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Abstract

Since the beginnings of the development of Floer theory there has been an interest to adapt its homology to non-compact manifolds. In our project we aim at

building a Floer complex for the open part of b-symplectic manifolds, using a cosymplectic foliation in a tubular neighbourhood of of the singular hypersurface.

1 Hamiltonian Floer homology

Theorem 1 (Arnold Conjecture). Let (M, w) a compact symplectic manifold and H a
non-degenerate Hamiltonian. Then,

2n
#{1-periodic orbits of Xz} > Z B.
k=0
To prove this conjecture, Conley, Zehnder and Floer employed a construction analogous to
the Morse complex in infinite variables.

Definition 1. Let LM = {vy € C®(S', M) | v is contractible.}. The action functional
is the map Ax : LM — R given by

AH(JT) —

Sl
where u : D? — M is such that u(e™) = x(t).
Our complex can then be defined in an analogous way to Morse theory, using a generic
choice of almost complex structure J.
e The generators of C'Fy(M,w, H, J) are the critical points of Ag. This is finite because
of the conditions we can impose on H.

Hy(2(t))dt — / ww,

B

e The groups are classified by a Conley-Zehnder index pucy. For the particular case of
fixed points of X, this corresponds to a shift of the Morse index of H.

e The boundary operator 0y : CF,(M,w, H,J) — CF,_1(M,w, H, J) is defined using a
connection between 1-periodic orbits. This is given by the Floer equation,

u Ju<@—XH> — 0

0s ot
where v : R x S' — M, with the energy condition,

oul?
—| dtds < +00
R x Sl 83

Theorem 2. The induced Floer homology H Fo(M ) is independent of w, H and J. More-
over, HF (M) = HM, ,(M).
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Figure 1: Sketch of solutions to the Floer equation

3 A singular Floer homology

Definition 5. An admissible Hamiltonian H : S' x M — R is a non-degenerate Hamil-
tonian such that £, Hy; =0, Lx-H; = k(t), and Xy has no 1-periodic orbits in a tubular

neighbourhood of Z.
Locally, they have the form

Hi(z,0,x) = k(t)log |z| + hi(x).

Lemma 3. If [ k(t)dt ¢ TZ, where T is the modular weight of Z, then Xy has no
1-periodic orbits in a neighbourhood of Z.

Definition 6. The groups of the b-Floer complex are given by
CE.(M,Z, w, H) = (1-periodic contractible orbits of Xz with pucz(v) = k)7

2

Conjecture 1. Let (M, Z,w) a b-symplectic manifold and H a non-degenerate Hamilto-
nian with suitable restrictions. Then,

2n
#{1-periodic orbits of Xy} > Z dimHy(M, Z),
k=0
the relative homology of M with respect to Z.

2 b-symplectic manifolds

Definition 2. Let M a smooth manifold and Z7 C M an embedded codimension 1
submanifold. We denote by *X(M) the set of vector fields tangent to Z. It induces a
vector bundle, the b-tangent bundle, denoted as *T'M — M.

In this context we can define forms and the differential, so we can define the complex of
b-forms, "Q°(M).
Definition 3. A b-symplectic manifold is a b-pair (M?", Z**~1) endowed with a 2-b-form

w € "Q%(M) that is closed and non-degenerate.
If p € Z and U is a small neighbourhood in M, then we can choose coordinates such that

dz ik
W = — A dy; + Zd% A dy;.
j=2
N
Sz UM
/ J ™,
| /" ) . \
i |
| N 4 |
=
Y ' /
N\ | £
™ A

Figure 2: A sketch of a b-manifold

Z has an structure of a cosymplectic manifold, so there exist « € QYZ), f € Q*(Z)
closed such that ae A 5"~ # 0.

Definition 4.

e The normal vector field to Z is the symplectic vector field X° € *X(M) such that it is
transverse to Z at every point.

e The modular vector field is an extension to M of the vector field transverse to the
symplectic foliation F in Z. We denote it like v,,,4, and it can be chosen so that
Umod € "X(M) and it is symplectic.

Using both vector fields we can define a foliation of a tubular neighbourhood of Z by
cosymplectic hypersurfaces.
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Figure 3: A foliation by cosymplectic hypersurfaces
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Z x (0,¢)

Proposition 4. Let u be a solution of the Floer equation on N' = Z x (0,¢). Let
f N — R given by f(z,2) = —log|z|. Then, A(f ou)=0.

Corollary 5. For every two 1-periodic orbits x and gy, the moduli space M(x,y) of
solutions of the Floer equation connecting x to y is a compact manifold of dimension

pez(z) — pezy) — L.
This allows us to define the boundary map O

CF, (M, Z, w,H,J) as in the usual Floer complex.

CF.(M, Z,w, H,J) —

Definition 7. The b-Floer homology is the homology of this complex,
ker(0O,)

HF(M,Z) = — )
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