Problem List 1
Multivariate Calculus
Unit 1 - Distances, norms and topology

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

1. Let A, B two nonempty subsets of R™, and d the Euclidean distance. Define d(A, B) =
inf{d(a,b) | a € A,b € B}.
(a) Is it true that d(A,B) =0 AN B # 0?7
(b) If z € R™, let d(x, A) = d({z}, A). Show that |d(z, A) — d(y, A)| < d(z,y) Vz,y € R™.

2. Let A a nonempty subset of R™, and consider D4 = {d(z,y) | z,y € A} C R. Prove that A is
a bounded set if and only if D4 is bounded.

3. Take the discrete metric in R™, so that
|0 fzx=y
Show that for any point x € R™, the set {z} is open. Show that any subset A C R™ is open
with respect to the discrete metric.
4. Let (R™,d) the Euclidian space. Show that for any point € R™, the set {z} is closed.

5. Compute the interior and closure of the following sets:

(a) A={(z,9)

(b {(z,y) €R? |2 = My}
{(z,y) € R? | 2y = 1}.
{(z,y) eR? | 0<z <1,y =0}

(e) E=A\{(0,1)}.
(f) F=BU{(0,-1)}.
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(h) H=QCR.

(i) I ={A € LR",R") | AT = A}, the symmetric matrices.
(G) J={A € LR™,R™) | det(A) # 0}, the regular matrices.
k) K ={(z,y,2) eR3 | x =2,y =3,z €] - 1,1[}.

() L={(z,y) €R?| 2> +y = 5}.

(m) M = {(z,5) € R? | 22 +|y| = 5}.

(n) N={(z,y,2) eR® | 22 +9y? < 1,|2] < 1}.

6. (Characterizations) Let A a subset of a metric space.



10.

11.

(a) Show that x € Int(A) if and only if for all sequences (z,,), converging to x IN € N such
that z,, € AVn > N.

(b) Show that 2 € A (the closure) if and only if there exists a sequence (x,), contained in A
and such that z,, —— x.

n—oo

Prove that, for any A subset of a metric space, Int(A) is the largest open set contained in A.
This means, for any O C A open, we have that O C Int(A4).

. Prove that, for any A subset of a metric space, A is the smallest closed set containing A. This

means, for any C D A closed, we have that A C C.

Let A C R™ nonempty and d the Euclidian metric. Prove that if A is complete, then it is
closed.

(Norms for continuous functions) Consider C[0, 1] the set of continuous functions f : [0,1] — R.

(a) Show that || f]|ec := sup |f(x)| is well defined and it defines a norm on the vector space
z€[0,1]

C[0,1] (Hint: Use the Weierstrass theorem,).
(b) Show that the map || - || : C[0,1] — R given by

1
17]lr = / 1 (@)da

is a norm.
) Compute || f||o and || f||; for the function f(z) = —2? + 4z + 3.
) Compute ||g||e and ||g||; for the function g(z) = sin(rz).
(e) Show that for all f € C[0,1] we have ||f||1 < ||f|lco-
(f) Show that if a sequence (fy,), converges to f in the normed space (C[0,1], || - ||oc), then it
also converges to the same limit f in the normed space (C[0,1], ]| - [|1).
(g) Is there any constant C' > 0 such that we have || f||o < C||f||; for all f € C[0,1]?

(Completion of the rational numbers) Consider the rational numbers as a normed space (Q, |-|).
We know that there are Cauchy sequences within this space that are not convergent, so it is
not complete. We may, however, perform a construction based on this space in a way that
completes it.

(a) Show that if (a,), and (b,), are Cauchy sequences of rational numbers then (a, + by )n
and (apb, ), are also sequences of rational numbers.

(b) Let C denote the space of Cauchy sequences. Show that the relation (an)n ~ (by)n <
(an — by) — 0 is an equivalence, this means,

i. It is reflexive, so (ap)n ~ (@n)n.

ii. Tt is symmetric, s0 (an)n ~ (bn)n < (bn)n ~ (an)n-

iii. It is transitive, so if (an)n ~ (bn)n and (bp)n ~ (cn)n then (an)n ~ (¢n)n.
Also, prove that this relation respects the field operations, this means, if (a,)n ~ (bn)n
and (¢p)n ~ (dn)n, then (an, + cn)n ~ (bn + dp)n.

(c) Let R := C /~. Prove that it is a field with respect to the addition and the product of
sequences.

(d) Prove that there is an injection Q — R.

(e) Let a : N — R a sequence, and denote it as (am,n)m,n- This means that (@), is an
equivalence class of Cauchy sequences for each fixed m. We say that it is Cauchy if, Ve > 0
there is some N such that |am ., — a1 n] <€ Vm,l,n > N.

Prove that all Cauchy sequences in R converge.



Solutions

1. (a) It is false. For instance, in R we have that d (] — 1,0[,]0,1[) = 0 but | — 1, 0[]0, 1[= 0.

(b) Ifz € Aory € A, the assertion is true because of the definition of the infimum. Otherwise,
construct the sequences (z,,), and (y,), in such a way that

1 1
n€Al B |z,dlx,A)+—) , yp € A| |B|z,dy,A)+— ).
o0 € ANV (dec )42 ) e AN B () + )
This means that

d(z,A) = lim d(z,z,) , d(y,A) = lim d(y,yn).
n— oo

n— oo

Then, for all n we have that

d(l‘,A) - d(yvyn) < d(.l?, yn) - d(yayn) < d(l‘, y) + d(yayn) - d(yayn) = d(l‘, y)7

and
lim d(z, A) — d(y,yn) = d(z, A) — d(y, A).

n—oo

Conversely, for all n we have that
d(y, A) —d(z,z,) < d(y,zpn) — d(z,z,) < d(y,x) + d(z, 2z,) — d(x,2,) = d(z,y),

and
lim d(y, A) — d(z,x,) = d(y, A) — d(z, A).

n— oo

2. (=) If A is bounded, then there exist z € R™, R > 0 such that A C B(x,R). Thus, by
definition D4 C Dpg(y,r). Moreover, by construction D, z) € [0,2R][, which means that
Da C[0,2R][, so D4 is bounded.

(<) If D4 is bounded, then there exists some M > sup D4. Let us take some z € A. Then,
we claim that A C B(z, M).

Let us argue by contradiction. Assuming that A ¢ B(x, M), we must have some y € A with
y &€ B(xz, M), so that d(x,y) > M. However, M is strictly greater than the supremum of Dy,
so we reach a contradiction.

Therefore A C B(z, M), so A is bounded.

3. By construction, {z} = B, (x, %), so it is open.
For any set A C R™ we have that

A= Ut

acA

which as we just saw are open sets. Thus, A is open as well.

4. Let x € R™. Then,
{2z} ={yeR" |z #y} = | By.d(z,y)),

yFx
which is open.
5. (a) Int(A) = A, and A = {(z,y) € R? | y > 0}.
(b) Int(B) =0, and B = B.
(c) Int(C) =0, and C = C.
(d) Int(D) =0, and D = {(x,y) e R? |0 <z < 1,y = 0}.



a) (=) Let (x,)n a sequence converging to z. As x € Int(A), we know that Je > 0 such
that B(x,e) C Int(A). By the definition of convergence, there exists N € N with z,, €
B(z,e) Vn > N, so x, € Int(A) Yn > N.

(<) Let us prove the converse, so if « ¢ Int(A) then there exists a sequence satisfying the
contrary to our statement. If x ¢ Int(A), then Ve > 0 we have that

B(z,e)[ | A° #0.

Thus, for each n € N we can pick

1 c
xn€B<x,n>ﬂA.

This means that we can construct a sequence (), such that x,, € A Vn.

(b) (=) As in the last proof, let us construct a sequence by

xneB(x,DﬂA;é@.

By construction, (z,), C A and lim z, = z. (<) Let (x,), a sequence converging to x
— 00

and contained in A. Let r > 0. By the definition of convergence, there exists some N € N
such that Vn > N, x,, € B(z,r). Thus,

Ty € AmB(:C,T),

and therefore A B(z,r) # 0.

7. Let O C A an open subset. Then, for all z € O there exists some r > 0 such that B(z,r) C
O C A, which implies that = € Int(A).

8. Let C' D A a closed set. Let 2 € A. Then, for all » > 0 we have that B(z,r) N A # 0, so
B(z,7) N C # (). This means that x € C, but, as C is closed, this means that x € C.
9. Let 2 € A. This means that 3(z,,),, C A such that lim z, = x. As (x,), is convergent in R",
n— o0

it is a Cauchy sequence. Moreover, as (z,), C A is a Cauchy sequence and A is complete, it
has to be convergent in A. Thus, z € A.

In conclusion, A = A4, so A is closed.



10. (a) By the Weierstrass Theorem, if f : [0,1] — R is continuous then it must attain a maximum
M, and a minimum Ms within its domain. Thus, the norm is always well defined, and
[flloc = max{|M], [Ms]}.
Regarding the properties of the norm,
i. [|[flleo = 0 if and only if |f(z)| < 0 for all x € [0,1], so f(z) = 0 for all x, and thus
f=0.
i M flleo = sup [Af(z)] = |A] sup [f(z)] = [Al[[f]]oo-
x€[0,1] z€[0,1]

iii.

1f+glloo = sup |f(z)+g(z)| < sup [f(x)]+ sup [g(¥)] = [[flloc + 9lloo-
z€[0,1] z€[0,1] y€[0,1]

(b) Again, let us go over the properties of a norm,

i. ||fllr = 0 implies that f = 0. Otherwise, if 3z € [0, 1] such that |f(x)| > 0, then there
exists € > 0 such that |f(y)| > 0 Vy €]z — e,z + €[, so

1 xr+e
[r@iez [ i@ >o
0 r—e

Moreover, [|0]|; = 0.
ii. . .
IAfIlz =/0 [Af(2)|dx = |>\|/0 | (@)[dz = [Al[|.f]]2-
iii.

If +9llz =/O () + g(z)|dx S/O (If (@) + |g()]) dz =

1 1
- / 1f(@)ldz + / l9(@)ldz = If1l: + lgll:.
0 0

(¢) f is a convex parabolla with the vertex at 2, so there is the global maximum of the
function. Moreover, f(0), f(1) > 0, so we deduce that there cannot be any root of f

within [0, 1], so therefore
13

1flloo = 1F(D] = -

On the other hand,

1 1 4 1‘3 4 1
||f||1=/ \f(w)ldw=/ VST M APV SN
0 0 3 3 3 0

(d) llglloc =1,

lgllz = /01 sin(ra)de = {—Wcos(ﬂx)]l -2

(©)
1l = / f(@)ldz < / 1 Fllood = (1= ) flloo = [ Fll=



