Morse homolog

Floer

Local b-geometr

homology for b-manifolds

A Floer complex for *b*-symplectic manifolds

Joaquim Brugués Mora

UA-UPC

July 15, 2022

Joint work with Eva Miranda and Cédric Oms

CRM Poisson Days 2022

nomology

Floer homology

Local b-geometr

homology for b-manifolds

Contents

- Morse homology
- 2 Floer homology
- 3 Local *b*-geometry
- 4 Floer homology for b-manifolds

Morse homology

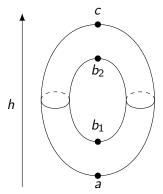
Floer

Local b-geometry

Floer homology for b-manifolds

Motivation (I)

Torus embedded in \mathbb{R}^3 :



Critical points in the torus

Morse homology

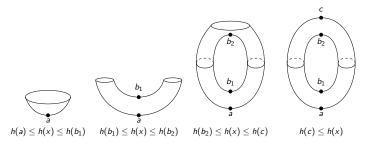
Floer

Local b-geometry

Floer homology for b-manifolds

Motivation (II)

Region under the plane h(x) = K:



Formation of the torus

Morse homology

Floer

Local b-geometr

homology fo b-manifolds

Morse homology

Let M a smooth manifold and $f: M \to \mathbb{R}$ a Morse function.

- Generators (over \mathbb{Z}_2): Critical points of f.
- Classified by the index.
- Points are related by the flow of $-\operatorname{grad}_g f$ (g Riemannian metric).
- Boundary operator:

$$\partial_k p = \sum_{q \in \mathrm{Crit}_{k-1}(f)} n_g(p,q)q,$$

with $n_g(p, q)$ the number of trajectories between p and q.

- Invariance: $HM_{\bullet}(M)$ does not depend on f or g.
- Morse homology is isomorphic to simplicial homology.

Results

The homology $HM_{\bullet}(M)$ is a **topological invariant**.

Theorem (Morse inequalities)

Let $f: M \to \mathbb{R}$ a Morse function, c_k the number of critical points of index k, and β_k the k-th Betti number of M. Then,

$$c_k \geq \beta_k$$
.

In particular,

$$\#\operatorname{Crit}(f) \ge \sum_{k=0}^{n} \beta_k.$$

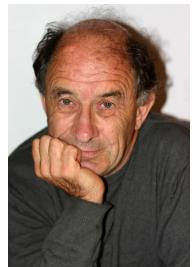
∕lorse iomology

Floer homology

Local b-geometry

homology for b-manifolds

Arnold conjecture



Vladimir Arnold

/lorse iomology

Floer homology

Local b-geometr

homology for b-manifolds

Arnold conjecture

Theorem (Arnold 1963)

Consider $H_t: S^1 \times M \to \mathbb{R}$ a non-degenerate time-dependent and 1-periodic Hamiltonian. Then,

$$\#\{1\text{-periodic orbits of }X_{H_t}\} \geq \sum_{k=0}^{2n} \beta_k.$$

Remark

In the case of an autonomous Hamiltonian H, this is a consequence of the Morse inequalities.

Morse nomology

Floer homology

Local b-geometri

Floer homology f b-manifolds

Solution: Floer homology (1988)

Andreas Floer

Eduard Zehnder

/lorse iomology

Floer homology

Local b-geometr

Floer homology for b-manifolds

The Floer complex

We use the same idea as in the Morse complex

- Our domain is $\mathcal{L}M := \{x \in \mathcal{C}^{\infty}(S^1, M) \mid \text{contractible}\}.$
- Our function is the action functional $A_H : \mathcal{L}M \longrightarrow \mathbb{R}$,

$$\mathcal{A}_H(x) := \int_0^1 H_t(x(t)) dt - \int_{D^2} w^* \omega.$$

Remark

The critical points of A_H are precisely the 1-periodic orbits of X_H .

The critical points are classified by the Conley-Zehnder index μ_{CZ} .

Floer homology

Local b-geometr

homology for b-manifolds

Almost complex structures

Definition

An **almost complex structure** J on M is a section of $TM \otimes T^*M$ such that

$$J^2 = -\mathrm{Id}$$
.

It is **callibrated by** ω if

- $\omega(JX, JY) = \omega(X, Y) \ \forall X, Y \in \mathfrak{X}(M)$.
- $\omega(X, JX) > 0 \ \forall X \in \mathfrak{X}(M)$.

This induces a Riemannian metric on M.

Floer homology

Local b-geometr

Floer homology for b-manifolds

The Floer equation

The (negative) gradient lines of A_H on (M, ω, J) are $u : \mathbb{R} \times \mathbb{S}^1 \to M$ such that satisfy the **Floer equation**:

$$\frac{\partial u}{\partial s} + J_u \frac{\partial u}{\partial t} + \operatorname{grad}_u H_t = 0$$

This is a generalization of **pseudoholomorphic curves** (studied by Gromov, 1985).

To connect critical points, we must impose the condition that

$$E(u) := \iint_{\mathbb{R} \times S^1} \left| \frac{\partial u}{\partial s} \right|^2 < +\infty$$

norse nomology

Floer homology

Local b-geometr

Floer homology for b-manifolds

The Floer complex

The moduli space of solutions of the Floer equation $\mathcal{M}(x,y)$ is a compact manifold of dimension $\mu_{CZ}(x) - \mu_{CZ}(y) - 1$. This way we can define the boundary map of the complex, $\partial_k : CF_k(M,\omega,H,J) \to CF_{k-1}(M,\omega,H,J)$ over generators as

$$\partial_k(x) = \sum_{y \in \mathcal{T}(x) = k-1} \# \mathcal{M}(x, y) y$$

We define the Floer homology as

$$HF_k(M) := \frac{\ker \partial_k}{\operatorname{im} \partial_{k+1}}$$

Floer homology

Local b-geometr

homology f b-manifolds

Results

Theorem

The Floer homology $HF_{\bullet}(M)$ is a **topological invariant**: It does not depend on ω , H_t or J.

Theorem

The Floer homology of a manifold is isomorphic to the Morse homology (with an index shifting):

$$HF_{\bullet}(M) \cong HM_{\bullet+n}(M).$$

This proves the Arnold conjecture for a wide class of manifolds.

Floer

Local b-geometry

Floer homology f b-manifolds

b-symplectic manifolds

Definition

A *b*-symplectic manifold is a Poisson manifold (M^{2n}, π) such that $\pi^n \pitchfork 0$. If $Z := (\pi^n)^{-1}(0)$, then the symplectic foliation consists of

- The connected components of $M \setminus Z$ (dimension 2n).
- Z is foliated by dimension 2n-2 symplectic leaves.

In particular, Z has a cosymplectic structure.

Morse nomology

Floer

Local b-geometry

Floer homology f b-manifolds

Normal vector field

Definition

Consider (M, Z, ω) a *b*-symplectic manifold with Z orientable. Then there exists a **normal** *b*-vector field X^{σ} satisfying that

- 1 It is *symplectic*, this means, $\mathcal{L}_{X^{\sigma}}\omega=0$.
- 2 It is transversal to Z in the sense that $X_p^{\sigma} \notin TZ$ for all $p \in Z$.

In local coordinates $(z, \theta, x_2, y_2, ..., x_n, y_n)$ the normal vector field has the expression $X^{\sigma} = z \frac{\partial}{\partial z}$.

In this case, X^{σ} is conjugate with the *modular vector field*, this means, $\omega(X^{\sigma}, v_{mod}) = 1$.

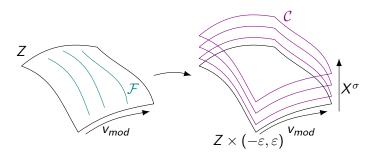
Floer

Local b-geometry

Floer homology for b-manifolds

Cosymplectic foliation

This choice induces a foliation of $(-\varepsilon, \varepsilon) \times Z$ by cosymplectic hypersurfaces:



Morse nomology

Floer

Local b-geometr

Floer homology for b-manifolds

Admissible Hamiltonians (I)

Our purpose is to construct a Floer complex for $M \setminus Z$ for Hamiltonians with a relation with X^{σ} .

Definition

A Hamiltonian $H: S^1 \times M \to \mathbb{R}$ is admissible if

- It is invariant with respect to the modular vector field: $\mathcal{L}_{v_{mod}}H_t=0$.
- It grows linearly in the normal direction: $\mathcal{L}_{X^{\sigma}}H_t=k(t)$ for some $k:S^1\to\mathbb{R}$.
- Its Hamiltonian vector field exhibits no 1-periodic orbits in a tubular neighbourhood small enough around *Z*.

Locally, the Hamiltonian has the expression $H_t = k(t) \log |z| + h_t(x)$, where h is a function defined on the leaves of the symplectic foliation.

Floer

Local b-geometr

Floer homology for b-manifolds

Admissible Hamiltonians (II)

Lemma

A sufficient condition to guarantee that X_H has no periodic orbits near Z is that

$$\int_{S^1} k(t)dt \in (0,T),$$

where T is the modular weight of Z.

Idea of proof: In local coordinates, $X_H = k(t)v_{mod} + X_h$, and each leaf of C has the form

$$\sigma = \frac{\mathcal{L} \times [0, T]}{(x, 0) \sim (f(x), T)}$$

Floer

Local b-geometr

Floer homology for b-manifolds

The Floer equation

Solving the Floer equation in this context,

$$\frac{\partial u}{\partial s} + J_u \frac{\partial u}{\partial t} + \operatorname{grad}_u H_t = 0$$

We get that in a neighbourhood of Z, if we take $f(p) = -\log |z|$, then

$$\Delta(f\circ u)=0$$

norse nomology

Floer

Local b-geometr

Floer homology for b-manifolds

Results

- Using these conditions we can construct a Floer complex as in the standard case, connecting the 1-periodic orbits of X_H on $M \setminus Z$ using the Floer equation.
- The compactness of $\mathcal{M}(x,y)$ can be derived from a modified Maximum Principle.
- There exists a Floer homology, depending exclusively on the topology of (M, Z).

We conjecture that the homology is isomorphic to the relative homology

$${}^{b}HF_{\bullet}(M,Z) \cong H_{\bullet+n}(M,Z)$$