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Abstract

Since the beginnings of the development of Floer theory there has been an interest to adapt its homology to non-compact manifolds. In our project we aim at

building a Floer complex for the open part of b-symplectic manifolds, using a cosymplectic foliation in a tubular neighbourhood of of the singular hypersurface.

1 Hamiltonian Floer homology

Theorem 1 (Arnold Conjecture). Let (M,ω) a compact symplectic manifold and H a
non-degenerate Hamiltonian. Then,

#{1-periodic orbits of XH} ≥
2n∑
k=0

βk.

To prove this conjecture, Conley, Zehnder and Floer employed a construction analogous to
the Morse complex in infinite variables.

Definition 1. Let LM = {γ ∈ C∞(S1,M) | γ is contractible.}. The action functional
is the map AH : LM → R given by

AH(x) =

∫
S1

Ht(x(t))dt−
∫
B

u∗ω,

where u : D2 →M is such that u(eit) = x(t).

Our complex can then be defined in an analogous way to Morse theory, using a generic
choice of almost complex structure J .
• The generators of CF•(M,ω,H, J) are the critical points of AH. This is finite because

of the conditions we can impose on H .

• The groups are classified by a Conley-Zehnder index µCZ. For the particular case of
fixed points of XH, this corresponds to a shift of the Morse index of H .

• The boundary operator ∂k : CFk(M,ω,H, J)→ CFk−1(M,ω,H, J) is defined using a
connection between 1-periodic orbits. This is given by the Floer equation,

∂u

∂s
+ Ju

(
∂u

∂t
−XH

)
= 0

where u : R× S1 →M , with the energy condition,∫
R×S1

∣∣∣∣∂u∂s
∣∣∣∣2 dtds < +∞

Theorem 2. The induced Floer homology HF•(M) is independent of ω,H and J . More-
over, HF•(M) ∼= HM•+n(M).

Figure 1: Sketch of solutions to the Floer equation

2 b-symplectic manifolds

Definition 2. Let M a smooth manifold and Z ⊂ M an embedded codimension 1
submanifold. We denote by bX(M) the set of vector fields tangent to Z. It induces a
vector bundle, the b-tangent bundle, denoted as bTM →M .

In this context we can define forms and the differential, so we can define the complex of
b-forms, bΩ•(M).

Definition 3. A b-symplectic manifold is a b-pair (M 2n, Z2n−1) endowed with a 2-b-form
ω ∈ bΩ2(M) that is closed and non-degenerate.
If p ∈ Z and U is a small neighbourhood in M , then we can choose coordinates such that

ω|U =
dz

z
∧ dy1 +

n∑
i=2

dxi ∧ dyi.

Figure 2: A sketch of a b-manifold

Z has an structure of a cosymplectic manifold, so there exist α ∈ Ω1(Z), β ∈ Ω2(Z)
closed such that α ∧ βn−1 6= 0.

Definition 4.

• The normal vector field to Z is the symplectic vector field Xσ ∈ bX(M) such that it is
transverse to Z at every point.

• The modular vector field is an extension to M of the vector field transverse to the
symplectic foliation F in Z. We denote it like vmod, and it can be chosen so that
vmod ∈ bX(M) and it is symplectic.

Using both vector fields we can define a foliation of a tubular neighbourhood of Z by
cosymplectic hypersurfaces.

Figure 3: A foliation by cosymplectic hypersurfaces

3 A singular Floer homology

Definition 5. An admissible Hamiltonian H : S1×M → R is a non-degenerate Hamil-
tonian such that LvmodHt = 0, LXσHt = k(t), and XH has no 1-periodic orbits in a tubular
neighbourhood of Z.
Locally, they have the form

Ht(z, θ, x) = k(t) log |z| + ht(x).

Lemma 3. If
∫
S1 k(t)dt /∈ TZ, where T is the modular weight of Z, then XH has no

1-periodic orbits in a neighbourhood of Z.

Definition 6. The groups of the b-Floer complex are given by

CFk(M,Z, ω,H) = 〈1-periodic contractible orbits of XH with µCZ(γ) = k〉Z2

Conjecture 1. Let (M,Z, ω) a b-symplectic manifold and H a non-degenerate Hamilto-
nian with suitable restrictions. Then,

#{1-periodic orbits of XH} ≥
2n∑
k=0

dimHk(M,Z),

the relative homology of M with respect to Z.

Proposition 4. Let u be a solution of the Floer equation on N ∼= Z × (0, ε). Let
f : N → R given by f (z, x) = − log |z|. Then, ∆(f ◦ u) = 0.

Corollary 5. For every two 1-periodic orbits x and y, the moduli space M(x, y) of
solutions of the Floer equation connecting x to y is a compact manifold of dimension
µCZ(x)− µCZ(y)− 1.
This allows us to define the boundary map ∂k : CFk(M,Z, ω,H, J) →
CFk−1(M,Z, ω,H, J) as in the usual Floer complex.

Definition 7. The b-Floer homology is the homology of this complex,

HF•(M,Z) =
ker(∂•)

im(∂•+1)
.
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