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Abstract
Floer homology has grown to become a fundamental tool in a wide variety of fields in geometry and topology.

Since Floer introduced his theory in the late eighties to prove the Arnold conjecture on fixed points of Hamilto-
nian symplectomorphisms, it has been used to introduce invariants in symplectic and contact geometry, to study
the space of connections on 3-dimensional manifolds, to study knots on the 3-sphere and to disprove the existence
of triangulations for topological manifolds of dimension ≥ 5, and new applications to geometrical and topological
problems still appear steadily.

In our project, we intend to construct a homology akin to the Hamiltonian Floer homology in the context of
bm-symplectic geometry, a particular family of Poisson structures with controlled singularities in which we are of-
ten able to recover results from classical symplectic geometry. In this poster we present the setting of the problem,
providing a definition of Hamiltonian Floer homology and the basic characteristics of bm-symplectic geometry.

Model: Morse homology
Floer theory takes Morse homology as a model, trying to replicate its constructions in some infi-
nite dimensional setting. Morse homology studies the critical points of a Morse function defined
on a smooth manifold, f : M → R, by building a homology on them. The building blocks of the
homology are the following:
• The generators of the groups (over either Z or Z2) are the critical points of f . As f is a Morse

function, these critical points are isolated and, if M is compact, there is a finite number of them.

• The critical points are classified by an index. In this case, the index of p is the number of negative
eigenvalues of the Hessian of f .

• The boundary operator on the complex, ∂k : CMk(M, f )→ CMk−1(M, f ) is defined by finding a
way to connect critical points. This is acomplished by the flow equation,

γ̇(t) = −gradf (γ(t)).

A generic choice of a Riemannian metric will allow the flow of the vector field −gradf to define a
proper boundary map ∂•.

The resulting homology,HM•(M), does not depend on f or g (the Morse function or the Riemannian
metric), and is therefore a topological invariant. Moreover, it is isomorphic to the singular homology.
This yields the Morse inequalities:

#{critical points of index k of f} ≥ βk,

where βk is the k-th Betti number of M .

Hamiltonian Floer homology
Let (M,ω) a compact symplectic manifold, and take Ht : R ×M → R a time-dependent Hamilto-
nian. This function induces a (time dependent) vector field XHt

in M , and this in turn induces a flow
ϕtHt

: R×M →M by Hamiltonian symplectomorphisms. Arnold proposed the following hypothesis
in 1963:

The number of fixed points of ϕ1
Ht

greater or equal to the sum of the Betti numbers of M .

This can be seen as a lower bound on the number of periodic orbits af a prescrived period T > 0
(we take T = 1 without losing generality). When H is C2-small enough or not dependent on time this
is already true due to the Morse inequalities (as fixed points are particular, trivial cases of periodic
orbits).

During the following years the main project was to build an infinite-dimensional Morse homology
using the manifold C∞(S1,M) and the action functional as Morse funcion,

AH(x) =

∫
S1

(Ht(x(t))− λ(ẋ(t)))dt.

One can define the action functional either assuming that ω has a primitive λ (such that dλ = ω),
which is never the case for compact symplectic manifolds, or by imposing certain topological condi-
tions on M . For instance, one may impose symplectic asphericallity,∫

S2
ψ∗ω = 0 ∀ψ : S2→M.

The critical points of AH are precisely the 1-periodic orbits of XHt
that we are interested in, so a

Morse-like theory seems a good strategy. However, these critical points may have infinite index and
co-index, so a direct application of Morse homology is not possible. Moreover, when we introduce
some metric (this means, topology) in C∞(S1,M) in order to get a flow and connect critical points
we may find that the trajectories of the flow do not satisfy the compactness conditions that are crucial
to define the boundary operator in Morse homology.

Floer found a way to overcome the second issue, choosing to work with the L2 topology instead of a
finer one in C∞(S1,M). In order to define it, we introduce a compatible almost complex structure,
this means, a tensor field

J ∈ Γ(T ∗M ⊗ TM) such that Jx ◦ Jx = −Id ∀x ∈M,

and ωx(u, Jxv) defines a Riemannian metric for all x ∈M .
This Riemannian metric can be used on M to define a metric on C∞(S1,M), and from there the

gradient of AH can be computed. If one studies the flow of the (infinite dimensional) vector field
−gradAH , the Floer equation can be deduced,

∂u

∂s
+ Ju

∂u

∂t
+ gradHt(u) = 0,

where u is a smooth function u : R× S1→M . This equation is very similar to the Cauchy-Riemann
equations in the context of almost complex manifolds, but with an extra term given by the gradient of
the Hamiltonian.

Solutions of the Floer equation by themselves are not enough to define the boundary operator, but
we also need to introduce the energy on the set of solutions, given by

E(u) = −
∫
R
u∗dAH =

∫
R×S1

∣∣∣∣∂u∂s
∣∣∣∣2 dtds.

If we impose that E(u) < +∞, then it is possible to prove that the solutions of the Floer equation do
connect the critical points of the action functional, this means, the 1-periodic orbits of XH .

Another issue that needs to be addressed is the grading of the homology groups. This is solved by
the introduction of the Conley-Zehnder index µCZ , which intuitively measures how much does a
path of symplectic linear transformations “twist” through a loop (in our case, the linear transforma-
tions are DϕtXH

, the flow of the Hamiltonian vector field. With all of these elements it is possible to
define the groups of the Floer complex,

CFk(M,H) = 〈p ∈M | p = ϕ1
XH

(p) and µ(DϕtXH
(p)) = k〉Z2

,

and a boundary map
∂Jk : CFk(M,H) −→ CFk−1(M,H) ,

defining a complex and, therefore, inducing a homology,

HFk(M,H, J) =
Ker∂k

Im∂k+1
.

One can then go on to prove that the homology does not actually depend on the Hamiltonian func-
tion Ht used to define the complex nor on the almost complex structure J used to define the metric.
Moreover, as we mentioned earlier, the homology coincides with the Morse homology (with a shift
in the index) for certain choices of H , and therefore

HF•(M) ∼= HM•+n(M).

b-symplectic manifolds

Let us consider a codimension one submanifold Z ⊂ M , and let bX(M) denote the space of vector
fields tangent to Z. In the context of the b-calculus it is possible to explore the dynamics of such
vector fields sistematically. Using the Serre-Swan theorem, we can define the vector bundle bTM so
that bX(M) are its sections. It is called the b-tangent bundle

In this context one can define b-differential forms and the differential operator, extending the usual
differential forms but allowing also for a singularity to happen on Z. Thus, it is possible to define
a b-2-form, closed and non-degenerate, that defines a b-symplectic structure. The model for such a
b-symplectic form is

ω =
dx1

x1
∧ dy1 +

n∑
i=2

dxi ∧ dyi,

where Z = {x1 = 0} locally. We have Darboux theorem in the context of b-symplectic forms, so
such a local model always exists.

bm-symplectic manifolds
A further generalization of b-symplectic structures are the ones in which we allow a singularity of
order m to happen at Z or, equivalently, we only take into account the vector fields that are tangent to
Z and that vanish at order m at some direction transverse to Z. The Darboux coordinates in this case
yield the local form

ω =
dx1

xm1
∧ dy1 +

n∑
i=2

dxi ∧ dyi.

Future work
The objective of our project is to construct the Floer homology as in the case of the Hamiltonian vec-
tor fields in the context of bm-symplectic manifolds. There are several strategies that we may employ
to accomplish this.

A first one may be to approximate the homology groups by a limit, in some sense (by taking a limit
of symplectic forms ωε→ ω to a b2k-symplectic form), as in [4].

A different possibility would consist on studying the behaviour of J-holomorphic curves for some
almost complex structure adapted to ω and defined on bTM .

This is a work in progress with Eva Miranda (UPC) and Sonja Hohloch (UAntwerpen).
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