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Abstract. We present efficient (low storage requirement and low operation
count) algorithms for the computation of several invariant objects for Hamil-
tonian dynamics, namely KAM tori (i.e diffeomorphic copies of tori such that
the motion on them is conjugated to a rigid rotation) both Lagrangian tori(of
maximal dimension) and whiskered tori (i.e. tori with hyperbolic directions
which, together with the tangents to the torus and the symplectic conjugates
span the whole tangent space). We also present algorithms to compute the in-
variant splitting and the invariant manifolds of whiskered tori. We present the
algorithms for both discrete-time dynamical systems and differential equations.

The algorithms do not require that the system is presented in action-angle
variables nor that it is close to integrable and are backed up by rigorous a-

posteriori bounds. We will report on the implementation results elsewhere.

1. Introduction. The goal of this paper is to present efficient algorithms to com-
pute accurately several objects of interest in Hamiltonian dynamical systems (both
discrete-time dynamical systems and differential equations). More precisely, we
present algorithms to compute:

• Lagrangian KAM tori.
• Whiskered KAM tori.
• The invariant bundles of the whiskered tori.
• The stable and unstable manifolds of the whiskered tori.
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The algorithms are very different. For example, the algorithms for tori require
the use of small divisors and symplectic geometry and the algorithms for invariant
bundles and invariant manifolds rely on the theory of normal hyperbolicity and
dichotomies. The computation of whiskered tori has to combine both.

We recall that KAM tori are manifolds diffeomorphic to a torus which are invari-
ant for a map or flow, on which the motion of the system is conjugate to a rotation.
As we will see later, this is also equivalent to quasi-periodic solutions. The tori are
called Lagrangian when they are Lagrangian manifolds, which in our case amounts
to the tori having a dimension equal to the number of degrees of freedom of the
system. The tori are called whiskered when the linearized equation has directions
that decrease exponentially either in the future (stable) or in the past (unstable)
and these directions together with the tangent to the torus and its symplectic con-
jugate span the whole tangent space. These invariant spaces for the linearization
have non-linear analogues, namely invariant manifolds. It has been recognized since
[1] that whiskered tori and their invariant manifolds are very interesting landmarks
that organize the long-term behavior of many systems.

The algorithms we present are based on running an efficient Newton method
to solve a functional equation, which expresses the dynamical properties above.
What we mean by efficient is that if we discretize the problem using N Fourier
coefficients and N points in a grid, we require O(N) storage and only O(N log(N))
operations for the Newton step. Since the functions we are considering are analytic,
we see that the truncation error is O(exp(−CN1/d)) where d is the dimension of
the object. Note that, in contrast, a straightforward implementation of a Newton
method would require to use O(N2) storage – to store the linearization matrix and
its inverse – and O(N3) operations to invert.

In practical applications, using the algorithms described in this paper, comput-
ing with several million coefficients becomes quite practical in a typical desktop
computer of today. Implementation details and the results of several runs will be
discussed in another companion paper [25]. Given the characteristics of today’s
computers, savings in storage space are more crucial than savings in operations for
these problems.

The algorithms we present here are inspired by the rigorous results of [36] – for
KAM tori – and [16, 15] –for whiskered tori. The algorithms to compute the stable
and unstable manifolds had not been previously discussed. The rigorous results of
the above papers are also based on a Newton method applied to the same functional
equation that we consider here.

Of course, going from a mathematical treatment to a practical algorithm requires
making non-trivial choices of algorithms and specifying significantly many more
details. Sometimes, perfectly good theoretical arguments are quite unsuitable for
practical algorithms. In our case, for example, the algorithms to compute the
invariant splittings and the invariant manifolds are different from those in the above
references. The papers above use that there is a metric in which the splittings are
orthogonal, so that the matrix representing the symplectic matrix, has a block
structure. Even if this is perfectly correct for a theoretical paper, the algorithms
require to know the metric explicitly. Hence, in this paper we present algorithms
that do not require this assumption.

This paper concentrates on explaning the algorithmic issues but we will postpone
for a future paper the discussion of practical issues such as data structures as well
as the results of the runs.
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The results of the papers [36, 15] give a justification of the algorithms for invariant
tori and their invariant splittings presented here. The theorems in [36, 15], have been
formulated in an a-posteriori way, i.e. the theorems assert that if we have a function
which solves the invariance equation up to a small error (e.g. the outcome of a
successful run of the algorithms presented here) and which also satisfies some explicit
non-degeneracy conditions, then, we can conclude that there is a true solution which
is close to the computed solution. Hence, by supplementing our calculations with
the (very simple) computations of the non-degeneracy conditions (they play a role
very similar to the condition numbers common in numerical analysis), we can be
sure that the computation that we are performing is meaningful. This allows to
compute with confidence even close to the limit of validity of the KAM theorem (a
rather delicate boundary since the smooth KAM tori do not disappear completely
but rather morph into Cantor sets).

This boundary of parameters between the region with smooth tori and Can-
tor sets, called analyticity breakdown has received a great deal of attention in the
applied literature [2, 3, 5, 22, 39, 40, 7, 8]). Having an a-posteriri method that
can distinguish with confidence between rather similar objects and in regions when
spurious solutions abound has proved invaluable.

Since the papers [36, 15] contain estimates, in the present paper, we will only
discuss the algorithmic issues. For example, we will detail how solutions of equations
(whose existence was shown in the above papers) can be computed with small
requirements of storage and small operation count. Note that different algorithms
of a same mathematical operation can have widely different operation counts and
storage requirements. (See, for example, the discussion in [35] on the different
algorithms to multiply matrices, polynomials, etc.) On the other hand, we will not
include some implementation issues (methods of storage of arrays, ordering of loops,
precision, etc.) needed to obtain actual results in a real computer. They will be
given in another paper together with experimental results obtained by running the
algorithms.

One remarkable feature of the algorithms presented here is that they do not
require the system to be close to integrable. We only need a good initial guess for
the Newton method. Typically, one uses a continuation method starting from an
integrable case, where solutions can be computed analytically. However, in the case
of secondary KAM tori, which do not exist in the integrable case, one can use, for
instance, Lindstedt series, variational methods or approximation by periodic orbits
to obtain an initial guess.

As for the algorithms to compute invariant splittings, we depart from the stan-
dard mathematical methods (most of the them based on graph transforms) and we
have found more efficient to device an equation for the invariant projections. We
also present some acceleration of convergence methods that give superexponential
convergence. They are based on fast algorithms to solve the cohomology equations
which could be of independent interest (see Appendix A).

The algorithms to compute invariant manifolds are based on the parameterization
method [9, 11]. Compared to standard methods such as the graph transform the
parameterization method has the advantage that to compute geometric objects of
dimension `, we only need to compute functions of dimension `. In contrast with
[9, 11], which was based on contractive iterations, our method is based on a Newton
iteration which we also implement without requiring large matrices and requiring
only N log(N) operations.
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An overview of the method. The numerical method we use is based on the
parameterization methods introduced in [9, 10]. In this section, we provide a sketch
of the issues, postponing some important details. We make the presentation for
maps first and the details for flows will be done later, specially in Section 2.2.

Invariant tori. We observe that if F is a map and we can find an embedding K in
which the motion on the torus is a rotation ω, it should satisfy the equation

F (K(θ))−K(θ + ω) = 0. (1)

Given an approximate solution of (1), i.e.

F (K(θ))−K(θ + ω) = E(θ),

the Newton method aims to find ∆ solving

DF (K(θ))∆(θ) −∆(θ + ω) = −E(θ), (2)

so that K +∆ will be a better approximate solution.
The fact that the approximate solution is whiskered means that there is a splitting

as in (26).
The main idea of the Newton method is that, using the assummed decomposition

of the phase space into subspaces invariant for DF ◦K, one can decompose (2) into
three components

DF (K(θ))∆s(θ)−∆s(θ + ω) = −Es(θ)

DF (K(θ))∆u(θ)−∆u(θ + ω) = −Eu(θ)

DF (K(θ))∆c(θ) −∆c(θ + ω) = −Ec(θ)

(3)

where the s, u refer to the stable, unstable components and c refers to the component
along the tangent to the torus and its symplectic conjugate. For Lagrangian tori,
only the Ec part appears in the equations.

The algorithm requires:

• Efficient methods to evaluate the LHS of (1).
• Efficient methods to compute the splitting.
• Efficient methods to solve the equations (3).

As we will see in Section 3.6, to evaluate (1), it is efficient to use both a Fourier
representation which makes easy to evaluate K(θ + ω) and a real representation
which makes easy to evaluate F (K(θ)). Of course, both of them are linked through
the Fast Fourier Transform (FFT from now on).

The methods to compute the splitting are discussed in Section 4.4. More pre-
cisely, we present a numerical procedure to compute the projections on the linear
stable/unstables subspaces based on a Newton method. In [25], we present an alter-
native procedure for the computation of the projections based on the calculation of
invariant bundles for cocycles which is also of interest to other problems. We note
that these methods to compute invariant splittings do not use symplectic geometry
and are applicable to any dynamical system.

The solution of the hyperbolic components in equation (3) is discussed in Sec-
tion 4.2 and Appendix A. Indeed, equations of this form appear as well in the
calculation of the invariant splitting discussed in Section 4.4. A first method is
based on an acceleration of the fixed point iteration (Appendix A.1). We note that
to obtain superexponential convergence for the solution of (3), we need to use both
the Fourier representation and the real space representation.
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In the case that the bundles are one-dimensional, there is yet another algorithm,
which is even faster than the previous ones (see Appendix A.2). The algorithms
are discussed for maps, and they do not have an easy analog for flows except by
passing through the integration of differential equations. We think that this is one
case where working with time-1 maps is advantageous.

The most challenging step is the solution of the center component of (3). This
depends on cancelations which use the symplectic structure, involves small divisors
and requires that certain obstructions vanish. Using several geometric identities
that take advantage of the fact that the map is symplectic (see Section 4.3), the
solution of (3) in the center direction is reduced to solving the following equation
for ϕ given η,

ϕ(θ)− ϕ(θ + ω) = η(θ). (4)

Equation (4) can be readily solved using Fourier coefficients provided that
∫
η = 0

(and that ω is sufficiently irrational). The solution is unique up to addition of a
constant.

The existence of obstructions – which are finite dimensional – is one of the main
complications of the problem. It is possible to show that, when the map F is exact
symplectic, the obstructions for the solution are O(||E||2). An alternative method
to deal with these obstructions is to add some new – finite dimensional – unknowns
λ and solve, instead of (1), the equation

F (K(θ))−K(θ + ω) +G(θ + ω)λ = 0

where G(θ) is an explicit function. Even if λ is kept through the iteration involving
approximate solutions, it can be shown that, if the map is exact symplectic, we
have λ = 0. This counterterm approach also helps to weaken the non-degeneracy
assumptions.

A minor issue is that the solutions of (1) are not unique. If K is a solution, K̃

defined by K̃(θ) = K(θ + σ) is also a solution for any σ ∈ R
`. This can be easily

solved by taking an appropriate normalization that fixes the origin of coordinates
in the torus. In [15] it is shown that this is the only non-uniqueness phenomenon of
the equation. Furthermore, this local uniqueness property allows to deduce results
for vector fields from the results for maps. For the algorithms, uniquess is not as
crucial if we can prove that they converge. Nevertheless, if one tries to use a Newton
method, one needs to make sure that one does not try to find an inverse when there
is none. One of the advantage of the algorithms presented here is that, in contrast
with the straightforward Newton method, they do not try to produce an inverse of
the derivative, but rather produce a left inverse.

It is important to remark that the algorithms that we will present can compute
in a unified way both primary and secondary tori. We recall here that secondary
tori are invariant tori which are contractible to a torus of lower dimension, whereas
this is not the case for primary tori. The tori which appear in integrable systems
in action-angle variables are always primary. In quasi-integrable systems, the tori
which appear through Lindstedt series or other perturbative expansions starting
from those of the integrable system are always primary. Secondary tori, however,
are generated by resonances. In numerical explorations, secondary tori are very
prominent features that have been called “islands”. In [28], one can find arguments
showing that these solutions are very abundant in systems of coupled oscillators.
As an example of the importance of secondary tori we will mention that in the
recent paper [13] they constituted the essential object to overcome the “large gap
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problem” and prove the existence of diffusion. In [12], one can find a detailed
analysis of secondary tori.

In this paper, we will mainly discuss algorithms for systems with dynamics de-
scribed by diffeomorphisms. For systems described through vector fields, we note
that, taking surfaces of section in the energy surface, we can reduce the problem
with vector fields to a problem with diffeomorphisms. However, in some practical
applications, it may be convenient to have a direct treatment of the system de-
scribed by vector fields. For this reason, present the invariance equations for flows
in parallel with the discussion for maps, see Section 2.2. In Appendix B we present
algorithms for flows.

Invariant manifolds attached to invariant tori. When the torus is a whiskered torus,
it has invariant manifolds attached to it. For simplicity, in this presentation we will
discuss the case of one dimensional directions – even if the torus can be of higher
dimension.

We use again a parameterization method. Consider an embedding W in which
the motion on the torus is a rotation ω and the motion on the stable (unstable)
whisker consists of a contraction (expansion) at rate µ. The embedding W has to
satisfy the invariance equation

F (W (θ, s))−W (θ + ω, µs) = 0. (5)

Again, the key point is that taking advantage of the geometry of the problem we
can devise algorithms which implement a Newton step to solve equation (5) without
having to store—and much less invert—a large matrix. We first discuss the so-called
order by order method, which serves as a comparison with more efficient methods
based on the reducibility. Although the methods for whikers are based on the same
idea as for the case of tori, they have not been introduced previously and constitute
one of the main novelties of this paper. We present algorithms that given a torus
and the associated linear spaces compute the invariant manifold tangent to it. It is
clearly possible to extend the method to compute stable and unstable manifolds in
general dimensions (or even non-resonant bundles). To avoid increasing the length
of this paper and since higher dimensional examples are harder numerically, we
postpone this to a future paper.

Some remarks on the literature. Invariant tori in Hamiltonian dynamics have
been recognized as important landmarks in Hamiltonian dynamics. In the case
of whiskered tori, their manifolds have also been crucial for the study of Arnold
diffusion.

Since the mathematical literature is so vast, we cannot hope to summarize it
here. We refer to the rather extensive references of [37] for Lagrangian tori and
those of [15] for whiskered tori. We will just briefly mention that [21, 45] the earliest
references on whiskered tori, as well as most of the later references, are based on
transformation theory, that is making changes of variables that reduce the perturbed
Hamiltonian to a simple form which obviously presents the invariant torus. From
the point of view of numerics, this has the disadvantage that transformations are
very hard to implement.

The numerical literature is not as broad as the rigorous one, but it is still quite
extensive. The papers closest to our problems are [31, 30, 32], which consider
tori of systems under quasi-periodic perturbation. These papers also contain a
rather wide bibliography on papers devoted to numerical computation of invariant
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circles. Among the papers not included in the references of the papers above because
these appeared later, we mention [6], which presents other algorithms which apply
to variational problems (even if they do not have a Hamiltonian interpretation).
Another fast method is the fractional iteration method [44]. Note that the problems
considerd in [31, 30, 32] do not involve center directions (and hence, do not deal
with small divisors) and that the frequency and one of the coordinates of the torus
is given by the external perturbation. The methods of [31, 30, 32] work even if
the system is not symplectic (even if they can take advantage of the symplectic
structure).

The papers [33, 34] present and implement calculations of reducible tori. This
includes tori with normally elliptic directions. The use of reducibility indeed leads
to very fast Newton steps, but it still requires the storage of a matrix for the
changes of variables (it can still be O(N) in the space discretization, even if it is
O(N2)i in Fourier space). As seen in the examples in [32, 29], reducibility may fail
in a codimension 1 set even for hyperbolic systems (a Cantor set of codimension
1 manifolds for elliptic tori in Hamiltonian systems) even if the geometric objetcs
persist. For these reasons, we will not discuss methods based on reducibility in this
paper (even if it is a useful and practical tool) and just refer to the references just
mentioned. The solutions of the cohomology equations can be obtained using the
hyperbolicity and not the reducibility. In this paper we also present algorithms to
accelerate the convergence of the methods based on hyperbolicity so that they are
as fast as the methods based on reducibility. See Appendix A.

The paper is organized as follows. In Section 2 we summarize the notions of
mechanics and symplectic geometry we will use. In Section 3 we formulate the
invariance equations for the objects of interest (invariant tori, invariant bundles
and invariant manifolds) and we will present some generalities about the numerical
algorithms.

Algorithms for whiskered tori are discussed in Section 4. In particular, we discuss
how to compute the decomposition (3) of the linearized equation (2), and how to
solve efficiently each equation in (3).

In Section 5 we discuss fast algorithms to compute rank-1 (un)stable manifolds
of whiskered tori. More precisely, we present an efficient Newton method to solve
equation (5).

In Appendix A one can find the fast algorithms to solve cohomology equations
with non-constant coefficients that will be used in the computation of the splitting
(3) as well as to solve the hyperbolic components of equations (3). In Appendices
B-D, one can find the algorithms specially designed for flows, analogous to the ones
for maps.

2. Setup and conventions. We will be working with systems defined on an Eu-
clidean phase space endowed with a symplectic structure. The phase space under
consideration will be

M⊂ R
2d−` × T

`.

We do not assume that the coordinates in the phase space are action-angle vari-
ables. Indeed, there are several systems (even quasi-integrable ones) which are very
smooth in Cartesian coordinates but less smooth in action-angle variables (e.g.,
neighborhoods of elliptic fixed points [17, 20], hydrogen atoms in crossed electric
and magnetic fields [41, 42] and several problems in celestial mechanics [4]).
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We will assume that the Euclidean manifoldM is endowed with an exact sym-
plectic structure Ω = dα (for some one-form α) and we have

Ωz(u, v) = 〈u, J(z)v〉, (6)

where 〈·, ·〉 denotes the inner product on the tangent space of M and J(z) is a
skew-symmetric matrix (J(z) = −J(z)>).

Remark 1. To associate a matrix to a symplectic form we assume a metric onM.
Some of the formulas in [16] assume that the metric is such that the center and
the stable and unstable subspaces are orthogonal. Of course, such a metric indeed
exists, but we found that it is algorithmically convenient to develop formulas that
do not assume that. Hence, we will also have formulas that do not corespond to
the formulas in [16].

An important particular case is when J induces an almost-complex structure,
i.e.

J2 = − Id . (7)

Most of our calculations do not need this assumption. One important case, where
the identity (7) is not satisfied, is when J is a symplectic structure on surfaces of
section chosen arbitrarily in the energy surface or when J is the symplectic form
expressed in symplectic polar coordinates near an elliptic fixed point. When (7)
holds, some calculations can be made faster.

As previously mentioned, we will be considering systems described either by
diffeomorphisms or by vector-fields.

2.1. Systems described by diffeomorphisms. We will consider maps F : U ⊂
M 7→ M which are not only symplectic (i.e. F ∗Ω = Ω, where F ∗ denotes the
pullback by F ) but exact symplectic, that is

F ∗α = α+ dP,

for some smooth function P , called the primitive function.
We will also need Diophantine properties for the frequencies of the torus. For

the case of maps, the useful notion of a Diophantine frequency is:

D(ν, τ) =
{
ω ∈ R

`
∣∣ |ω · k − n|−1 ≤ ν|k|τ ∀ k ∈ Z

` − {0}, n ∈ Z
}
, ν > `.

2.2. Systems described by vector fields. We will assume that the system is
described by a globally Hamiltonian vector-field X , that is

X = J∇H,

where H is a globally defined function on T ∗M.
In the case of flows, the appropriate notion of Diophantine numbers is:

Daff(ν, τ) =
{
ω ∈ R

`
∣∣ |ω · k|−1 ≤ ν|k|τ ∀ k ∈ Z

` − {0}
}
, ν ≥ `− 1

Remark 2. It is well known that for non-Diophantine frequencies substantially
complicated behavior can appear [27, 19]. Observing convincingly Liouvillian be-
haviors seems a very ambitious challenge for numerical exploration.

3. Equations for invariance. In this section, we discuss the functional equations
for the objects of interest, that is, the invariant tori and the associated whiskers.
These functional equations, which describe the invariance of the objects under con-
sideration, are the cornerstone of the algorithms.
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3.1. Functional equations for whiskered invariant tori for diffeomorphisms.
At least at the formal level, it is natural to search quasi-periodic solutions with fre-
quency ω (independent over the integers) under the form of Fourier series

x(n) =
∑

k∈Z`

x̂ke
2πik·ωn , (8)

where ω ∈ R
` and n ∈ Z.

We allow some components of x in (8) to be angles. In that case, it suffices to
take some of the components of x modulo 1.

It is then natural to describe a quasi-periodic function using the so-called “hull”
function K : T` →M defined by

K(θ) =
∑

k∈Z`

x̂ke
2πik·θ,

so that we can write

x(n) = K(nω).

The geometric interpretation of the hull function is that it gives an embedding
from T

` into the phase space. In our applications, the embedding will actually be
an immersion.

It is clear that quasi-periodic functions will be orbits for a map F if and only if
the hull function K satisfies:

F ◦K −K ◦ Tω = 0, (9)

where Tω denotes a rigid rotation

Tω(θ) = θ + ω. (10)

A modification of the invariance equations (9) which we will be important for
our purposes is considering

F ◦K −K ◦ Tω −G ◦ Tωλ = 0, (11)

where the unknowns are now K : T` → M (as before) and λ ∈ R
`. Here, G is

a function of θ taking values in 2d × ` matrices, such that translations along the
direction of G move the constant term in the center directions. In the case that
we have chosen a metric on M (to associate a matrix to a 2-form) such that the
invariant subspaces are orthogonal, we can choose a matrix G of the form

G(θ) = (J ◦K0)
−1DK0,

where K0 denotes a given approximate (in a suitable sense which will be given
below) solution of the equation (9).

It has been shown in [16, 15] (see the vanishing lemma) that, for exact symplectic
maps, if (K,λ) satisfy the equation (11) with K0 close to K, then at the end of
the iteration of the Newton method, we have λ = 0 and, therefore, K is a solution
of the invariance equation (9). In other words, the formulations (11) and (9) are
equivalent. Of course, for approximate solutions of the invariance equation (9),
there is no reason why λ should vanish and it is numerically advantageous to solve
the equation with the extra variable λ.

The advantage of equation (11) for numerical calculations is that, at the initial
stages of the method, when the error in the invariance equation is large, it is not
easy to ensure that certain compatibility conditions are satisfied approximately, so
that the standard Newton method has problems proceeding. On the other hand,
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we can always proceed by adjusting the λ (see the discussion on how to solve them
in Section 4.3). This is particularly important for the case of secondary tori that
we will discuss in Section 3.4. We also note that this procedure makes possible to
deal with tori when the twist condition degenerates.

The equations (9) and (11) will be the centerpiece of our treatment. We will
discretize them using Fourier series and study numerical methods to solve the dis-
cretized equations.

It is important to remark that there are a posteriori theorems (see [16, 15]) for
equations (9), (11) (as well as their analogous for flows (12), (14) ). These theorems
ensure that given a function that satisfies (9), (11) up to a small error and that,
at the same time, satisfies some non-degeneracy conditions (which are given quite
explicitly), then there is a true solution close to the computed one. Hence, if we
monitor the non-degeneracy conditions, we can be sure that the computed solutions
correspond to some real effects and are not spurious solutions.

Remark 3. Notice that for whiskered tori the dimension of the torus ` is smaller
than half the dimension of the phase space 2d. Hence, the algorithms presented
here have the advantage that they look for a function K of ` variables to compute
invariant objects of dimension `. This is important because the cost of handling
functions grows exponentially fast with the number of variables. Indeed, to dis-
cretize a function of ` variables in a grid of side h into R

2d, one needs to store
(1/h)` · 2d real values.

Remark 4. Equations (9) and (11) do not have unique solutions. Observe that if
K is a solution, for any σ ∈ R

`, K ◦ Tσ is also a solution. In [15], it is shown that,
under the non-degeneracy assumptions of the main theorem, this is the only non
uniqueness phenomenon in a sufficiently small neighborhood of K. Hence, it is easy
to get rid of it by imposing some normalization. See Section 3.5.2 for a discussion
on this issue.

3.2. Functional equations for whiskered invariant tori for vector-fields. In
this case, one can write

x(t) =
∑

k∈Z`

x̂ke
2πik·ωt

where ω ∈ R
`, t ∈ R and then the hull function K is defined by

x(t) = K(ωt).

The invariance equation for flows is written:

∂ωK −X ◦K = 0, (12)

where ∂ω denotes the derivative in direction ω

∂ω =
∑̀

k=1

ωk∂θk . (13)

The modification of (12) incorporating a counterterm is:

∂ωK −X ◦K −Gλ = 0, (14)

where, under the assumption that subspaces are orthogonal for the metric on M,
G(θ) = J(K0)

−1(DX ◦K0) with K0 being a given embedding satisfying some non-
degeneracy conditions.
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Remark 5. Recall that, since autonomous Hamiltonian systems preserve energy,
we can take a surface of section and deal with the return map. This reduces by
2 the dimension of the phase space and the parameterization of the torus requires
1 variable less. In practice, it is much more efficient to use a numerical integrator
to compute the point of intersection with the surface of section than to deal with
functions of one more variable and with two more components.

3.3. Some global topological considerations. In our context, both the domain
T
` and the range of K have topology. As a consequence, there will be some topolog-

ical considerations in the way that the torus T` gets embedded in the phase space.
More explicitly, the angle variables of T` can get wrapped around in different ways
in the phase space.

A concise way of characterizing the topology of the embedding is to consider the
lift of K to the universal cover, i.e.

K̂ : R` → R
2d−` × R

`,

in such a way that K is obtained from K̂ by identifying variables in the domain
and in the range that differ by an integer.

It is therefore clear that ∀ e ∈ Z
`

K̂p(θ + e) = K̂p(θ),

K̂q(θ + e) = K̂q(θ) + I(e),
(15)

where K̂p, K̂q denote the projections of the lift on the p and q coordinates of R2d−`×
R

`. It is easy to see that I(e) is a linear function of e, namely

I(e)i=1,...,` =

(∑̀

j=1

Iijej

)

i=1,...,`

(16)

with Iij ∈ Z.

We note that if a function K̂q satisfies

K̂q(θ + e) = K̂q(θ) + I(e) ,

the function
K̃q(θ) ≡ K̂q(θ)− I(θ) (17)

is e−periodic. The numerical methods will always be based on studying the periodic

functions K̃q, but we will not emphasize this unless it can lead to confusion.
Of course, the integer valued matrix I = {Iij}ij remains constant if we modify

the embedding slightly. Hence, it remains constant under continuous deformation.

For example, in the integrable case with ` = d, invariant tori satisfy K̂q(θ) = θ, so
that we have I = Id. Hence, all the invariant tori which can be continued from tori
of the integrable system will also have I = Id.

3.4. Secondary tori. One can produce other `-dimensional tori for which the
range of I is of dimension less than `. These tori are known as secondary tori. It
is easy to see that if rank(I) < ` we can contract K(T`) to a diffeomorphic copy of
T
rank(I). Even in the case of maximal tori ` = d, one can have contractible direc-

tions. The most famous example of this phenomenon are the “islands” generated
in twist maps around resonances.

Secondary tori do not exist in the integrable system and they cannot be even
continuously deformed into some of the tori presented in the integrable system.
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This is often described informally as saying that the secondary tori are generated
by the resonances.

Perturbative proofs of existence of secondary tori are done in [38] and in [13]
and in more detail in [12]. In [14] one can find rigorous results showing that these
islands have to be rather abundant (in different precise meanings) in many classes of
2D-maps. In particular, for standard-like maps, secondary tori appear at arbitrarily
large values of the parameter.

In [28], there are heuristic arguments and numerical simulations arguing that in
systems of coupled oscillators, the tori with contractible directions are much more
abundant than the invariant tori which can be continued from the integrable limit.

In view of these reasons, we will pay special attention to the computation of
secondary tori.

We want to emphasize on some features of the method presented here, which are
crucial for the computation of secondary tori:

• The method does not require either the system to be close to integrable nor
to be written in action-angle variables.
• The modification of the invariance equations (9) and (12) allows one to adjust
some global averages required to solve the Newton equations (see equations
(45) and the accompanying discussion on how to solve them in Section 4.3).

• The periodicity of the function K̃ can be adjusted by the matrix I introduced
in (15). Hence, the rank of the matrix I has to be chosen according to the
number of contractible directions.

3.5. Equations for the invariant whiskers. Invariant tori with ` < d may have
associated invariant bundles and whiskers. We are interested in computing the
invariant manifolds which contain the torus and are tangent to the invariant bun-
dles of the linearization around the torus. This includes the stable and unstable
manifolds but also invariant manifolds associated to other invariant bundles of the
linearization, such as the slow manifolds, associated to the less contracting direc-
tions.

Using the parameterization method, it is natural to develop algorithms for in-
variant manifolds tangent to invariant sub-bundles that satisfy a non-resonance
condition (see [9]). This includes as particular cases, the stable/unstable manifolds,
the strong stable and strong unstable ones as well as some other slow manifolds
satisfying some non-resonance conditions.

To avoid lengthening the paper, we restrict in this paper just to the one-
dimensional manifolds (see Section 5), where we do not need to deal with res-
onances as it is the case in higher dimensions. We think that, considering this
particular case, we can state in a more clear and simpler way the main idea behind
the algorithms. We will come back to the study of higher dimensional manifolds in
future work.

3.5.1. Invariant manifolds of rank 1. Again we use a parameterization to describe
the whiskers. This amounts to finding a solution u of the equations of motion under
the form

u(n) = W (ωn, µns)

in the discrete time case and

u(t) = W (ωt, seµt)
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in the continuous time case, where W : T` × (V ⊂ R) → M and µ ∈ R. The
function W has then to satisfy the following invariance equations

F (W (θ, s)) = W (θ + ω, µs),

∂ωW (θ, s) + µs
∂

∂s
W (θ, s) = (X ◦W )(θ, s),

(18)

for the case of maps and flows, respectively.
Note that equations (18) imply that in variables (θ, s) the motion on the torus

consists of a rigid rotation of frequency ω whereas the motion on the whiskers
consists of a contraction (or an expansion) by a constant µ (eµ in the case of flows).
We call contractive the situation |µ| < 1 for maps (or µ < 0 for flows). We call
expansive the case when |µ| > 1 for maps (or µ > 0 for flows). Note that if W (θ, s)
satisfies (18) then W (θ, 0) is a solution of the invariance equations (9) or (12).

3.5.2. Uniqueness of solutions of the invariance equation for whiskers. The solu-
tions of equations (18) are not unique. Indeed, if W (θ, s) is a solution, for any

σ ∈ T
`, b ∈ R, we have that W̃ (θ, s) = W (θ + σ, sb) is also a solution. This

non-uniqueness of the problem can be removed by supplementing the invariance
equation with a normalization condition.

Some suitable normalization conditions (in the case of maps) that make the
solutions unique are

∫

T`

(W (θ, 0)− I(θ)) · νi = 0,

DF (W (θ, 0))∂sW (θ, 0) = µ∂sW (θ, 0),

||∂sW (·, 0)|| = ρ,

(19)

where {νi}
L
i=1 is a basis for Range(I) (L is the dimension) and I is a linear function

introduced in (16), ∂sW denotes the derivative with respect to the variable s, ρ > 0
is any arbitratrily chosen number and ‖.‖ stands for a suitable norm.

The fact that the solutions of (9) supplemented by (19) are locally unique is
proved in [15]. In this paper, we will see that these normalizations uniquely de-
termine the Taylor expansions (in s) of the function W whenever the first term
W1(θ) ≡ ∂sW (θ, 0) is fixed, and we will present algorithms to perform these com-
putations.

The first equation in (19) amounts to choosing the origin of coordinates in the
parameterization of the torus and, therefore eliminates the ambiguity corresponding
to σ.

The second equation in (19) indicates that W1(θ) is chosen to be a vector in the
hyperbolic direction. We furthermore require that we have chosen the coordinate
so that it is an eigenvector of the expanding/contracting direction.

The third equation in (19) chooses the eigenvalue. Equivalently, it fixes the scale
in the variables s. Observe that, setting b amounts to multiplying W1 by b. Hence,
setting the norm of ∂sW sets the scale in s.

From the mathematical point of view, all choices of ρ are equivalent. Neverthe-
less, from the numerical point of view, it is highly advantageous to choose ||W1|| so
that the numerical coefficients of the expansion (in s) of W have norms that neither
grow nor decrease fast. This makes the computation more immune to round off
error since round-off becomes more important when we add/subtract numbers of
very different sizes.
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3.6. Fourier-Taylor discretization. One of the ingredients of algorithms to solve
the functional equations is to consider discretizations of functions one searches for.

In this section, we introduce the discretizations we will use. Roughly, for periodic
functions, we will use both a Fourier series discretization and a real discretization
on a grid. We will show that the Newton step can be decomposed into substeps
which require only O(N) operations in either of the representations. Of course, one
can switch between both representations using O(N log(N)) operations using FFT
algorithms. For the study of invariant manifolds, we will use Taylor series in the
real variables.

3.6.1. Fourier series discretization. Since we are seeking functions K which are
periodic in the angle variable θ, it is natural to discretize them retaining a finite
number of their Fourier coefficients

KN(θ) =
∑

k∈ON

cke
2iπk·θ, (20)

where
ON =

{
k ∈ Z

` | |k| ≤ N
}
.

Since we will deal with real-valued functions, we have ck = c̄−k and one can just
consider the cosine and sine Fourier series,

KN(θ) = a0 +
∑

k∈ON

ak cos(2πk · θ) + bk sin(2πk · θ). (21)

These Fourier discretizations have a very long history going back to classical as-
tronomy, but have become much more widely used with computers and go under
different name such as “automatic differentiation”. The manipulation of these poly-
nomials are reviewed in [35]. A recent review of their applications in dynamics –
including implementation issues and examples – is [24].

The main shortcoming of Fourier series discretization of a function is that they
are not adaptive and that for discontinuous functions, they converge very slowly and
not uniformly. These shortcomings are however not very serious for our applications.
Since the tori are invariant under rigid rotations, they tend to be very homogeneous,
so that adaptativity is not a great advantage. Also, it is known [15] that if tori are
Cr for sufficiently large r, they are in fact analytic so that Fourier series converge
fast.

The fact that the Fourier series converge slowly for functions with discontinuities
is a slight problem if one wants to compute tori close to the breakdown of analyt-
icity, when the tori transform into Aubry-Mather objects. Of course, when they
are far from breakdown – as it happens in many interesting problems in celestial
mechanics – the Fourier coefficients converge very fast. To perform calculations
close to breakdown, the a posteriori theorems in [15] prove invaluable help to have
confidence in the computed objects.

3.6.2. Fourier vs grid representation. Another representation of the function K is
to store the values in a regularly spaced grid. For functions of ` variables, we see
that if we want to use N variables, we can store either the Fourier coefficients of
index up to O(N1/`) or the values on a grid of step O(N−1/`).

Some operations are very fast on the real space variables, for example multiplica-
tion of functions (it suffices to multiply values at the points of the grid). Also, the
evaluation of F ◦K is very fast if we discretize on a grid (we just need to evaluate the
function F for each of the points on the grid). Other operations are fast in Fourier
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representation. For example, in Fourier space representation it is fast to shift the
functions, to take derivatives and, as we will see in Section 3.7, to solve cohomology
equations. Hence, our iterative step will consist in the application of several oper-
ations, all of which are fast – O(N) – either in Fourier mode representation or in a
grid representation. Of course, using the Fast Fourier Transform, we can pass from
a grid representation to Fourier coefficients or viceversa in O(N lnN) operations.
There are extremely efficient implementations of the FFT algorithm that take into
account not only operation counts but also several other characteristics (memory
access, cache, etc.) of modern computers. (See for example [18] for a public domain
implementation that takes advantage of all these issues.)

3.6.3. Fourier-Taylor series. For the computation of whiskers of invariant tori, we
will use Fourier-Taylor expansions of the form

W (θ, s) =

∞∑

n=0

Wn(θ)s
n, (22)

where Wn are 1-periodic functions in θ which we will approximate using Fourier
series (20).

To manipulate this type of series we will use the so called automatic differentia-
tion algorithms (see [35],[24]). For the basic algebraic operations and the elementary
transcendental functions (exp, sin, cos, log, power, etc.), they provide an expression
for the Taylor coefficients of the result in terms of the coefficients of each of the
terms.

3.7. Cohomology equations and Fourier discretization. In the Newton step
to construct KAM tori, one faces solving cohomology equations, that is, given a
periodic (on T

`) function η, we want to find another periodic function ϕ solving

ϕ− ϕ ◦ Tω = η,

∂ωϕ = η.
(23)

(the first and second equations are the small divisors equations for maps and flows,
respectively).

As it is well known, equations (23) have a solution provided that

η̂0 ≡

∫

T`

η = 0, (24)

and that ω is Diophantine in the appropriate sense. The Fourier coefficients ϕ̂k of
the solution ϕ of (23) are then given respectively by

ϕ̂k =
η̂k

1− e2πik·ω
,

ϕ̂k =
η̂k

2πiω · k
.

(25)

where η̂k are the Fourier coefficients of the function η.
Notice that the solution ϕ is unique up to the addition of a constant (the average

ϕ̂0 of ϕ is arbitrary).
Equations (23) and their solutions (25) are very standard in KAM theory (see

the exposition in [37]). Very detailed estimates can be found in [43], when ω is
Diophantine (which is our case).



1324 GEMMA HUGUET, RAFAEL DE LA LLAVE AND YANNICK SIRE

4. Fast Newton methods for (possibly) whiskered tori. In this section we
develop an efficient Newton method to solve the invariance equations (9)-(12) and
(11)-(14). We mainly focus on the case of maps (the case for vector fields being
similar is described in Appendix B).

We emphasize that the algorithm applies both to whiskered tori and to La-
grangian tori. Indeed, the case of Lagrangian tori is simpler. The hyperbolic part
of the Lagrangian tori is just empty so that we do not need to compute the splittings
(see Remark 7).

We will assume that the motion on the torus is a rigid rotation with a Diophantine
frequency ω ∈ R

`.
We will consider tori that have a hyperbolic splitting

TK(θ)M = EcK(θ) ⊕ E
s
K(θ) ⊕ E

u
K(θ), (26)

such that there exist 0 < µ1, µ2 < 1, µ3 > 1 satisfying µ1µ3 < 1, µ2µ3 < 1 and
C > 0 such that for all n ≥ 1 and θ ∈ T

`

v ∈ EsK(θ) ⇐⇒ |Z(n, θ)v| ≤ Cµn
1 |v| ∀n ≥ 1

v ∈ EuK(θ) ⇐⇒ |Z(n, θ)v| ≤ Cµn
2 |v| ∀n ≤ 1

v ∈ EcK(θ) ⇐⇒ |Z(n, θ)v| ≤ Cµn
3 |v| ∀n ∈ Z

(27)

where Z(n, θ) is the cocycle with generator Z(θ) = DF (K(θ)) and frequency ω, i.e.
Z : Z× T

` → GL(2d,R) is given by

Z(n, θ) =





Z(θ + (n− 1)ω) · · ·Z(θ) n ≥ 1,

Id n = 0,

Z−1(θ + (n+ 1)ω) · · ·Z−1(θ) n ≤ 1.

(28)

We will also assume that

dim EcK(θ) = 2`, dim EsK(θ) = dim EuK(θ) = d− `. (29)

We associate to the splitting (26) the projections Πc
K(θ), Π

s
K(θ) and Πu

K(θ) over

the invariant spaces EcK(θ), E
s
K(θ) and E

u
K(θ).

In [25], we provide a method to compute the rank-1 bundles by iterating the co-
cycle. Of course, once we have computed the vector spanning the rank-1 (un)stable
bundle it is very easy to obtain the projections. In Section 4.4 we discuss an alter-
native to compute the projections by means of a Newton method for which we do
not need to assume that the bundle is 1-dimensional.

4.1. Some remarks on the symplectic geometry of the assumptions. In
this section, we collect some well known remarks about the symplectic properties
of the tori. The most important one is that they are isotropic and that the center
direction has to have a dimension at least twice that of the torus.

Since F is symplectic (i.e. F ∗Ω = Ω, where Ω is the symplectic 2-form (6)), for
all n ≥ 1 and n ≤ −1

Ω(u, v) = Ω(DFnu,DFnv),
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so that, if u, v have rates of decrease, by taking limits in the appropriate direction
we obtain that Ω is zero. That is, we get

Ω(Es, Es) = 0, Ω(Eu, Eu) = 0,

Ω(Ec, Es) = 0, Ω(Ec, Eu) = 0.
(30)

Notice that (30) implies that the symplectic form Ω is non-degenerate on Ec,
that is, given u ∈ Ec, if Ω(u, v) = 0 ∀v ∈ Ec ⇒ u = 0. Indeed, using (30) we have
that given u ∈ Ec, Ω(u, v) = 0 ∀v ∈ TK(θ)M. Since Ω is non-degenerate on M,
then u = 0.

Therefore, Ec has its own symplectic form Ω|Ec and we can choose any metric in
Ec and the associated matrix J|Ec is a full-rank matrix.

It is also well known that the range of DK is isotropic (see [45]). This is because

K∗Ω|Ec = K∗F ∗Ω|Ec = (F ◦K)∗Ω|Ec = (K ◦ Tω)
∗Ω|Ec = T ∗

ωK
∗Ω|Ec ,

where K∗, F ∗ and T ∗
ω denote the pullback by K,F and Tω, respectively and Ω|Ec

is the symplectic 2-form on Ec. Since the only forms invariant under irrational
rotations are constant and K∗Ω is exact because Ω|Ec is exact we conclude that
K∗Ω|Ec = 0. In coordinates, we have that

DKT (J ◦K)|EcDK = 0.

This means that Range DK is orthogonal to Range (J ◦K)|EcDK. Hence,

RangeDK ∩ Range (J ◦K)|EcDK

= (J ◦K)|Ec(Range (J ◦K)−1
|EcDK ∩ RangeDK)

= {0},

where we have used that J|Ec is a full rank matrix.
Therefore, the assumption (29) implies that the only non-hyperbolic directions

are those spanned by the tangent to the torus and its symplectic conjugate, that
is, there are no elliptic directions except those that are forced by the symplectic
structure and the fact that the motion on the torus is a rotation.

4.2. General strategy of the Newton method to solve the invariance equa-
tion. In this section we will design a Newton method to solve the invariance equa-
tion (9) and the modified one (11), and discuss several algorithms to deal with the
linearized equations.

We first define the following concept of approximate solution.

Definition 4.1. We say that K (resp. (K,λ)) is an approximate solution of equa-
tion (9) (resp. (11)) if

F ◦K −K ◦ Tω = E,

(resp. F ◦K −K ◦ Tω −G ◦ Tωλ = E),
(31)

where E is small.

The Newton method consists in computing ∆ in such a way that replacing K by
K +∆ in (31) and expanding the LHS in ∆ up to order ‖∆‖2, it cancels the error
term E.

Remark 6. Throughout the paper, we are going to denote ‖.‖ some norms in
functional spaces without specifying what they are exactly. We refer the reader to
[36, 15], where the whole theory is developed and the convergence of the algorithms
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is proved. Recall that one of the key ideas of KAM theory is that the norms are
modified at each step.

Performing a straightforward calculation, we obtain that the Newton procedure
to solve equation (9) and (12), given an approximate solution K, consists in finding
∆ satisfying

(DF ◦K)∆−∆ ◦ Tω = −E. (32)

For the modified invariance equation (11), given an approximate solution (K,λ),
the Newton method consists in looking for (∆, δ) in such a way that K + ∆ and
λ+ δ eliminate the error in first order. The linearized equation in this case is

(DF ◦K)∆−∆ ◦ Tω −G ◦ Tωδ = −E, (33)

where one can take K0 = K.
As it is well known, the Newton method converges quadratically in ‖E‖ and the

error Ẽ at step K +∆ is such that

‖Ẽ‖ ≤ C‖E‖2,

where E is the error at the previous step.
In order to solve the linearized equations (32) and (33), we will first project

them on the invariant subspaces Ec, Eu and Es, and then solve an equation for each
subspace.

Thus, let us denote

∆s,c,u(θ) = Πs,c,u
K(θ)∆(θ),

Es,c,u(θ) = Πs,c,u
K(θ+ω)E(θ),

(34)

such that ∆(θ) = ∆s(θ) + ∆c(θ) + ∆u(θ). Then, by the invariant properties of the
splitting, the linearized equations for the Newton method (32) and (33) split into:

DF (K(θ))∆c(θ)−∆c ◦ Tω(θ) = −E
c(θ),

DF (K(θ))∆s(θ)−∆s ◦ Tω(θ) = −E
s(θ),

DF (K(θ))∆u(θ)−∆u ◦ Tω(θ) = −E
u(θ),

(35)

and

DF (K(θ))∆c(θ)−∆c ◦ Tω(θ) + Πc
K(θ+ω)G(θ + ω)δ = −Ec(θ),

DF (K(θ))∆s(θ) −∆s ◦ Tω(θ) + Πs
K(θ+ω)G(θ + ω)δ = −Es(θ),

DF (K(θ))∆u(θ)−∆u ◦ Tω(θ) + Πu
K(θ+ω)G(θ + ω)δ = −Eu(θ).

(36)

Notice that once δ is obtained, the equations (36) on the hyperbolic spaces reduce
to equations of the form (35). More precisely,

DF (K(θ))∆s,u(θ)−∆s,u ◦ Tω(θ) = −Ẽ
s,u(θ) (37)

where

Ẽs,u = Es,u(θ) + Πs,u
K(θ+ω)G(θ + ω)δ.

Equations (35) and (36) for the stable and unstable spaces can be solved iter-
atively using the contraction properties of the cocycles on the hyperbolic spaces



EFFICIENT ALGORITHMS FOR INVARIANT TORI AND THEIR MANIFOLDS 1327

given in (27). Indeed, a solution for equations (37) is given explicitly by

∆s(θ) = Ẽs◦T−ω(θ)+

∞∑

k=1

(DF ◦K◦T−ω(θ)×· · ·×DF ◦K◦T−kω(θ))(Ẽ
s◦T−(k+1)ω(θ))

(38)
for the stable equation, and

∆u(θ) = −

∞∑

k=0

(DF−1 ◦K(θ)× · · · ×DF−1 ◦K ◦ Tkω(θ))(Ẽ
u ◦ Tkω(θ)) (39)

for the unstable direction. Of course, the contraction of the cocycles guarantees the
uniform convergence of these series.

The algorithms presented in Appendix A allow us to compute the solutions ∆s,u

of equations (37) efficiently.
In Section 4.3 we discuss how to solve equations (35) and (36) for the center

direction.
Hence, the Newton step of the algorithm for whiskered tori that we summarize

here will be obtained by combining several algorithms.

Algorithm 4.2. Consider given F , ω, K0 and an approximate solution K (resp.
K,λ), perform the following operations:

A) Compute the invariant splittings and the projections associated to the cocycle
Z(θ) = DF ◦K(θ) and ω using the algorithms described in Section 4.4 (or in
[25]).

B) Project the linearized equation to the hyperbolic space and use the algorithms
described in Appendix A to obtain ∆s,u.

C) Project the linearized equation on the center subspace and use the Algorithm
4.3 in Section 4.3 to obtain ∆c and δ.

D) Set K +∆s +∆u +∆c → K and λ+ δ → λ

Of course, since this is a Newton step, it will have to be iterated repeatedly until
one reaches solutions up to a small tolerance error.

We will start by some remarks on the different steps of Algorithm 4.2 and, later,
we will provide more details on them.

Remark 7. It is important to remark that the above Algorithm 4.2 also applies to
the case of Lagrangian tori. In this case the center space is the whole phase space,
so that there is no need to compute the splitting. Hence, for Lagrangian tori, the
steps A) and B) of Algorithm 4.2 are trivial and do not need any work.

Remark 8. The main issue of the Newton method is that it needs a good initial
guess to start the iteration. On the other hand, any reasonable approximation can
be used as an input to the Newton method. The algorithm used to generate the
approximation does not need to be justified theoretically. It only needs to work in
practice. Indeed, our problems have enough structure so that one can use Lindstedt
series, variational methods, approximation by periodic orbits, frequency methods,
besides the customary continuation methods.

Remark 9. As we have mentioned in Remark 4, the solutions of (9) and (12) are
not unique. Therefore, in order to avoid dealing with non-invertible matrices in the
Newton procedure, we will impose the normalization condition∫

T`

(K(θ)− I(θ)) · νi = 0
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where {νi}
L
i=1 is a basis for Range(I) (L being the dimension) and I is the linear

function introduced in (16).

4.3. Fast Newton method for (whiskered) tori: the center directions. We
present here the Newton method to solve the equations in the center subspace for
the case of maps.

For Lagrangian tori, the hyperbolic directions are empty and the study of the
center direction is the only component which is needed. Hence, the algorithms
discussed in this section allow to solve, in particular, equations (32) and (33) in the
case of Lagrangian tori. For a discussion of the center equations for Hamiltonian
flows, we refer the reader to Appendix B.

The key observation is that the linearized Newton equations (32) and (33) are
closely related to the dynamics and therefore, we can use geometric identities to find
a linear change of variables that reduces the Newton equations to upper diagonal
difference equations with constant coefficients. This phenomenon is often called
“automatic reducibility”.

The idea is stated in the following proposition:

Proposition 1 (Automatic reducibility, see [16, 15]). Given an approximation K
of the invariance equation as in (31), denote

α(θ) = DK(θ)

N(θ) =
(
[α(θ)]>α(θ)

)−1

β(θ) = α(θ)N(θ)

γ(θ) = (J ◦K(θ))−1
|Ecβ(θ)

(40)

where (J ◦K(θ))−1
|Ec denotes the matrix associated to the 2-form of the center sub-

space. Form the following matrix

M(θ) = [α(θ) , γ(θ)], (41)

where by [·, ·] we denote the 2d× 2` matrix obtained by juxtaposing the two 2d × `
matrices that are in the arguments.

Then, we have

(DF ◦K(θ))M(θ) = M(θ + ω)

(
Id A(θ)
0 Id

)
+ Ê(θ) (42)

where
A(θ) = β(θ + ω)>[(DF ◦K(θ))γ(θ)− γ(θ + ω)], (43)

and ‖Ê‖ ≤ ‖DE‖ in the case of (32) or ‖Ê‖ ≤ ‖DE‖+ |λ| in the case of (33).

Remark 10. If the symplectic structure is almost-complex (i.e. J2 = − Id), we
have that

β(θ + ω)>γ(θ + ω) = 0,

since the torus is isotropic. Then A(θ) has a simpler expression given by

A(θ) = β(θ + ω)>(DF ◦K)(θ)γ(θ).

Once again, we omit the definition of the norms used in the bounds for Ê. For
these precisions, we refer to the paper [15], where the convergence of the algorithm
is established.
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It is interesting to pay attention to the geometric interpretation of the identity
(42). Note that, taking derivatives with respect to θ in (31), we obtain that

(DF ◦K)DK −DK ◦ Tω = DE,

which means that the vectors DK are invariant under DF ◦ K (up to a certain
error). Moreover, (J ◦K)−1

Ec DKN are the symplectic conjugate vectors of DK, so
that the preservation of the symplectic form clearly implies (42). The geometric
interpretation of the matrix A(θ) is a shear flow near the approximately invariant
torus. See Figure 1.

v(θ)

u(θ)

K(θ)

v(θ + ω)

u(θ + ω)

K(θ + ω)

DF (K(θ))v(θ)

Figure 1. Geometric representation of the automatic reducibility
where u = DK, v = (J ◦K)−1

Ec DKN

To be able to use the change of unknowns via the matrixM previously introduced
on the center subspace, one has to ensure that one can identify the center space
EcK(θ) with the range of M . This is ensured by taking the matrix JEc associated to

the symplectic form of the center manifold. More details of the proof are given in
[15] to which we refer.

For our purposes it is important to compute not just the invariant spaces, but
also the projections over invariant subspaces. Knowing one invariant subspace is
not enough to compute the projection, since it also depends on the complementary
space chosen.

Next, we will see that the result stated in Proposition 1 allows us to design a
very efficient algorithm for the Newton step.

Notice first that if we change the unknowns ∆ = MU in (32) and (33) and we
use (42) we obtain

M(θ + ω)

(
Id A(θ)
0 Id

)
U(θ)−M(θ + ω)U(θ + ω)

−G(θ + ω)δ = −E(θ)

(44)

Of course, the term involving δ has to be omitted when considering (32).
Multiplying (44) by M(θ+ ω)>J(K(θ + ω))|Ec and using the invertibility of the

matrix M(θ+ω)>J(K(θ+ω))|EcM(θ+ω), we are left with the system of equations

U1(θ) +A(θ)U2(θ)−B1(θ)δ − U1(θ + ω) = −Ẽ1(θ)

U2(θ)− U2(θ + ω)−B2(θ)δ = −Ẽ2(θ)
(45)
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where

Ẽ(θ) = (M(θ + ω)>J(K(θ + ω))|EcM(θ + ω))−1M(θ + ω)>J(K(θ + ω))|EcE(θ)

B(θ) = [(M>J(K)|EcM)−1M>J(K)|EcG] ◦ Tω(θ)

and the subindices i = 1, 2 indicate symplectic coordinates.
When K is close to K0, we expect that B2 is close to the `-dimensional identity

matrix and B1 is small.
The next step is to solve equations (45) for U (and δ). Equations (45) are

equations of the form considered in (23) and they can be solved very efficiently in
Fourier space.

More precisely, the second equation of (45) is uncoupled from the first one and
allows us to determine U2 (up to a constant) and δ. The role of the parameter δ is
now clear. It allows us to adjust some global averages that we need to be able to

solve equations (45). Indeed, we choose δ so that the term B2(θ)δ − Ẽ2 has zero
average (which is a necessary condition to solve small divisor equations as described
in Section 3.7). This allows us to solve equation (23) for U2. We then denote

U2(θ) = Ũ2(θ) + U2

where Ũ2(θ) has average zero and U2 ∈ R.

Once we have Ũ2, we can substitute U2 in the first equation. We get U2 imposing
that the average of

B1(θ)δ −A(θ)Ũ2(θ) −A(θ)U2 − Ẽ1(θ)

is zero and then we can find U1 up to a constant according to (25).
We therefore have the following algorithm to solve (3) in the center direction,

Algorithm 4.3 (Newton step in the center direction). Consider given F , ω, K0

and an approximate solution K (resp. K,λ). Perform the following calculations

1. (1.1) Compute F ◦K
(1.2) Compute K ◦ Tω

(1.3) Compute the invariant projections, Πs,Πu,Πc.
2. Set Ec = Πc(F ◦K −K ◦Tω) (resp. set E

c = Πc(F ◦K −K ◦ Tω −G ◦ Tωλ))
3. Following (40)

(3.1) Compute α(θ) = DK(θ)

(3.2) Compute N(θ) =
(
[α(θ)]>α(θ)

)−1

(3.3) Compute β(θ) = α(θ)N(θ)
(3.4) Compute γ(θ) = (J(K(θ)))−1

|Ecβ(θ)

(3.5) Compute M(θ) = [α(θ), γ(θ)]
(3.6) Compute M(θ + ω)
(3.7) Compute (M(θ + ω)>J(K(θ + ω))|EcM(θ + ω))−1

(3.8) Compute Ẽ(θ) = (M(θ + ω)>J(K(θ + ω))|EcM(θ + ω))−1Ec(θ).

We denote Ẽ1, Ẽ2 the components of Ẽ along J−1
Ec DK and DK, respec-

tively.
(3.9) Compute

A(θ) = β(θ + ω)>[(DF ◦K(θ))γ(θ) − γ(θ + ω)]

as indicated in (43)
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4. (4.1) Solve for U2 satisfying

U2 − U2 ◦ Tω = −Ẽ2 +

∫

T`

Ẽ2

(resp.
(4.1′) Solve for δ such that

∫

T`

Ẽ2 −

[∫

T`

B2

]
δ = 0

(4.2′) Solve for U2 satisfying

U2 − U2 ◦ Tω = −Ẽ2 +B2δ

Set U2 such that the average is 0.)
5. (5.1) Compute A(θ)U2(θ)

(5.2) Solve for U2 satisfying

0 =

∫

T`

Ẽ1(θ) +

∫

T`

A(θ)U2(θ) +

[ ∫

T`

A(θ)

]
U2

(5.3) Find U1 solving

U1 − U1 ◦ Tω = −Ẽ1 −A(U2 + U2)

Normalize it so that
∫
T` U1 = 0

(resp.
(5.1′) Compute A(θ)U2(θ)
(5.2′) Solve for U2 satisfying

0 =

∫

T`

Ẽ1(θ)−

∫

T`

B1(θ)δ +

∫

T`

A(θ)U2(θ) +

[∫

T`

A(θ)

]
U2

(5.3′) Find U1 solving

U1 − U1 ◦ Tω = −Ẽ1 −A(U2 + U2) +B1δ

Normalize it so that
∫
T` U1 = 0.)

6. The improved K is K(θ) +M(θ)U(θ)
(resp. the improved λ is λ+ δ).

Notice that steps (1.2), (3.1), (3.6), (4.1) (resp. (4.2′)), (5.3) (resp. (5.3′)) in
Algorithm 4.3 are diagonal in Fourier series, whereas the other steps are diagonal
in the real space representation. Note also that the algorithm only stores vectors
whose size is of order N .

Remark 11. Using the symplectic properties of the matrix M , step (3.7) can be
sped up.

When the torus is exactly invariant we have that the invariant torus is co-
isotropic, that is DK>(J ◦ K)|EcDK = 0. Hence, when the torus is invariant,
we have that

M(θ + ω)>J(K(θ + ω))|EcM(θ + ω) =

(
0 Id
− Id P (θ)

)
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where P (θ) = −NT (θ)DKT (θ)(J ◦K)−1
|Ec(θ)DK(θ)N(θ). Therefore, the inverse can

be computed just rearranging terms, i.e.

[M(θ + ω)>J(K(θ + ω))|EcM(θ + ω)]−1 =

(
P (θ) − Id
Id 0

)
(46)

Notice that when J induces an almost-complex structure, i.e. J2 = − Id, P (θ) =
0 and the matrix M is symplectic from the original form to the standard one (it
transforms the original symplectic structure into the standard symplectic structure).

For the purposes of a Newton Method, we can use the expression (46) for the
inverse in step (3.7) and still obtain a quadratically convergent algorithm.

4.4. A Newton method to compute the projections over invariant sub-
spaces. In this section we will discuss a Newton method to compute the projections
Πc

K(θ), Π
s
K(θ) and Πu

K(θ) associated to the linear spaces EcK(θ), E
s
K(θ) and E

u
K(θ) where

K is an (approximate) invariant torus. More precisely, we will design a Newton
method to compute Πs

K(θ) and Πcu
K(θ) = Πc

K(θ)+Πu
K(θ). Similar arguments allow us

to design a Newton method to compute Πu
K(θ) and Πcs

K(θ) = Πc
K(θ) +Πs

K(θ). Then,

of course, Πc
K(θ) is given by

Πc
K(θ) = Πcs

K(θ)Π
cu
K(θ) = Πcu

K(θ)Π
cs
K(θ) .

We note that this method does not use the symplectic geometry of the problem
and that, hence, it is applicable to any dynamical system.

Let us discuss first a Newton method to compute Πs
K(θ) and Πcu

K(θ). To simplify

notation, from now on, we will omit the dependence in K(θ).
Given a cocycle Z(θ) (which in our case will be Z(θ) = DF (K(θ))), we will look

for maps Πs : T` →M2d×2d(R) and Πcu : T` →M2d×2d(R) satisfying the following
equations:

Πcu(θ + ω)Z(θ)Πs(θ) = 0, (47)

Πs(θ + ω)Z(θ)Πcu(θ) = 0, (48)

Πs(θ) + Πcu(θ) = Id, (49)

[Πs(θ)]2 = Πs(θ), (50)

[Πcu(θ)]2 = Πcu(θ), (51)

Πs(θ)Πcu(θ) = 0, (52)

Πcu(θ)Πs(θ) = 0. (53)

Notice that the system of equations (47)–(53) is redundant. It is easy to see that
equations (51), (52) and (53) follow from equations (49) and (50). Therefore, the
system of equations that needs to be solved is reduced to equations (47)–(50).

We are going to design a Newton method to solve equations (47)–(48) and use
equations (49)–(50) as constraints. In this context, by approximate solution of
equations (47)–(48), we mean a solution (Πs,Πcu) such that

Πcu(θ + ω)Z(θ)Πs(θ) = Ecu(θ), (54)

Πs(θ + ω)Z(θ)Πcu(θ) = Es(θ), (55)

Πs(θ) + Πcu(θ) = Id, (56)

[Πs(θ)]2 = Πs(θ). (57)
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where Ei denotes the error in a certain component. Notice that the error in equa-
tion (54) has components only on the center and unstable “approximated” subspaces
and we denote it by Ecu. The same happens with the equation (55) but on the
“approximated” stable subspace. We assume that Ecu and Es are both small.

As standard in the Newton method, we will look for increments ∆s and ∆cu in
such a way that setting Πs ← Πs +∆s and Πcu ← Πcu +∆cu, the new projections
solve equations (47) and (48) up to order ‖E‖2 where ‖E‖ = ‖Es‖+‖Ecu‖ for some
norm ‖.‖.

The functions ∆s and ∆cu solve the following equations

∆cu(θ + ω)Z(θ)Πs(θ) + Πcu(θ + ω)Z(θ)∆s(θ) = −Ecu(θ)

∆s(θ + ω)Z(θ)Πcu(θ) + Πs(θ + ω)Z(θ)∆cu(θ) = −Es(θ)
(58)

with the constraints

∆s(θ) + ∆cu(θ) = 0 (59)

Πs(θ)∆s(θ) + ∆s(θ)Πs(θ) = ∆s(θ) . (60)

By equation (59) we only need to compute ∆s since ∆cu = −∆s. We now work
out equations (58), (59) and (60) so that we can find ∆s.

Denote

∆s
s = Πs∆s,

∆s
cu = Πcu∆s,

(61)

so that

∆s = ∆s
s +∆s

cu. (62)

Then equation (60) reads

∆s
s(θ) + ∆s(θ)Πs(θ) = ∆s

s(θ) + ∆s
cu(θ), (63)

or equivalently,

∆s(θ)Πs(θ) = ∆s
cu(θ) . (64)

By (56), (64) and (62) we have that

∆s(θ)Πcu(θ) = ∆s(θ)−∆s(θ)Πs(θ) = ∆s(θ)−∆s
cu(θ) = ∆s

s(θ). (65)

Now, using (59), equations (58) transform to

−∆s(θ + ω)Z(θ)Πs(θ) + Πcu(θ + ω)Z(θ)∆s(θ) = −Ecu(θ),

∆s(θ + ω)Z(θ)Πcu(θ) −Πs(θ + ω)Z(θ)∆s(θ) = −Es(θ).
(66)

Denoting

Ns(θ) = Πs(θ + ω)Z(θ)Πs(θ),

Ncu(θ) = Πcu(θ + ω)Z(θ)Πcu(θ),

and using that Πcu(θ + ω)Z(θ)Πs(θ) and Πs(θ + ω)Z(θ)Πcu(θ) are small by (54)–
(55) and Πs(θ) +Πcu(θ) = Id by (56), it is enough for the Newton method to solve
for ∆s satisfying the following equations

−∆s(θ + ω)Πs(θ + ω)Ns(θ) +Ncu(θ)Π
cu(θ)∆s(θ) = −Ecu(θ),

∆s(θ + ω)Πcu(θ + ω)Ncu(θ) −Ns(θ)Π
s(θ)∆s(θ) = −Es(θ).

(67)
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Finally, by expressions (64) and (65) and taking into account the notations intro-
duced in (61), equations (67) read

−∆s
cu(θ + ω)Ns(θ) +Ncu(θ)∆

s
cu(θ) = −E

cu(θ), (68)

∆s
s(θ + ω)Ncu(θ)−Ns(θ)∆

s
s(θ) = −E

s(θ). (69)

In Appendix A, we discussed how to solve efficiently equations of the form (68)-
(69). Notice that they are of the form (94) for A(θ) = Ncu(θ), B(θ) = Ns(θ) and
η(θ) = −Ecu(θ) in the case of equation (68) and A(θ) = Ns(θ), B(θ) = Ncu(θ) and
η(θ) = +Es(θ) in the case of equation (69). Furthermore, ‖Ns‖ < 1 and ‖N−1

cu ‖ < 1.
Hence, they can be solved iteratively using the fast iterative algorithms described
in Appendix A.

The explicit expressions for ∆s
cu and ∆s

s are

∆s
cu(θ) =−

[
N−1

cu (θ)Ecu(θ) +

∞∑

n=1

N−1
cu (θ) × · · ·×

N−1
cu (θ + nω)Ecu(θ + nω)Ns(θ + (n− 1)ω)× · · · ×Ns(θ)

] (70)

and

∆s
s(θ) =Es(θ − ω)N−1

cu (θ − ω) +

∞∑

n=1

Ns(θ − ω)× · · · ×

Ns(θ − (n+ 1)ω)Es(θ − (n+ 1)ω)N−1
cu (θ − (n+ 1)ω)× · · · ×N−1

cu (θ − ω).

(71)

Remark 12. Notice that Ncu(θ) can only be inverted when restricted to the right
spaces. Hence we assume that Ncu(θ) is a matrix defined on Ec ⊕ Eu. Similarly in
other instances. Most of the time, one does not need to distinguish between Es,u,c

as an space on its own or as a subspace of the ambient space. This is one of the few
cases where such a distintion is needed.

Finally, let us check that ∆s = ∆s
cu +∆s

s also satisfies the constraints. In order
to check that constraint (60), which is equivalent to (64), is satisfied we will use the
expressions (70) and (71). Notice first that

Ns(θ)Π
s(θ) = Ns(θ) (72)

and

N−1
cu (θ − ω)Πs(θ) = 0 . (73)

Moreover, from (54) and using (57) one can see that

Ecu(θ)Πs(θ) = Πcu(θ + ω)Z(θ)[Πs(θ)]2 = Ecu(θ) . (74)

Then, from expressions (70) and (71) and the above expression (72), (73) and (74),
it is clear that

∆s(θ)Πs(θ) = ∆s
s(θ)Π

s(θ) + ∆s
cu(θ)Π

s(θ) = 0 +∆s
cu,

hence, constraint (64) is satisfied.
Now, using equation (59) we get ∆cu(θ) = −(∆s

s(θ) +∆s
cu(θ)) and the improved

projections are

Π̃s(θ) = Πs(θ) + ∆s
s(θ) + ∆s

cu(θ)

Π̃cu(θ) = Πcu(θ) + ∆cu(θ).
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The new error for equations (47) and (48) is now ‖Ẽ‖ ≤ C‖E‖2 where ‖E‖ =
‖Ecu‖ + ‖Es‖. Of course equation (49) is clearly satisfied but (50) is satisfied up
to an error which is quadratic in ‖E‖. However it is easy to get an exact solution
for (50) and the correction is quadratic in ∆s (and therefore in ∆cu). To do so, we

just take the the singular value decomposition (SVD) (see [23]) of Π̃s and we set
the values in the singular value decomposition to be either 1 or 0.

In this way we obtain new projections Πs
new and Πcu

new = Id−Πs
new satisfying

‖Πs
new − Π̃s‖ < ‖∆s‖2

‖Πcu
new − Π̃cu‖ < ‖∆cu‖2,

so that the error for equations (47) and (48) is still quadratic in ‖E‖. Moreover,
they satisfy equations (50) and, of course, (49) exactly.

Hence, setting Πs ← Πs
new and Πcu ← Πcu

new we can repeat the procedure de-
scribed in this section and perform another Newton step.

Consequently, the algorithm of the Newton method to compute the projections
is:

Algorithm 4.4 (Computation of the projections by a Newton method). Consider
given F,K, ω and an approximate solution (Πs,Πcu) of equations (47)-(48). Perform
the following calculations:

1. Compute Z(θ) = DF ◦K(θ)
2. (2.1) Compute Ecu(θ) = Πcu(θ + ω)Z(θ)Πs(θ)

(2.2) Compute Es(θ) = Πs(θ + ω)Z(θ)Πcu(θ)
3. (3.1) Compute Ns(θ) = Πs(θ + ω)Z(θ)Πs(θ)

(3.2) Compute Ncu(θ) = Πcu(θ + ω)Z(θ)Πcu(θ)
4. (4.1) Solve for ∆s

s satisfying

Ns(θ)∆
s
s(θ)−∆s

s(θ + ω)Ncu(θ) = Es(θ)

(4.2) Solve for ∆s
cu satisfying

Ncu(θ)∆
s
cu(θ)−∆s

cu(θ + ω)Ns(θ) = −E
cu(θ)

5. (5.1)Compute Π̃s(θ) = Πs(θ) + ∆s
s(θ) + ∆s

cu(θ).

(5.2) Compute the SVD decomposition of Π̃s(θ): Π̃s(θ) = U(θ)Σ(θ)V >(θ).
(5.3) Set the values in Σ(θ) equal to the closer integer (which will be either 0
or 1).
(5.4) Recompute Π̄s(θ) = U(θ)Σ(θ)V >(θ).

6. Set Π̄s → Πs

Id−Π̄s → Πcu

and iterate the procedure.

Notice that the matrix multiplication is diagonal in real space representation,
whereas the phase shift is diagonal in Fourier space. A discussion on how to perform
step 4 efficiently is given in Appendix A.

Remark 13. There are several variations that can improve the efficiency. One
variation is that in (5.2) we do not need to compute the SVD from scratch. If we
save the SVD, obtained at one step, it will be an approximate SVD for the next step.
So that we can use it as the basis of an iterative algorithm to find the new SVD.
This iterative solution only requires to use the application of algebraic operations
among functions of θ.
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5. Computation of rank-1 whiskers of an invariant torus. In this section, we
present algorithms to compute the whiskers associated to an invariant torus, that
is the invariant manifolds that contain the torus and are tangent to the invariant
bundles.

For the sake of simplicity we will only discuss the case when the invariant whiskers
are one-dimensional (i.e. d − ` = 1). The same idea can be extended to compute
invariant manifolds of any rank. However, there are several new phenomena (reso-
nances) that can appear and need to be discussed. We plan to come back to this
issue in the future.

As we already mentioned in Section 3.5.1, we will look for the whiskers by finding
a parameterization for them, so we will search for a function W : T`×(V ⊂ R)→M
and a scalar µ satisfying equation (18).

We will consider two different methods to solve equation (18). We will first
discuss the order by order method. The other method is based on the philosophy of
quasi-Newton methods. Assuming that the invariant tori and the tangent bundles
are already known, we use “automatic reducibility” to design an efficient Newton
method.

We detail only the case of maps because the same ideas work for the case of
vector fields and we refer the reader to Appendices C-D for the case of flows.

Similar algorithms were developed and implemented in [30, 32] for the slightly
simpler case of quasi-periodic maps.

5.1. The order by order method. In this section we adapt the parameterization
method introduced in [11]. The convergence of the Fourier-Taylor series in this
paper can be easily adapted to the present case. We focus on the case of maps
and refer the reader to Appendix C for the case of flows. We emphasixe that the
order by order method does not take advantage of the geometry of the problem and,
hence, it can be applied to many other problems.

We will find a solution (W,µ) of the invariance equation (18) discretizing it in
Fourier-Taylor series. Hence, we will look for W as a power series

W (θ, s) =

∞∑

n=0

Wn(θ)s
n, (75)

and match similar coefficients in sn on both sides of equation (18).
For n = 0, we obtain

F (W0(θ)) = W0(θ + ω), (76)

which is equation (9) for the invariant torus. Therefore, we have W0(θ) = K(θ),
where K is a parametrization of the invariant torus.

For n = 1, we obtain

DF ◦K(θ)W1(θ) = W1(θ + ω)µ, (77)

so that W1(θ) is an eigenfunction with eigenvalue µ of the operator Z(1, θ) defined
in equation (28).

Equation (77) states that the bundle spanned by W1 is invariant for the lin-
earization of F , and the dynamics on it is reduced to a contraction/expansion by
a constant µ. Therefore, one can compute W1 and µ using the algorithms given in
Section 4.4.

Remark 14. Notice that if W1(θ) is a solution of equation (77), then bW1(θ), for
any b ∈ R, is also a solution. See Section 3.5.2 for a discussion on how to choose b.
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For n ≥ 2, we obtain

DF ◦K(θ)Wn(θ) = Wn(θ + ω)µn +Rn[W0, . . . ,Wn−1](θ), (78)

where Rn is an explicit polynomial in W0, . . . ,Wn−1 whose coefficients are deriva-
tives of F evaluated at W0.

Equation (78) can be solved provided that µ is such that µn is not in the spectrum
of the operator Z(1, θ). This condition is clearly satisfied in the case of (un)stable
bundles which are one-dimensional but it can also be satisfied by other bundles.

Equation (78) can be solved using the large matrix method. It consists on consid-
ering a discretization of equation (78) using Fourier series and reducing the problem
to solving a linear system in Fourier space, where the unknowns are the Fourier co-
efficients of the matrix Wn.

There are also efficient algorithms which are variants of the methods devoted in
the previous sections. The equation (78) is equivalent to

Wn(θ) = (DF ◦K(θ))−1
[
µnWn(θ + ω)Rn[W0, . . . ,Wn−1](θ)

]
,

which, for large enough n is a contraction, so that we can apply the fast methods of
Section A.1. In particular Algorithm A.1. In the case that the stable and unstable
directions are one dimensional – which is the one we discuss in this paper – this
is enough (remember that we always have n ≥ 2.) When the bundles are higher
dimensional, we may need to find a splitting corresponding to the cocycle generated
by Z(θ) = (DF ◦K(θ))−1µn.

Remark 15. Notice that once W0(θ) and W1(θ) are fixed, the solution Wn(θ) for
n ≥ 2 of equation (78) is uniquely determined. It is then clear that any analytic
solution is unique. The existence of analytic solutions is discussed in [11].

Remark 16. Notice that the equations to compute the new term Wn do not involve
small divisors.

5.2. A Newton method to compute whiskers. In this section we will use the
automatic reducibility properties to design an efficient Newton method to compute
the whiskers.

We assume that we have computed an invariant torus K(θ) with the associated
stable direction V s(θ) (resp. unstable direction V u(θ)) and the rate of contraction
µ (resp. expansion). The goal of this section is to compute the power expansion of
the whiskers using a quadratically convergent algorithm whose step involves solving
a system of linear equations with constant coefficients.

We concentrate on the case of maps, referring to Appendix D for the case of
flows.

We consider the invariance equation (18), and we assume that we have an initial
approximation W for the whiskers, expressed as a power series

W (θ, s) =

∞∑

n=0

Wn(θ)sn. (79)

We will develop a quasi-Newton method and use a version of automatic reducibil-
ity to show that the Newton method only requires to solve constant coefficient
equations.

The automatic reducibility will work in general, but the solution of the constant
coefficient equations will require that we have

W 0(θ) = K(θ) and W 1(θ) = V s(θ),
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(the unstable case is analogous).
The computation of invariant tori and the linearization has been discussed before

in Section 4.
The initial approximation W satisfies

F (W (θ, s))−W (θ + ω, µs) = E(θ, s), (80)

where E is the error term. From now on, we use the notation R(θ, s) = (θ+ω, µs).
The Newton method to solve equation (18) would require to find ∆(θ, s) solving

DF ◦W ∆−∆ ◦R = −E (81)

The equation (81) is difficult to solve because the matrix DF ◦W is not constant.
Nevertheless, we proceed to show that a version of automatic reducibility holds.
That is, using that W is an approximate solution of (18) and the geometry of the
problem, there is an explicit change of variables in equation (81) which turns it into
a constant coefficient equation.

5.2.1. Automatic reducibility in the computation of whiskers. We first give the idea
of the automatic reducibility when W is an exact solution, i.e., W is such that

(F ◦W )(θ, s) = (W ◦R)(θ, s). (82)

We will show later that if W is an approximate solution, the reducibility will
also hold up to an error term ER that can be estimated from the error E of the
invariance equation (80).

Taking derivatives in (82) with respect to θ and s, we have that

DF ◦W (θ, s)DθW (θ, s) = DθW (θ + ω, µs),

DF ◦W (θ, s)∂sW (θ, s) = µ∂sW (θ + ω, µs).

From the above equations, we read that the quantityDθW (θ, s) remains invariant
under DF ◦W (θ, s), whereas the vector ∂sW (θ, s) is multiplied by a factor µ.

We can write the above invariance properties more concisely as

DF ◦W DW = DW ◦RDR (83)

where DW = [DθW , ∂sW ] and DR =

(
Id` 0
0 µ

)
.

A well known result, which will be important for our algorithm, is that the
manifold given by the whiskered tori is Lagrangian (see [45]). Indeed, from (82) we
have that W ∗F ∗Ω = R∗W ∗Ω, where W ∗, F ∗ and R∗ denote the pullback by W ,
F and R, respectively, and Ω is the symplectic 2-form (6). Since F ∗Ω = Ω, then
W ∗Ω = R∗(W ∗Ω). It is not hard to see that, if Ω = dα the only exact 2-form
invariant under R is zero.

In our context, the Lagrangian character of the whiskers means that, for a solu-
tion W of (18), we have

DWT J ◦W DW = 0, (84)

where J is a skew-symmetric matrix associated to the symplectic form Ω.
Using this property, we construct ss in Section 4.3 a basis of vectors for the

tangent space TM. Indeed, the Lagrangian property (84) means that Range DW
is orthogonal to Range (J ◦K)DW . Hence,

{0}

= (RangeDW ∩ Range (J ◦W )DW )

= (J ◦W )
(
Range (J ◦K)−1DW ∩ RangeDW

)
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where we have used that J ◦ K, is a full rank matrix. Therefore the the vectors
DW and V = (J−1 ◦W )DWN , where N is a normalization matrix that we choose
to be N = (DWTDW )−1, are a basis of TM. Note that the range of the matrix V
is independent of the matrix N (provided that N has full range).

Since the differential of F at W (θ, s), that we denote DF (W (θ, s)), is a linear
map from the tangent space of TM at W (θ, s) to the tangent space of TM at
F ◦W (θ, s) = W ◦ R(θ, s), then the DF ◦W (θ, s)DW (θ, s) is a vector based at
W ◦R(θ, s). Therefore, it can be expressed as a combination of V ◦R and DW ◦R,
which constitute a basis of TM at that point. Hence, we can write

(DF ◦W )(J−1 ◦W )DWN = (DW ◦R)A+ [((J−1 ◦W )DWN) ◦R]B, (85)

where A(θ, s) and B(θ, s) are some matrices, which we will compute in similar way
as we did in Proposition 1 (see Proposition 2).

We introduce the matrix M , defined as

M = [DW , (J ◦W )−1DWN ] (86)

where by [·, ·] we denote the 2d× 2 matrix obtained by juxtaposing the two d × 1
matrices that are in the arguments. Then, using (83) and (85), we have that

(DF ◦W )M = (M ◦R)

(
DR A
0 B

)
. (87)

The block A can be computed straightforwardly just as ΠDW◦R(DF ◦ W )V ,
where ΠDW◦R means the projection over the span of DW ◦R. There do not seem
to be interesting cancellations on the block A. It will, however be important that
a subblock on it is invertible. We note for future reference that, if we write A =(
Aθθ Aθ,s

As,θ As,s

)
, we will assume that det(Aθ,θ) 6= 0.

The following Proposition 2 provides an explicit expression for B in the invariant
case.

Proposition 2. With the notations above, we have:

B = (DRT )−1 ≡ DR−T . (88)

Remark 17. The important point of Proposition (2) is that the matrix in the right
hand side of (87) is an upper triangular matrix with constants in the diagonal (note
that it is block-upper-triangular and that the blocks in the diagonal are DR and
DR−T , which are diagonal with constant terms).

Proof. Consider the expression (85), and multiply both sides on the left by (DWT ◦
R) ((J ◦W ) ◦R), we obtain

(DWT ◦R) (J ◦W ◦R)(DF ◦W )(J−1 ◦W )DWN

= (DWT ◦R) ((J ◦W ) ◦R) ((J−1 ◦W )DWN) ◦R)B
(89)

where we have used that, by the Lagrangian character of the whisker (84), we have
(DWT ◦R) ((J ◦W ) ◦R) (DW ◦R) = 0.

Since DF is a symplectic matrix, we have

((J ◦W ) ◦R) (DF ◦W ) (J−1 ◦W ) = (DF−1 ◦W )T .
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Hence, using the equation above as well as equation (83) and the expression for N ,
we can compute the LHS of (89) as:

(DWT ◦R) ((J ◦W ) ◦R) (DF ◦W ) (J−1 ◦W )DWN

= (DWT ◦R) (DF−1 ◦W )T DWN

= [(DF−1 ◦W ) (DW ◦R)]T DWN

= [DWDR−1]T DWN

= DR−T DWT DWN

= DR−T .

(90)

The RHS of (89) is computed straightforwardly to be just B (recall the expression
for N).

Remark 18. In the approximately invariant case, we note that the Lagrangian
character does not hold exactly. However, expression (84) holds up to an error with
is controlled by the error E of the invariance equation (81). Hence, (87) holds with
an error which is bounded by the error E of the invariance equation. Nevertheless,
we still get a quadratically convergent algorithm.

We proceed as in Section 4.3 and we introduce a change of variables in the
unknowns of equation (81), by writing ∆ = MU , where M is given explicitly in
(86). Then, equation (81) is equivalent to the following equation for U

(DF ◦W )MU − (M ◦R)(U ◦R) = −E

Using that the equation (87) holds up to an error ER we obtain that (81) is equiv-
alent to

(M ◦R)

(
DR A
0 DR−>

)
U + ER U − (M ◦R) (U ◦R) = −E. (91)

Ignoring the term ER U , we obtain a quasi-Newton equation
(
DR A
0 DR−>

)
U − U ◦R = −(M−1 ◦R)E, (92)

that is readily solvable provided that the terms W 0 and W 1 in the power expansion
(79) solve the invariance equation (82). Indeed, if we write

U(θ, s) =
∑

k,n

Ûk,ne
2πikθsn,

equation (92) is equivalent to
(
DR A
0 DR−>

)
Ûk,n − e2πikωµnÛk,n = η̂k,n, (93)

where η̂k,n are the Fourier-Taylor coefficients of the function −(M−1 ◦R)E.
Notice that the system of equations (93) is a system of linear equations which

can always be solved for n ≥ 2. The reason is that the matrix entering in the
LHS of (93) has spectrum 1, µ, µ−1 so that e2πikωµn is uniformly far away from the
spectrum when n ≥ 2. Hence, the equations (93) can be solved uniquely and with
uniform bounds (there are no small divisors involved). We use here the assumption
that we start from a knowledge of the torus and the invariant bundle, so that we
do not need to consider n = 0, 1.
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Remark 19. Notice that since we start with the error being of order 2, after L

iterations it will be of order 22
L

, so that in L iterations we have computed exactly

22
L

− 1 coefficients in the power expansion (79).

Remark 20. Notice that substantial parts of the algorithm do not require that the
bundle is 1-dimensional nor that we start from the solution of the first two orders.
Hence, there are many variants which can be pursued. We will not detail them here
but we hope to come back to them in future projects.

5.2.2. Formulation of the algorithm for the Newton Method to compute whiskers.
The algorithm to compute the torus and the whiskers follows in a similar way as
the algorithm 4.2 to compute the torus in the Lagrangian case. Notice that we do
not need to compute the splitting explicitly, but, in exchange, we have to work with
functions of two variables.

Algorithm 5.1 (Newton step to compute the whiskers). Given F , ω, µ as well as
W , an approximate solution which solves the invariance equation (82) up to order
2, i.e.

F (W (θ, s))−W (θ + ω, µs) = E[≥L](θ, s)

with L ≥ 2.
Perform the following calculations:

1. Compute E[≥L](θ, s) = F ◦W (θ, s)−W (θ + ω, µs)
2. Compute

(2.1) α(θ, s) = [DθW (θ, s) , ∂sW (θ, s)]
(2.2) N(θ, s) = (α>(θ, s)α(θ, s))−1.
(2.3) β(θ, s) = α(θ, s)N(θ, s)
(2.4) γ(θ, s) = (J−1 ◦W )(θ, s)β(θ, s)
(2.5) M(θ, s) = [α(θ, s) , γ(θ, s)]
(2.6) M−1(θ, s)
(2,8) ΠDW , ΠV , the projections corresponding to the decomposition of the

space into the span of DW and the span of V = (J−1 ◦W )DWN .
3. Compute

Ẽ[≥L](θ, s) = −M−1(θ + ω, µs)E[≥L](θ, s)

4. Compute
(4.1) A(θ, s) = ΠDW◦RDF ◦W (θ, s)β(θ, s),
(4.2) B(θ, s) = DR−T ,

5. We denote UDW = ΠDWU and UV = ΠV U .
(5.1) Solve for UDW satisfying

(
Id` 0
0 µ

)
UDW − UDW ◦R = ΠDW Ẽ

(5.2) Solve for UV satisfying
(
Id` 0
0 1/µ

)
UV − UV ◦R = ΠV Ẽ −AUDW

Note that both equations can be solved in Fourier-Taylor coefficients.
6. Set W̃ = W +MU

Remark 21. We think that Algorithm 5.1 is advantageous with respect to the order
by order method described in Section 5.1. In the order–by–order method, errors
in first step (round off errors) propagate in the subsequent steps and never get
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corrected. However, using the Newton method described in this section, numerical
errors eventually get corrected.

Remark 22. There are two important steps in Algorithm 5.1: computing the
residual E and computing the correction U .

The computation of the residual of the Newton method involves manipulating a
polynomial up to order 2N . Depending on how the computation of composition is
done, it could be the bottleneck step for the speed of the algorithm. (for example,
if it is done using the direct substitution).

Nevertheles, we note that there are fast algorithms to compose polynomials.
The strategy is to use the FFT to compute the polynomials in a complex circle.
Then, one can evaluate the composition. A subsequent inverse FFT recovers the
coefficients of the composition. More details on this algorithm appear in [35].

Depending on the algorithms one uses for composition and multiplication of
series, the operation count of Algorithm 5.1 and the step by step method may be
very different.

Appendix A. Fast algorithms to solve difference equations with non con-
stant coefficients. In this section we present fast algorithms to solve for ∆(θ) the
cohomology equation with non constant coefficients

A(θ)∆(θ) −∆(θ + ω)B(θ) = η(θ) (94)

for given A(θ), B(θ) and η(θ) satisfying either ‖A‖ < 1, ‖B−1‖ < 1 or ‖A−1‖ < 1,
‖B‖ < 1.

Equations of this form appear in the Netwon step for whiskered tori (See the in-
formal description in Section 1). Equations of this form also appear in the calcultion
of the invariant splitting (see (68)-(69)).

We will present two algorithms. The first one is an iterative method with an
accelerated convergence and the second one very fast (see Section A.1). The second
one is only for the case of one-dimensional bundles and it is faster (computations
are O(N))(see Section A.2).

A.1. Fast iterative algorithms for the cohomology equation. In this section
we will present a fast algorithm to solve equation (94) using iterative methods. We
refer the reader to [25] where a similar idea is used to compute iteration of cocycles.

We consider first the case ‖A−1‖ < 1 and ‖B‖ < 1 or, more generally, ‖A−1(θ)‖ ·
‖B(θ)‖ < 1 Then, multiplying (94) by A−1(θ) on the LHS, we obtain

∆(θ) = A−1(θ)∆(θ + ω)B(θ) +A−1(θ)η(θ). (95)

This is a contraction mapping and it is straightforward to iterate it and obtain an
algorithm that converges faster than exponentially.

Next, we compute ∆(θ + ω) by shifting (95) and substituting again in (95), so
that we get

∆(θ) = A−1(θ)η(θ)

+A−1(θ)A−1(θ + ω)η(θ + ω)B(θ)

+A−1(θ)A−1(θ + ω)∆(θ + 2ω)B(θ + ω)B(θ).

Notice that if we define

η̄(θ) = A−1(θ)η(θ)
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and

A−1
1 (θ) = A−1(θ)A−1(θ + ω),

B1(θ) = B(θ + ω)B(θ),

η1(θ) = η̄(θ) +A−1(θ)η̄(θ + ω)B(θ),

we have that
∆(θ) = η1(θ) +A−1

1 (θ)∆(θ + 2ω)B1(θ)

which has the same structure as (95) and we can repeat the same scheme. This
leads to an iterative procedure to compute A(θ), converging superexponentially in
the number of iterations. Thus, define

A−1
n+1(θ) = A−1

n (θ)A−1
n (θ + 2nω),

Bn+1(θ) = Bn(θ + 2nω)Bn(θ),

ηn+1(θ) = ηn(θ) +A−1
n (θ)ηn(θ + 2nω)Bn(θ),

for n ≥ 0, with

A−1
0 (θ) = A−1(θ),

B0(θ) = B(θ),

η0(θ) = η̄(θ).

Then,
∆(θ) = ηn+1(θ) +A−1

n+1(θ)∆(θ + 2n+1ω)Bn+1(θ), ∀ n ≥ 0

and
∆(θ) = lim

n→+∞
ηn+1(θ).

The convergence of the algorithm is guaranteed by the contraction of A−1 and B.
The cost of computing 2N terms in the sum is proportional to N since it involves
only N steps of the algorithm.

The iterative algorithm is the following:

Algorithm A.1 (Solution of difference equations with non constant coefficient).
Given A(θ), B(θ) such that ‖A−1(θ)‖ · ‖B(θ)‖ ≤ κ < 1, and η(θ) perform the
following operations:

1. Compute ∆(θ) = A−1(θ)η(θ)
2. Compute

(2.1) ∆̃(θ) = A−1(θ)∆(θ + ω)B(θ) + ∆(θ)

(2.2) Ã−1(θ) = A−1(θ)A−1(θ + ω)

(2.3) B̃(θ) = B(θ + ω)B(θ)

3. Set ∆̃→ ∆
Ã→ A
B̃ → B
2ω → ω

4. Iterate points 2− 3

The case when ‖A‖ < 1 and ‖B−1‖ < 1 can be done similarly. In this case, we
multiply (94) by B−1(θ) on the LHS so that we obtain

∆(θ + ω) = A(θ)∆(θ)B−1(θ)− η(θ)B−1(θ).

Before applying the iterative scheme we shift by −ω. In this way, we have

∆(θ) = A(θ′)∆(θ′)B−1(θ′)− η(θ′)B−1(θ′)
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where θ′ = T−ωθ.
The iterative algorithm in this case is

Algorithm A.2. Given A(θ), B(θ) ‖A(θ)‖‖B−1(θ)‖ ≤ κ < 1 and η(θ), perform
the following operations:

1. Compute ∆(θ) = −η(θ)B−1(θ)
2. Compute

(2.1) ∆̃(θ) = A(θ)∆(θ − ω)B−1(θ) + ∆(θ)

(2.2) Ã(θ) = A(θ)A(θ − ω)

(2.3) B̃−1(θ) = B−1(θ − ω)B−1(θ)
3. Set

∆̃→ ∆
Ã→ A
B̃ → B
2ω → ω

4. Iterate parts 2–3

This algorithm gives ∆(θ + ω). Shifting it by −ω we get ∆(θ).

A.2. Fast algorithm for the 1-D cohomology equation with non-constant
coefficients. In this section we present an efficient algorithm for the one-dimensional
version of equation (94). It is an adaptation of methods used in [26].

Consider the following equation,

A(θ)

B(θ)
∆(θ) −∆(θ + ω) =

η(θ)

B(θ)
(96)

which is obtained from (94) multiplying by B−1(θ) (recall that in this case B(θ) is
just a number).

We will solve (96) in two steps:
1. Find C(θ) and ν ∈ R such that

A(θ)

B(θ)
= ν

C(θ)

C(θ + ω)
(97)

2. Applying (97) in (96) and multiplying by C(θ + ω) we obtain

νC(θ)∆(θ) − C(θ + ω)∆(θ + ω) = η̃(θ) (98)

where η̃(θ) = C(θ + ω)B−1(θ)η(θ).
If we change the unknowns in (98) by W (θ) = C(θ)∆(θ), we are left with the

equation

νW (θ)−W (θ + ω) = η̃(θ). (99)

Of course, if |ν| 6= 1, equation (99) can be solved in Fourier space. That is, we can
obtain the Fourier coefficients of W as:

Ŵk =
̂̃ηk

ν − e2πikω
,

and the solution is unique. Notice that whenever |ν| = 1, equation (99) involves
small divisors, which is not the case for the linearized Newton equations restricted
to the hyperbolic subspaces.

Finally, once we have W (θ) we get

∆(θ) = C−1(θ)W (θ).
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Step 1 can be achieved by taking logarithms of (97). Assume that A(θ)/B(θ) > 0,
otherwise we change the sign. Then, we get

logA(θ) − logB(θ) = log ν + logC(θ) − logC(θ + ω).

Taking log ν to be the average of logA(θ) − logB(θ), the problem reduces to
solve for logC(θ) an equation of the form (23). Then C(θ) and ν can be obtained
by exponentiation. Notice that logC(θ) is determined up to a constant. We will fix
it by assuming that it has average 0.

Hence, we have the following algorithm:

Algorithm A.3 (Solution of difference equations with non constant coefficient
(1D)). Given A(θ), B(θ) and η(θ). Perform the following operations:

1. (1.1) Compute L(θ) = log(A(θ)) − log(B(θ))
(1.2) Compute L =

∫
T` L

2. Solve for LC satisfying

LC(θ)− LC ◦ Tω(θ) = L(θ)− L

as well as having zero average.
3. (3.1) Compute C(θ) = exp(LC(θ))

(3.2) Compute ν = exp(L)
4. Compute η̃(θ) = C(θ + ω)B−1(θ)η(θ)
5. Solve for W satisfying

νW (θ) −W (θ + ω) = η̃(θ)

6. The solution of (94) is ∆(θ) = C−1(θ)W (θ)

Appendix B. Fast Newton method for whiskered tori in Hamiltonian
flows: The center directions. In this section, we provide the numerical al-
gorithm to solve the invariance equation (12) and the modified one (14) using a
Newton method analogous to the one described in Section 4.3.

The automatic reducibility can also be proved in this context (see [15]) and we
provide here the algorithm only.

Algorithm B.1 (Newton step for flows in the center direction). Consider given
X = J(K)∇H , ω, K0 and an approximate solution K (resp. K,λ). Perform the
following calculations

1. (1.1) Compute ∂ωK.
(1.2) Compute X ◦K (1.3) Compute the invariant projections Πc,Πu,Πs

2. Set Ec = Πc(∂ωK −X ◦K) (resp. set Ec = Πc(∂ωK −X ◦K −Gλ))
3. Following (40)

(3.1) Compute α(θ) = DK(θ)

(3.2) Compute N(θ) =
(
[α(θ)]>α(θ)

)−1

(3.3) Compute β(θ) = α(θ)N(θ)
(3.4) Compute γ(θ) = J(K0(θ))

−1
Ec β(θ)

(3.5) Compute M(θ) = [α(θ) | γ(θ)]
(3.6) Compute M(θ + ω)
(3.7) Compute (M(θ + ω)>J(K0(θ + ω))−1

Ec M(θ + ω))−1

(3.8) Compute Ẽ(θ) = (M(θ + ω)>J(K0(θ + ω))−1
Ec M(θ + ω))−1Ec(θ)

(3.9) Compute

S(θ) = β>(θ)(Id2d−β(θ)α(θ)
>)(DX(K(θ)) +DX(K(θ))>)β(θ).
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4. (4.1) Solve for U2 satisfying

∂ωU2 = −Ẽ2 +

∫

T`

Ẽ2

(resp.
(4.1′) Solve for δ satisfying

∫

T`

Ẽ2 −

[∫

T`

B2

]
δ = 0

(4.2′) Solve for U2 satisfying

∂ωU2 = −Ẽ2 +B2δ

Set U2 such that its average is 0.)
5. (5.1) Compute S(θ)U2(θ)

(5.2) Solve for U2 satisfying
∫

T`

Ẽ1(θ) +

∫

T`

S(θ)U2(θ) +

[∫

T`

S(θ)

]
U2 = 0

(5.3) Find U1 solving

∂ωU1 = −Ẽ1 − S(U2 + U2)

Normalize it so that
∫
T` U1 = 0

(resp.
(5.1′) Compute S(θ)U2(θ)
(5.2′) Solve for U2 satisfying

∫

T`

Ẽ1(θ) +

∫

T`

B1(θ)δ −

∫

T`

S(θ)U2(θ)−

[ ∫

T`

S(θ)

]
U2 = 0

(5.3′) Find U1 solving

∂ωU1 = −Ẽ1 − S(U2 + U2) +B1δ

Normalize it so that
∫
T` U1 = 0).

6. The improved K is K(θ) +M(θ)U(θ)
(resp. the improved λ is λ+ δ).

Notice that steps (1.1), (3.1), (4.1) (resp. (4.2′)), (5.3) (resp. (5.3′)) in Algorithm
B.1 are diagonal in Fourier series, whereas the other steps are diagonal in the real
space representation. The algorithm only stores vectors which are of length of order
N .

Appendix C. The order by order method for whiskers in Hamiltonian
flows. In this section we present the result analogous to the one described in Section
5.1 to solve the invariance equation (18) for the whiskers in the case of Hamiltonian
flows.

As in Section 5.1 we look for W as a power series

W (θ, s) =
∞∑

n=0

Wn(θ)s
n,

and match similar coefficients in sn on both sides of equation (18).
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For n = 0, one obtains

∂ωW0(θ) = (X ◦W0)(θ) (100)

which admits the solution W0(θ) = K(θ), where K is a parametrization of the
invariant torus.

For n = 1, we obtain

∂ωW1(θ) +W1(θ)µ = (DX ◦K(θ))W1(θ), (101)

from where we read that W1(θ) is an eigenfunction with eigenvalue −µ of the op-
erator Lω

Lω := ∂ω −DX ◦K(θ).

Again, we note that, multiplying a solution of (101) by a scalar b ∈ R, we also
obtain a solution. See Remark 14.

For n ≥ 2, we obtain

∂ωWn(θ) +Wn(θ)nµ = (DX ◦K(θ))Wn(θ) +Rn(W0, . . . ,Wn−1), (102)

where Rn is an explicit polynomial in W0, . . . ,Wn−1 whose coefficients are deriva-
tives of X evaluated at W0 = K.

Notice that, in this case, equation (102) can be solved provided that nµ is not in
the spectrum of the operator Lω (this is a non-resonance condition which is clearly
satisfied since the stable spaces are 1-dimensional). As in the case of maps, the
previous equation can be solved using the large matrix method.

Appendix D. A Newton method to compute the whiskers for flows. In
this section we present the result analogous to the one described in Section 5.2 to
solve the invariance equation (18) for the whiskers in the case of Hamiltonian flows.

As in Section 5.2, we start with an initial approximation W for the invariance
equation (18), that solves it exactly up to order 2, i.e.

X(W (θ, s))− (∂ω + µs∂s)W (θ, s) = E[≥L](θ, s), (103)

for L ≥ 2. From now on, we will omit the superindex [≥ L] in the error term.
The Newton method to solve (18) involves looking for an improved solution

W →W +∆,

where ∆ is a solution of the linearized equation

(DX ◦W )(θ, s)∆(θ, s) − (∂ω + µs∂s)∆(θ, s) = −E(θ, s). (104)

Here, we will show that we can use a version of automatic reducibility for flows to
transform equation (104) into a constant coefficient equation by means of a change
of coordinates.

Automatic reducibility for flows in the computation of whiskers. As we did for the
case of maps is Section 5.2 we will discuss the automatic reducibility for the case
when W is an exact solution, i.e.

X(W (θ, s))− (∂ω + µs∂s)W (θ, s) = 0. (105)

Applying the operators Dω and ∂s to equation (105), we have that

DX(W (θ, s))DθW (θ, s)− (∂ω + µs∂s)DθW (θ, s) = 0,

DX(W (θ, s))∂sW (θ, s)− (∂ω + µs∂s) ∂sW (θ, s) = µ∂sW (θ, s)
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Defining the vector field

X :=

[
ω

µs

]
,

we can write the above invariance equations in a compact way as

(DX ◦W )DW − LXDW = DWDX (106)

where LX := ω∂θ + λµ∂s, DW = [DθW,∂sW ] and DX =

(
0` 0
0 µ

)
.

As in the case of maps, the whisker for the torus is a Lagrangian manifold, i.e.
for a solution W of (105) we have that

DWT J ◦W DW = 0, (107)

where J is a skew-symmetric matrix associated to the symplectic form Ω.
Exactly as in the case of maps, the vectors DW and V = (J ◦W )−1DWN , with

N = (DWTDW )−1 constitute a basis of the tangent space TM. Hence, we can
write

(DX ◦W )(J−1 ◦W )DWN −LX ((J−1 ◦W )DWN) = DWA+ (J−1 ◦W )DWNB.
(108)

Thereby, introducing the matrix M defined as

M = [DW, (J−1 ◦W )DWN ], (109)

and using equations (106) and (108) we have that

(DX ◦W )M − LXM = M

(
DX A
0 B

)
. (110)

The following Proposition 3 provides explicit expressions for A and B in the
invariant case.

Proposition 3. With the notations above, we have:

B = −DX T (111)

and

A = −NDWT (J−1 ◦W )[Id2d−DWNDWT ][DX +DXT ]DWN (112)

Remark 23. As in the case of maps, the important point of Proposition (3) is
that the matrix in the right hand side of (87) is an upper triangular matrix with
constants in the diagonal (note that it is block-upper-triangular and that the blocks
in the diagonal are DX and −DX T , which are diagonal with constant terms).

Remark 24. If the symplectic structure is almost-complex (i.e. J2 = − Id), we
have that

DWT (J−1 ◦W )DW = 0,

since the whisker is a Lagrangian manifold. Then A has a simpler expression given
by

A = −NDWT (J−1 ◦W )[DX +DXT ]DWN.

Proof. Consider the expression (108), and multiply both sides on the left byDWT (J◦
W ), we obtain

DWT (J ◦W )[(DX ◦W )(J−1 ◦W )DWN − LX ((J−1 ◦W )DWN)] = B (113)

where we have used the Lagrangian character of the whisker (84) and the definition
of N .
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We first expand the term LX ((J−1 ◦W )DWN):

LX ((J−1 ◦W )DWN) =LX (J−1 ◦W )DWN + (J−1 ◦W )LX (DW )N

+ (J−1 ◦W )DWLX (N).
(114)

By differentiation of (J ◦W )(J−1 ◦W ) = Id and using the Hamiltonian character
of the vector field

DXT (J ◦W ) + (J ◦W )DX + (DJ ◦K)(X ◦W ) = 0,

we have that

LX (J−1 ◦W ) = (J−1 ◦W )[DXT (J ◦W ) + (J ◦W )DX ](J−1 ◦W ). (115)

Similarly, differentiating N N−1 = Id and using the invariance equation (106),
we have that

LX (N) = −NDWT [DXT +DX ]DWN +NDX T +DXN. (116)

Using the previous calculations (115) and (116) as well as the invariance equation
(106), from expression (113) we have that

B = −DX T .

Now, multiplying equation (108) by NDWT from the left, and using the defini-
tion of N we have

NDWT [(DX ◦W )(J−1 ◦W )DWN − LX ((J−1 ◦W )DWN)]

= A+N DWT (J−1 ◦W )DWNB.
(117)

Using the previous calculations (116) and (115), the invariance equation (106)
and the expression for B, we have

A = −NDWT (J−1 ◦W )[Id2d−DWNDWT ][DX +DXT ]DWN.

Remark 25. The expressions in Proposition 3 are true whenW is an exact solution.
For the case theW is an approximate solution, reducibility (110) holds up to an error
which is controlled by the error E of the invariance equation (103). Nevertheless,
we still obtain a quadratically convergent algorithm.

We proceed as in Section 5.2 and we introduce a change of variables in the
unknowns of equation (104) by writing ∆ = MU , where M is given explicitly in
(109). Then, equation (104) reads:

(DX ◦W )MU − LX (MU) = −E.

and working out the expression for LX (MU) we have

[(DX ◦W )M − LX (M)]U −MLX (U) = −E. (118)

Using the reducibility equation (110), which holds up to an error ER we obtain
that (104) is equivalent to

M

(
DX A
0 −DX T

)
U + ERU −MLX (U) = −E. (119)

Multiplying the above expression by M−1 and ignoring the term ERU , we obtain
the quasi-Newton equation(

DX A
0 −DX T

)
U − LX (U) = −M−1E. (120)
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Equation (120) can be solved provided that the term W 0,W 1 in the power ex-
pansion (79) solve the invariance equation (80). Indeed, if we write

U(θ, s) =
∑

k,n

Ûk,ne
2πikθsn,

equation (120) is equivalent to
(
DX A
0 −DX T

)
Ûk,n − (2πik · ω + µn)Ûk,n = η̂k,n, (121)

where η̂k,n are the Fourier-Taylor coefficients of the function −M−1E.
Notice that the system of equations (93) is a system of linear equations which

can always be solved for n ≥ 2, provided that 2πik ·ω+nµ is not in the spectrum of
the matrix entering in the LHS of (121). This condition is true because the matrix
has spectrum 0, µ,−µ so that 2πik ·ω+nµ is uniformly far from the spectrum when
n ≥ 2. Hence, the equations (93) can be solved uniquely and with uniform bounds
(there are no small divisors involved). We use here the the assumption that we start
from a knowledge of the torus and the invariant bundle, so that we do not need to
consider the cases n = 0, 1.

Formulation of the algorithm for the Newton Method to compute whiskers. The
algorithm to compute the whiskers for flows follows in the following way:

Algorithm D.1 (Newton step to compute the whiskers). Given X , ω, µ as well as
W , an approximate solution which solves the invariance equation (82) up to order
2, i.e.

X ◦W (θ, s)− (∂ω + µs∂s)W (θ, s) = E[≥L](θ, s)

with L ≥ 2.
Perform the following calculations:

1. Compute E[≥L](θ, s) = X ◦W (θ, s)− (∂ω + µs∂s)W (θ, s)
2. Compute

(2.1) α(θ, s) = [DθW (θ, s) , ∂sW (θ, s)]
(2.2) N(θ, s) = (α>(θ, s)α(θ, s))−1.
(2.3) β(θ, s) = α(θ, s)N(θ, s)
(2.4) γ(θ, s) = (J−1 ◦W )β(θ, s)
(2.5) M(θ, s) = [α(θ, s) , γ(θ, s)]
(2.6) M−1(θ, s)
(2,8) ΠDW , ΠV , the projections corresponding to the decomposition of the

space into the span of DW and the span of V = (J−1 ◦W )DWN .
3. Compute

Ẽ[≥L](θ, s) = −M−1(θ, s)E[≥L](θ, s)

4. Compute
(4.1) A(θ, s) = γT (θ, s)[Id2d−β(θ, s)α

T (θ, s)](DX◦W+DXT◦W )(θ, s)β(θ, s),
(4.2) B(θ, s) = −DX T ,

5. We denote UDW = ΠDWU and UV = ΠV U .
(5.1) Solve for UDW satisfying

(
0` 0
0 µ

)
UDW − (∂ω + µs∂s)UDW = ΠDW Ẽ
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(5.2) Solve for UV satisfying
(
0` 0
0 −µ

)
UV − (∂ω + µs∂s)UV = ΠV Ẽ −AUDW

Note that both equations can be solved in Fourier-Taylor coefficients.
6. Set W̃ = W +MU
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