Local b-geometry

Morse homolog

Floer homology

Hamiltonian

## Semilocal dynamics of *b*-symplectic manifolds

Joaquim Brugués Mora

UA-UPC

August 16, 2022

Joint work with Eva Miranda and Cédric Oms

Symplectic Dynamics Beyond Periodic Orbits

-symplectio nanifolds

Local b-geometry

Morse homolog

Floer homology

b-Hamiltonia

### Contents

- 1 b-symplectic manifolds
- 2 Local b-geometry
- 3 Morse homology
- 4 Floer homology
- **5** *b*-Hamiltonians

### b-manifolds

Let M be a compact manifold,  $Z \subset M$  an embedded hypersurface.

The set  ${}^b\mathfrak{X}(M,Z):=\{X\in\mathfrak{X}(M)\mid X_p\in T_pZ\;\forall p\in Z\}$  is a projective module.

[Serre-Swan Theorem]  $\Rightarrow$  there exists a vector bundle  ${}^bTM \to M$  such that  $\Gamma({}^bTM) = {}^b\mathfrak{X}(M,Z)$ , the *b*-tangent bundle.

## b-cotangent bundle

The *b*-**cotangent bundle**  ${}^bT^*M$  is  $({}^bTM)^*$ . Sections of  ${}^b\Omega^k(M) := \Lambda^k({}^bT^*M)$  are *b*-**forms**. The standard differential extends to

$$d: {}^b\Omega^k(M) \to {}^b\Omega^{k+1}(M)$$

This defines a cohomology (the *b*-cohomology groups can be read from **Mazzeo-Melrose**  ${}^bH^*(M) \cong H^*(M) \oplus H^{*-1}(Z)$ ).

Locally around any point  $p \in Z$ , a form  $\omega \in {}^b\Omega^k(M)$  admits a decomposition as

$$\omega|_{U} = \frac{dz}{z} \wedge \alpha + \beta,$$

where  $z: U \to \mathbb{R}$  is such that  $z^{-1}(0) = Z \cap U$ , and  $\alpha \in \Omega^{k-1}(M), \beta \in \Omega^k(M)$ .

*b*-symplectic manifolds

Local b-geometry

Morse homolog

Floer homolog

b-Hamiltonia

## *b*-symplectic manifolds

#### Definition

A b-symplectic manifold is a triple  $(M, Z, \omega)$  where (M, Z) is a b-manifold and  $\omega \in {}^b\Omega^2(M)$  is closed and non-degenerate.

#### Remark

Many results from symplectic geometry (for instance, Moser trick and topological restrictions) have their analogous in the *b*-symplectic context.

### Modular vector field

#### **Definition**

Let  $(M, Z, \omega)$  a *b*-symplectic manifold and let  $\Omega \in \Omega^{2n}(M)$  a volume form.

The **modular vector field** is then defined as the derivation  $v_{mod}: \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$  given by  $f \mapsto \frac{\mathcal{L}_{X_f}\Omega}{\Omega}$ , where  $X_f$  is the Hamiltonian vector field of f.

#### Remark

The modular vector field is symplectic, so  $\mathcal{L}_{v_{mod}}\omega=0$ .

#### Lemma

The singular hypersurface Z has a **cosymplectic structure**. In particular, it has a regular foliation  $\mathcal F$  by symplectic leaves of maximal rank. Moreover, the modular vector field is tangent to Z and transverse to  $\mathcal F$ .

### Normal vector field

#### **Definition**

Consider  $(M, Z, \omega)$  a b-symplectic manifold with Z orientable. Then there exists a **normal** b-vector field  $X^{\sigma}$  satisfying that

- **1** It is *symplectic*:  $\mathcal{L}_{X^{\sigma}}\omega = 0$ .
- **2** It is transversal to  $Z: X_p^{\sigma} \notin TZ$  for all  $p \in Z$ .

Then,  $X^{\sigma}$  is conjugate with the modular vector field:

$$\omega(X^{\sigma}, v_{mod}) = 1.$$

In local coordinates  $(z, \theta, x_2, y_2, ..., x_n, y_n)$  the normal vector field has the expression  $X^{\sigma} = z \frac{\partial}{\partial z}$ .

### Local b-geometry

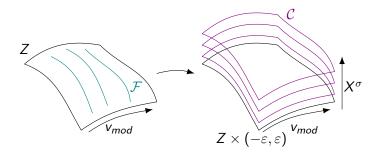
Morse homolog

Floer homolog

b-Hamiltoniar

## Cosymplectic foliation

This choices induce a foliation of  $(-\varepsilon, \varepsilon) \times Z$  by cosymplectic hypersurfaces:



### Local b-geometry

Morse homolog

Floer homolog

*b*-Hamiltonia

## Symplectic foliation

Focusing on the cosymplectic structure of Z, we have the following result regarding the symplectic foliation  $\mathcal{F}$ :

### Theorem (Guillemin-Miranda-Pires)

If a leaf  $L \in \mathcal{F}$  is **compact**, then all leaves of the foliation are isomorphic to L.

In addition, Z is then the total space of a fibration  $f: Z \to S^1$  with fiber L.

Later, we will always assume that we are in this case.

-symplectio nanifolds

Local b-geometry

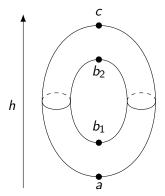
Morse homology

Floer homolog

Hamiltonia

## Morse homology: Motivation (I)

Torus embedded in  $\mathbb{R}^3$ :



Critical points in the torus

-symplection nanifolds

Local b-geometry

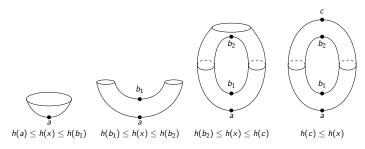
Morse homology

Floer homolog

*b*-Hamiltonia

## Morse homology: Motivation (II)

Region under the plane h(x) = K:



Formation of the torus

symplections anifolds

Local b-geometry

Morse homology

Floer homolog

b-Hamiltoniar

## Morse homology: Summary

The Morse complex of a manifold M with respect to a Morse function  $f: M \to \mathbb{R}$  is given by

- Generators (over  $\mathbb{Z}_2$ ): Critical points of f.
- Classified by the (Morse) index.
- Connected by the flow of  $-\operatorname{grad}_g f$  (g Riemannian metric).

The resulting homology  $HM_{\bullet}(M)$  is isomorphic to the simplicial homology.

symplections anifolds

Local b-geometry

Morse homolog

Floer homology

*b*-Hamiltoniar

### The Floer complex

We use the same idea as in the Morse complex

- Our domain is  $\mathcal{L}M := \{x \in \mathcal{C}^{\infty}(S^1, M) \mid \text{contractible}\}.$
- Our function is the action functional  $A_H : \mathcal{L}M \longrightarrow \mathbb{R}$ ,

$$A_H(x) := \int_0^1 H_t(x(t)) dt - \int_{D^2} w^* \omega.$$

#### Remark

The critical points of  $A_H$  are precisely the 1-periodic orbits of  $X_H$ .

The periodic orbits are classified by the Conley-Zehnder index  $\mu_{\it CZ}$ .

Local b-geometry

Morse homolog

Floer homology

Hamiltoniar

## Almost complex structures

#### Definition

An almost complex structure J on M is a section of  $TM \otimes T^*M$  such that

$$J^2 = -\mathrm{Id}$$
.

It is **callibrated by**  $\omega$  if

- $\omega(JX, JY) = \omega(X, Y) \ \forall X, Y \in \mathfrak{X}(M)$ .
- $\omega(X, JX) > 0 \ \forall X \in \mathfrak{X}(M)$ .

This induces a Riemannian metric on M.

## The Floer equation

The (negative) gradient lines of  $A_H$  on  $(M, \omega, J)$  are  $u : \mathbb{R} \times \mathbb{S}^1 \to M$  such that satisfy the **Floer equation**:

$$\frac{\partial u}{\partial s} + J_u \frac{\partial u}{\partial t} + \operatorname{grad}_u H_t = 0$$

To connect critical points, we must impose the condition that

$$E(u) := \iint_{\mathbb{R}\times S^1} \left|\frac{\partial u}{\partial s}\right|^2 < +\infty$$

-symplection in a symplection in a sympl

Local

Morse

Floer

*b*-Hamiltonians

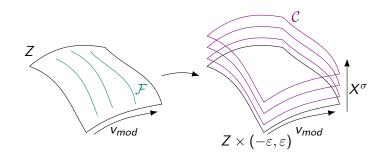
Where were we?

Local b-geometry

Morse homology

Floer homology

Hamiltonians



Ah, yes, that...

Local b-geometry

Morse homolog

Floer homolog

*b*-Hamiltonians

#### Motivation

Our ambition is to construct a Floer complex for *b*-symplectic manifolds.

However, precautions must be taken when selecting admissible Hamiltonians on which to define such a complex. In particular, we want to split the dynamics between Z and  $M \setminus Z$ .

We can imagine that we are defining a Floer complex for a non-compact manifold  $(M \setminus Z)$  with a cosymplectic behavior at infinity.

Local b-geometry

Morse homolog

Floer homolog

b-Hamiltonians

# Admissible Hamiltonians (I)

Let us try to find relationships between admissible Hamiltonians  $H: \mathbb{R} \times M \to \mathbb{R}$  and geometrical features of  $(M, Z, \omega)$  (in a collar neighborhood of Z).

**First**, we want to prevent the flow of  $X_H$  to approach Z, so we want the " $X^{\sigma}$ -component" of  $X_H$  to vanish. Locally, this can be achieved by imposing that

$$\mathcal{L}_{V_{mod}}H=0.$$

Local b-geometry

Morse homolog

Floer homolog

*b*-Hamiltonians

## Admissible Hamiltonians (II)

**Second**, we want to have a contribution in the " $v_{mod}$ -component" but somehow controlled. In particular, we want it to be constant.

We need to be careful about this, because...

#### Proposition

Let  $(W, Z, \omega)$  a compact *b*-symplectic *surface* and  $H_t : \mathbb{R} \times W \to \mathbb{R}$  such that  $\mathcal{L}_{X^{\sigma}}H_t = k$  for some  $k \in \mathbb{Z}$ . Then, there exist 1-periodic orbits on each leaf  $\sigma \in \mathcal{C}$  in the cosymplectic foliation.

Local b-geometry

Morse homology

Floer homology

b-Hamiltonians Sketch of the proof...

• W.l.o.g.  $Z = S^1$  and  $(\mathcal{N}(Z), \omega) \cong ((-\varepsilon, \varepsilon) \times S^1, \frac{dz}{z} \wedge d\theta)$ . Then,  $H_t(z, \theta) = k \log |z| + h_t(\theta)$  and

$$X_H(t,z,\theta) = k \frac{\partial}{\partial \theta} - z \frac{\partial h_t}{\partial \theta} \frac{\partial}{\partial z}.$$

The flow of X<sub>H</sub> is given by

$$\begin{cases} \theta(t) = \theta_0 + kt \\ z(t) = z_0 \exp\left(-\int_0^t \frac{\partial h_s}{\partial \theta}(\theta_0 + ks)ds\right) \end{cases},$$

which has a 1-periodic orbit if and only if  $z(1) = z_0$ , if and only if

$$F(\theta) := \int_0^1 \frac{\partial h_t}{\partial \theta} (\theta_0 + kt) dt = 0.$$

• Using Fubini's Theorem, integrating F over  $S^1$ ,

$$\int_{S^1} F(\theta) d\theta = \int_{S^1} \int_0^1 \frac{\partial h_t}{\partial \theta} (\theta_0 + kt) dt d\theta =$$

$$\int_0^1 \int_{S^1} \frac{\partial h_t}{\partial \theta} (\theta_0 + kt) d\theta dt = \int_0^1 [h_t(\theta + kt)]_{\theta=0}^{\theta=1} dt = 0$$

• Thus, there always exists some  $\theta_0$  such that  $X_H$  has a 1-periodic orbit when flowing from the point  $(z_0, \theta_0)$ .

Local b-geometry

Morse homolog

Floer homolog

b-Hamiltonians

## Admissible Hamiltonians (III)

To prevent scenarios like this,

#### **Third**

#### Lemma

Let  $H_t$  given locally as  $H_t(z, \theta, x) = k(t) \log |z| + h_t(x)$ . Let  $T \in \mathbb{R}$  denote the period of the modular vector field  $v_{mod}$  in the connected component of Z. Then, if

$$\int_0^1 k(t)dt \in (0,T)$$

the flow of  $X_H$  will have no 1-periodic orbits in a collar neighborhood of Z.

Local b-geometry

Morse homolog

Floer homolog

*b*-Hamiltonians

## Summary of results

#### **Definition**

A Hamiltonian  $H: S^1 \times M \to \mathbb{R}$  is admissible if

- It is invariant with respect to the modular vector field:  $\mathcal{L}_{v_{mod}}H_t=0.$
- It grows linearly in the normal direction:  $\mathcal{L}_{X^{\sigma}}H_t=k(t)$  for some  $k:\mathbb{R}\to\mathbb{R}$ .
- Its Hamiltonian vector field exhibits no 1-periodic orbits in a tubular neighbourhood small enough around Z:

$$\int_0^1 k(t)dt \in (0,T).$$

$$H_t(z,\theta,x) = k(t) \log |z| + h_t(x)$$

-symplection ranifolds

Local b-geometry

Morse homology

Floer homolog

*b*-Hamiltonians

#### To be continued...



