our statement. If $x \notin \text{Int}(A)$, then $\forall \varepsilon > 0$ we have that

$$B(x,\varepsilon)\bigcap A^c\neq\emptyset.$$

Thus, for each $n \in \mathbb{N}$ we can pick

$$x_n \in B\left(x, \frac{1}{n}\right) \bigcap A^c.$$

This means that we can construct a sequence $(x_n)_n$ such that $x_n \notin A \ \forall n$.

(b) (\Rightarrow) As in the last proof, let us construct a sequence by

$$x_n \in B\left(x, \frac{1}{n}\right) \bigcap A \neq \emptyset.$$

By construction, $(x_n)_n \subset A$ and $\lim_{n \to \infty} x_n = x$. (\Leftarrow) Let $(x_n)_n$ a sequence converging to x and contained in A. Let r > 0. By the definition of convergence, there exists some $N \in \mathbb{N}$ such that $\forall n \geq N, x_n \in B(x,r)$. Thus,

$$x_n \in A \bigcap B(x,r),$$

and therefore $A \cap B(x,r) \neq \emptyset$.

- 7. Let $\mathcal{O} \subset A$ an open subset. Then, for all $x \in \mathcal{O}$ there exists some r > 0 such that $B(x,r) \subset \mathcal{O} \subset A$, which implies that $x \in \text{Int}(A)$.
- 8. Let $C \supset A$ a closed set. Let $x \in \overline{A}$. Then, for all r > 0 we have that $B(x,r) \cap A \neq \emptyset$, so $B(x,r) \cap C \neq \emptyset$. This means that $x \in \overline{C}$, but, as C is closed, this means that $x \in C$.
- 9. Let $x \in \overline{A}$. This means that $\exists (x_n)_n \subset A$ such that $\lim_{n \to \infty} x_n = x$. As $(x_n)_n$ is convergent in \mathbb{R}^n , it is a Cauchy sequence. Moreover, as $(x_n)_n \subset A$ is a Cauchy sequence and A is complete, it has to be convergent in A. Thus, $x \in A$.

In conclusion, $\overline{A} = A$, so A is closed.

10. (a) By the Weierstrass Theorem, if $f:[0,1] \to \mathbb{R}$ is continuous then it must attain a maximum M_1 and a minimum M_2 within its domain. Thus, the norm is always well defined, and $||f||_{\infty} = \max\{|M_1|, |M_2|\}.$

Regarding the properties of the norm,

- i. $||f||_{\infty} = 0$ if and only if $|f(x)| \le 0$ for all $x \in [0, 1]$, so f(x) = 0 for all x, and thus $f \equiv 0$.
- ii. $\|\lambda f\|_{\infty} = \sup_{x \in [0,1]} |\lambda f(x)| = |\lambda| \sup_{x \in [0,1]} |f(x)| = |\lambda| \|f\|_{\infty}.$

iii.

$$||f + g||_{\infty} = \sup_{x \in [0,1]} |f(x) + g(x)| \le \sup_{x \in [0,1]} |f(x)| + \sup_{y \in [0,1]} |g(y)| = ||f||_{\infty} + ||g||_{\infty}.$$

- (b) Again, let us go over the properties of a norm,
 - i. $||f||_I = 0$ implies that $f \equiv 0$. Otherwise, if $\exists x \in [0, 1]$ such that |f(x)| > 0, then there exists $\varepsilon > 0$ such that $|f(y)| > 0 \ \forall y \in]x \varepsilon, x + \varepsilon[$, so

$$\int_0^1 |f(x)| dx \ge \int_{x-\varepsilon}^{x+\varepsilon} |f(x)| dx > 0.$$

Moreover, $||0||_I = 0$.

ii.

$$\|\lambda f\|_{I} = \int_{0}^{1} |\lambda f(x)| dx = |\lambda| \int_{0}^{1} |f(x)| dx = |\lambda| \|f\|_{I}.$$

iii.

$$||f + g||_{I} = \int_{0}^{1} |f(x) + g(x)| dx \le \int_{0}^{1} (|f(x)| + |g(x)|) dx =$$

$$= \int_{0}^{1} |f(x)| dx + \int_{0}^{1} |g(x)| dx = ||f||_{I} + ||g||_{I}.$$

(c) f is a convex parabolla with the vertex at 2, so there is the global maximum of the function. Moreover, f(0), f(1) > 0, so we deduce that there cannot be any root of f within [0,1], so therefore

$$||f||_{\infty} = |f(1)| = \frac{13}{3}.$$

On the other hand,

$$||f||_I = \int_0^1 |f(x)| dx = \int_0^1 -x^2 + 4x + \frac{4}{3} dx = \left[-\frac{x^3}{3} + 2x^2 + \frac{4}{3}x \right]_0^1 = 3.$$

(d) $||g||_{\infty} = 1$,

$$||g||_I = \int_0^1 \sin(\pi x) dx = \left[-\frac{1}{\pi} \cos(\pi x) \right]_0^1 = \frac{2}{\pi}.$$

(e)
$$||f||_{I} = \int_{0}^{1} |f(x)| dx \le \int_{0}^{1} ||f||_{\infty} dx = (1-0)||f||_{\infty} = ||f||_{\infty}$$