Exercise Sheet 1 Multivariate Calculus

Lecturer: Prof. Sonja Hohloch, Exercises: Joaquim Brugués

Friday, February 19th, 2021

The exercises must be handed in on Friday, February 26th at the latest.

1 Matrix norms (8 points)

We know that on matrix spaces $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ we can define the operator norms as $||A||_{\text{op}} = \sup\{||A(x)|| \mid ||x|| \leq 1\}$, where $||\cdot||$ is a norm in \mathbb{R}^m and \mathbb{R}^n (for this exercise we consider the same norm for both spaces).

Recall the definitions of the sum, Euclidean and supremum norms in \mathbb{R}^n :

$$||x||_{\Sigma} = \sum_{i=1}^{n} |x_i|, ||x||_E = \sqrt{\sum_{i=1}^{n} x_i^2}, ||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Show that

1.
$$||A||_{\Sigma} = \max_{1 \le j \le m} \left(\sum_{i=1}^{n} |a_{i,j}| \right).$$

2.
$$||A||_{\infty} = \max_{1 \le i \le n} \left(\sum_{j=1}^{m} |a_{i,j}| \right).$$

3. $||A||_E = \sqrt{\sigma_M(A)}$, where $\sigma_M(A)$ denotes the largest eigenvalue of the matrix $A^T A$.

4. Compute each of these norms for the matrix
$$A = \begin{pmatrix} 1 & \frac{5}{2} & \frac{9}{2} \\ 0 & 4 & 5 \\ 0 & -\frac{5}{2} & -\frac{7}{2} \end{pmatrix}$$
.

(Hint: A possible way to prove the identities is to show that the norm is lower or equal to the target value, and then prove that there is a vector such that the equality is reached)

2 Induced norms (4 points)

We know that a norm always induces a metric in a vector space, but that the converse is not necessarily true. What follows is a way to deduce under which conditions is a metric induced by a norm.

Consider V a vector space. Show that a metric d is induced by a norm if and only if these two properties are satisfied:

- 1. Translation invariance: For any $x, y, z \in V$ we have d(x + z, y + z) = d(x, y).
- 2. **Homogeneity:** For any $\alpha \in \mathbb{R}$ and $x, y \in V$ we have $d(\alpha x, \alpha y) = |\alpha| d(x, y)$.

3 Topology of set addition (4 points)

Consider A,B two subsets of \mathbb{R}^n . Let $A+B:=\{x+y\mid x\in A,y\in B\}$, and suppose that A is open.

- 1. Prove that, given $y \in \mathbb{R}^n$, the set $A + \{y\}$ is open.
- 2. Prove that A + B is open.

4 Topology of set product (4 points)

Consider A, B two subsets of \mathbb{R} . Let $A \cdot B := \{xy \mid x \in A, y \in B\}$.

- 1. Prove that if A is open and $B \subset (0, +\infty)$, then $A \cdot B$ is open.
- 2. Show that if A is open $A \cdot B$ is not always open.