

A Hamiltonian Floer complex for b-manifolds

Joaquim Brugués

EOS
THE EXCELLENCE
OF SCIENCE

University of Antwerp, Belgium.

Joint work with Eva Miranda and Cédric Oms.

Abstract

Since the beginnings of the development of Floer theory there has been an interest to adapt its homology to non-compact manifolds. In our project we aim at building a Floer complex for the open part of b-symplectic manifolds, using a cosymplectic foliation in a tubular neighbourhood of the singular hypersurface.

1 Hamiltonian Floer homology

Theorem 1 (Arnold Conjecture). Let (M, ω) a compact symplectic manifold and H a non-degenerate Hamiltonian. Then,

$$\#\{1\text{-periodic orbits of } X_H\} \ge \sum_{k=0}^{2n} \beta_k.$$

To prove this conjecture, Conley, Zehnder and Floer employed a construction analogous to the Morse complex in infinite variables.

Definition 1. Let $\mathcal{L}M = \{ \gamma \in \mathcal{C}^{\infty}(S^1, M) \mid \gamma \text{ is contractible.} \}$. The action functional is the map $\mathcal{A}_H : \mathcal{L}M \to \mathbb{R}$ given by

$$\mathcal{A}_H(x) = \int_{S^1} H_t(x(t))dt - \int_B u^*\omega,$$

where $u: D^2 \to M$ is such that $u(e^{it}) = x(t)$.

Our complex can then be defined in an analogous way to Morse theory, using a generic choice of almost complex structure J.

- The generators of $CF_{\bullet}(M, \omega, H, J)$ are the critical points of \mathcal{A}_H . This is finite because of the conditions we can impose on H.
- The groups are classified by a Conley-Zehnder index μ_{CZ} . For the particular case of fixed points of X_H , this corresponds to a shift of the Morse index of H.
- The boundary operator $\partial_k : CF_k(M, \omega, H, J) \to CF_{k-1}(M, \omega, H, J)$ is defined using a connection between 1-periodic orbits. This is given by the *Floer equation*,

$$\frac{\partial u}{\partial s} + J_u \left(\frac{\partial u}{\partial t} - X_H \right) = 0$$

where $u: \mathbb{R} \times S^1 \to M$, with the energy condition,

$$\int_{\mathbb{R}\times S^1} \left| \frac{\partial u}{\partial s} \right|^2 dt ds < +\infty$$

Theorem 2. The induced Floer homology $HF_{\bullet}(M)$ is independent of ω, H and J. Moreover, $HF_{\bullet}(M) \cong HM_{\bullet+n}(M)$.

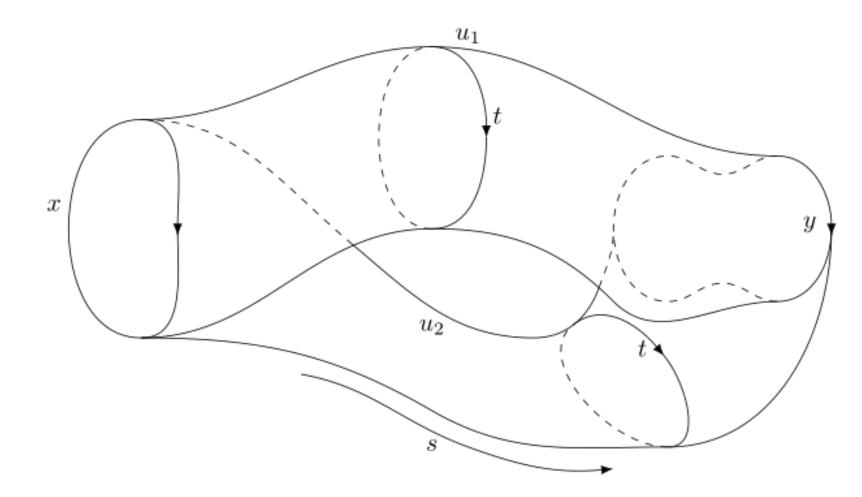


Figure 1: Sketch of solutions to the Floer equation

2 b-symplectic manifolds

Definition 2. Let M a smooth manifold and $Z \subset M$ an embedded codimension 1 submanifold. We denote by ${}^b\mathfrak{X}(M)$ the set of vector fields tangent to Z. It induces a vector bundle, the b-tangent bundle, denoted as ${}^bTM \to M$.

In this context we can define forms and the differential, so we can define the complex of b-forms, ${}^b\Omega^{\bullet}(M)$.

Definition 3. A *b-symplectic manifold* is a *b*-pair (M^{2n}, Z^{2n-1}) endowed with a 2-*b*-form $\omega \in {}^b\Omega^2(M)$ that is closed and non-degenerate.

If $p \in \mathbb{Z}$ and U is a small neighbourhood in M, then we can choose coordinates such that

$$\omega|_{U} = \frac{dz}{z} \wedge dy_{1} + \sum_{i=2}^{n} dx_{i} \wedge dy_{i}.$$

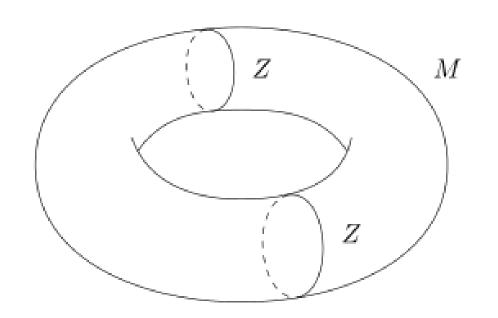


Figure 2: A sketch of a *b*-manifold

Z has an structure of a cosymplectic manifold, so there exist $\alpha \in \Omega^1(Z)$, $\beta \in \Omega^2(Z)$ closed such that $\alpha \wedge \beta^{n-1} \neq 0$.

Definition 4.

- The normal vector field to Z is the symplectic vector field $X^{\sigma} \in {}^{b}\mathfrak{X}(M)$ such that it is transverse to Z at every point.
- The modular vector field is an extension to M of the vector field transverse to the symplectic foliation \mathcal{F} in Z. We denote it like v_{mod} , and it can be chosen so that $v_{mod} \in {}^b\mathfrak{X}(M)$ and it is symplectic.

Using both vector fields we can define a foliation of a tubular neighbourhood of Z by $cosymplectic \ hypersurfaces.$

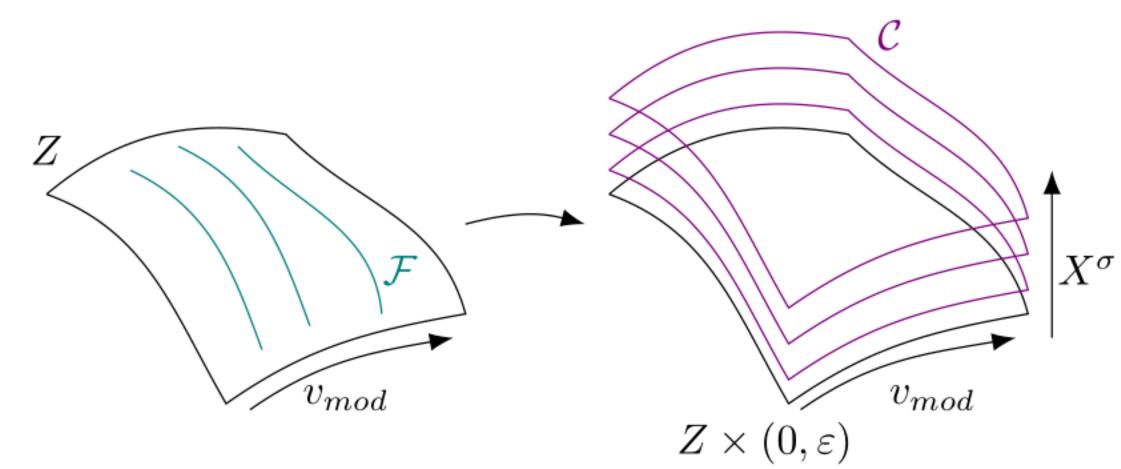


Figure 3: A foliation by cosymplectic hypersurfaces

3 A singular Floer homology

Definition 5. An admissible Hamiltonian $H: S^1 \times M \to \mathbb{R}$ is a non-degenerate Hamiltonian such that $\mathcal{L}_{v_{mod}}H_t = 0$, $\mathcal{L}_{X^{\sigma}}H_t = k(t)$, and X_H has no 1-periodic orbits in a tubular neighbourhood of Z.

Locally, they have the form

$$H_t(z, \theta, x) = k(t) \log |z| + h_t(x).$$

Lemma 3. If $\int_{S^1} k(t)dt \notin T\mathbb{Z}$, where T is the modular weight of Z, then X_H has no 1-periodic orbits in a neighbourhood of Z.

Definition 6. The groups of the b-Floer complex are given by

 $CF_k(M, Z, \omega, H) = \langle 1$ -periodic contractible orbits of X_H with $\mu_{CZ}(\gamma) = k \rangle_{\mathbb{Z}_2}$

Conjecture 1. Let (M, Z, ω) a b-symplectic manifold and H a non-degenerate Hamiltonian with suitable restrictions. Then,

$$\#\{1\text{-periodic orbits of }X_H\} \ge \sum_{k=0}^{2n} \dim H_k(M,Z),$$

the relative homology of M with respect to Z.

Proposition 4. Let u be a solution of the Floer equation on $\mathcal{N} \cong Z \times (0, \varepsilon)$. Let $f: \mathcal{N} \to \mathbb{R}$ given by $f(z, x) = -\log|z|$. Then, $\Delta(f \circ u) = 0$.

Corollary 5. For every two 1-periodic orbits x and y, the moduli space $\mathcal{M}(x,y)$ of solutions of the Floer equation connecting x to y is a compact manifold of dimension $\mu_{CZ}(x) - \mu_{CZ}(y) - 1$.

This allows us to define the boundary map ∂_k : $CF_k(M, Z, \omega, H, J) \rightarrow CF_{k-1}(M, Z, \omega, H, J)$ as in the usual Floer complex.

Definition 7. The b-Floer homology is the homology of this complex,

$$HF_{\bullet}(M,Z) = \frac{\ker(\partial_{\bullet})}{\operatorname{im}(\partial_{\bullet+1})}.$$

References

[1] M. Audin, M. Damian. *Morse theory and Floer homology*. London: Springer, 2014. [2] U. Frauenfelder, F. Schlenk. *Hamiltonian dynamics on convex symplectic manifolds*. Israel Journal of Mathematics 159.1 (2007): 1-56.

[3] V. Guillemin, E. Miranda, A.R. Pires, Symplectic and Poisson geometry on b-manifolds, Adv. Math. 264, pp. 864-896 (2014).

[4] R. Melrose, The Atiyah Patodi Singer Index Theorem, Res. Not. Math., A. K. Peters.