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Computation of Limit Cycles and Their Isochrons: Fast Algorithms and Their
Convergence∗
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Abstract. We present efficient algorithms to compute limit cycles and their isochrons (i.e., the sets of points
with the same asymptotic phase) for planar vector fields. We formulate a functional equation for the
parameterization of the invariant cycle and its isochrons, and we show that it can be solved by means
of a Newton method. Using the right transformations, we can solve the equation of the Newton step
efficiently. The algorithms are efficient in the sense that if we discretize the functions using N points,
a Newton step requires O(N) storage and O(N logN) operations in Fourier discretization or O(N)
operations in other discretizations. We prove convergence of the algorithms and present a validation
theorem in an a posteriori format. That is, we show that if there is an approximate solution of the
invariance equation that satisfies some some mild nondegeneracy conditions, then there is a true
solution nearby. Thus, our main theorem can be used to validate numerically computed solutions.
The theorem also shows that the isochrons are analytic and depend analytically on the base point.
Moreover, it establishes smooth dependence of the solutions on parameters and provides efficient
algorithms to compute perturbative expansions with respect to external parameters. We include
a discussion on the numerical implementation of the algorithms as well as numerical results for
representative examples.
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1. Introduction. Oscillators appear in many areas of biology as well as in physics and
chemistry. Mathematically, we regard them as systems that have a stable limit cycle, whose
dynamics on the limit cycle can be easily described by their phase. The phase can be extended
to a neighborhood of the limit cycle via the asymptotic phase. The sets of points with a
constant asymptotic phase, called isochrons [47], approach the same orbit on the limit cycle.
Isochrons play a key role in understanding changes in phase due to brief perturbations. A brief
stimulus occurring at phase θ will send the trajectory away from the limit cycle and put it on
the isochron for another phase, say θ′. Changes in phase due to a brief stimulus at different
times of the cycle are typically described by the so-called phase response curve (PRC). Phase
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1764 GEMMA HUGUET AND RAFAEL DE LA LLAVE

reduction methods and PRCs have been extensively used to study weakly coupled oscillators
and synchronization properties [21, 11, 45, 12, 17]. However, when these perturbations are not
weak or occur very frequently, the trajectory is displaced away from the limit cycle and the
phase reduction and/or the linear PRC are not enough to accurately describe the dynamics
[19, 46, 27].

Thus, in recent times, there has been a large effort to compute isochrons and PRCs
accurately and up to high order. Recent papers close to our goal are [28], which computes
isochrons for dimensions higher than two; [43], which presents algorithms for PRCs to all
orders; [41], which describes and implements algorithms for isochrons of bursting oscillations,
and [33], which describes and implements algorithms for the computation of isochrons which
are effective for systems with multiple time scales. We especially refer the reader to [19],
where a parameterization method was used to compute local isochrons up to high order and
PRCs for points which are not on the limit cycle. In that paper, the invariance equation was
solved using an order by order method, which involved solving a large linear system.

In this paper we describe efficient algorithms (which do not require solving a full linear
system) to compute a parameterization of the limit cycle and the isochrons that provides ex-
tremely accurate representations of the isochrons in a relatively large neighborhood of the limit
cycle. The core mathematical result of this paper is Theorem 3.2, which provides estimates for
the convergence of the algorithm. In addition to this, Theorem 3.2 shows that the isochrons
are analytic and depend analytically on the base point, establishes smooth dependence of the
solutions on parameters, and provides efficient algorithms to compute perturbative expansions
with respect to external parameters.

The starting point of the mathematical formulation of the problem is the work by Guck-
enheimer in [18], which pointed out that the isochrons are just the stable manifold of a point
in the limit cycle in the sense of the theory of normally hyperbolic manifolds. Hence, fol-
lowing [3, 4, 5], we formulate the problem as solving a functional equation (see (2.4)) for the
parameterization of the invariant circle and its isochrons. This method was also used in [19],
where the invariance equation was solved using an order by order method. The main novelty
here is that we apply a Newton method to solve this functional equation. The key point for
obtaining both an efficient algorithm and good estimates that lead to convergence is to use
several identities and algebraic manipulations to transform the equation for the Newton step
into a simpler equation.

These identities, which have a geometric interpretation, are obtained by taking derivatives
of the invariance equation. As it turns out, the Newton step involves some “loss of derivatives”;
i.e., the norm of the remainder after a Newton step is controlled by the square of the norm of
derivatives of the remainder before the Newton step. It is well known from [24, 31, 30] that
the quadratic estimates in one step lead to convergence even when there is loss of derivatives.
Of course, numerical implementations exhibit quadratic convergence irrespective of the fact
that to establish it one uses a sophisticated method.

The algorithms we present here can be implemented rather straightforwardly using a
package manipulating Fourier–Taylor series of the type that is commonly used in celestial
mechanics [2, 20, 16]. The algorithm is highly efficient in the sense that if we discretize the
function usingN terms of the Fourier–Taylor series, then a Newton step requires O(N) storage
and O(N logN) operations but has the quadratic convergence of the Newton algorithm (i.e.,
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COMPUTATION OF LIMIT CYCLES AND THEIR ISOCHRONS 1765

after an application of the algorithm, the error is roughly the square of the original error).
If we discretize using splines or using collocation methods, using N points, a Newton step
requires O(N) storage and O(N) operations (with a larger constant).

We have implemented these algorithms using Fourier–Taylor series, and we show the
results for some representative examples in section 8 (the Rayleigh oscillator, the Morris–
Lecar model, and a reduced Hodgkin–Huxley-type model). The algorithm is highly accurate
(in the examples considered, one can get the isochrons up to ten thousand times the roundoff
error), and it also gives information on the derivatives of the isochrons. The computations
run in seconds on a standard laptop.

This paper is organized as follows: In section 2 we formulate the problem as a functional
equation. In section 3 we state the main result: Theorem 3.2. In section 4 we describe the
iterative step of the Newton method. In particular, in section 4.4 we present the iterative step
in an algorithmic form (Algorithm 4.4). This iterative step will be used in section 5 to prove
that the method converges in some appropriate norms defined in section 3.1. In section 6
we present some consequences of the formalism, such as smooth dependence on parameters
and local uniqueness. In section 7 we discuss some implementation details, and in section 8
we present numerical results for some representative examples. We end with a discussion in
section 9.

Note that the tools and standards of the sections of this paper are very different and could
appeal to different communities. Hence, we have strived to make the specific sections readable
independently. For instance, in sections 4.4, 7, and 8 we use the language of algorithm theory,
and discuss storage, operation counts, etc. In contrast, in sections 5 and 6 we use rigorous
mathematical estimates.

2. Setup of the problem. We consider a differential equation in the plane

(2.1) ẋ = X(x), x ∈ R
2,

and denote byXt the flow associated with (2.1). That is, Xt(x0) solves
d
dtX

t(x0) = X(Xt(x0)),
X0(x0) = x0. We assume that (2.1) admits a hyperbolic limit cycle and that X is analytic.

More precisely, we assume, for some map K0 : T → R
2, that x(t) = K0(ωt) is a solution

of (2.1) and, furthermore, that K = K0(T
1) is an exponentially attracting set. That is, if y is

close enough to K, then

(2.2) d(Xt(y),K) ≤ C e−λt

for some C, λ > 0.
Given (2.2), as pointed out in [18], it follows that we can find a unique Φ(y) in such a way

that

(2.3) |Xt(y)−K0(t+Φ(y))| ≤ C e−λt.

The goal is to show (see Theorem 3.2 for a more precise statement) that, in these cir-
cumstances, we can find K : T × [−1, 1] → R

2, an analytic local diffeomorphism, such that

(2.4) X ◦K(θ, s) = DK(θ, s)

[
ω
λs

]
.
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1766 GEMMA HUGUET AND RAFAEL DE LA LLAVE

Using the more concise notation Aω,λ = [ ω
λs ], (2.4) can be written as

X ◦K(θ, s) = DK(θ, s)Aω,λ.

Equation (2.4) will be the centerpiece of our approach. Note that if (2.4) holds, (2.2) also
holds with the same value of λ. Of course, (2.2) holds for a range of λ’s, while (2.4) determines
λ in a unique way. From now on, we will use λ to denote the optimal λ in (2.2).1

We should think of (2.4) as a functional equation for the mapping K and for the real
numbers ω and λ. The vector field X is, of course, known.

Note that we are taking the convention that the functions are 1-periodic, not 2π-periodic.
Hence, ω is the inverse of the period.

Note also that with our conventions, λ is positive when the limit cycle is repulsive and
negative when the limit cycle is attractive. The method works in both cases. In the stable
case, the isochrons are obtained by fixing the asymptotic phase in the future. In the unstable
case, the isochrons are obtained by fixing the asymptotic phase in the past. Of course, one
can pass from the stable case to the unstable case just by changing the direction of time
(equivalently, the sign of the vector field X).

2.1. Geometric interpretation of invariance equation (2.4). We can think of (2.4) as a
change of variables that turns the vector field X into the straight vector field on T× [−1, 1]:

(2.5) Aω,λ ≡
[

ω
λs

]
.

We can also write (2.4) as

X ◦K(θ, s) = [ω∂θ + λs∂s]K(θ, s),

but the formulation as in (2.4) is geometrically more natural.
It is straightforward to show that if we have (2.4), the evolution in the coordinates (θ, s)

becomes

(2.6) Xt(K(θ, s)) = K(θ + tω, s eλt).

Indeed, note that, using (2.4), we have

d

dt
K(θ + tω, s eλt) = (ω∂θ + s λ eλt∂s)K(θ + tω, s eλt)

= X
(
K(θ + tω, s eλt)

)
.

We can describe (2.6) as saying that if we perform the change of variables given by K,
the coordinates (θ, s) evolve by the linear flow

(2.7) Λt(θ, s) = (θ + ωt, s eλt);

1One of the consequences of the theory developed here is that the optimal λ in (2.2) exists. That is, there
are no subexponential corrections. See section 2.3 for more details.
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COMPUTATION OF LIMIT CYCLES AND THEIR ISOCHRONS 1767

that is, we have Xt ◦K = K ◦ Λt.
In particular, the isochrons are just the sets obtained by fixing θ and letting s vary:

(2.8) Sθ = {K(θ, s) | s ∈ [−1, 1]}.

In Theorem 3.2, we will show that K is analytic and, as a corollary, that Sθ are analytic
manifolds that depend analytically on θ.

Note that if we have (2.4), then

K0(θ) = K(θ, 0)

is a limit cycle, so that the isochrons Sθ are curves transversal to the limit cycle. Indeed,

K1(θ) = ∂sK(θ, s)|s=0

is tangent to the isochron at K0(θ) and is transversal to ∂θK(θ, s)|s=0, which is tangent to
the circle K(θ) ( (∂θK, ∂sK) has full rank because K is a diffeomorphism).

Note also that even if the foliation by isochrons is invariant by the flow Xt of (2.1), the
individual leaves are not invariant. Indeed, we have

(2.9) Sθ+ωt = Xt(Sθ).

However, we can use this property to numerically extend the computation of the isochrons to
a larger neighborhood of the limit cycle. See section 7.

2.2. Lack of uniqueness. It is important to note that the solutions of (2.4) are never
unique. Indeed, for any θ0 ∈ T and b ∈ R, if (K,ω, λ) is a solution of (2.4) and K̃ is
defined by K̃(θ, s) = K(θ+ θ0, b s), then (K̃, ω, λ) is also a solution of (2.4). We will show in
Theorem 6.1 that this is the only source of nonuniqueness. In particular, ω and λ are uniquely
determined.

A practical consequence of this lack of uniqueness is that we can assume (by choosing
b) that the domain of the parameter s is [−1, 1]. This choice of parameter b is convenient
for theoretical calculations, but not essential. On the other hand, it is very important for
numerical calculations. We will discuss this issue in detail in sections 7 and 8.

2.3. Topological characterization of isochrons. One of the consequences of (2.4) is that
the isochrons admit a topological characterization. This is somewhat different from the char-
acterization given by the theory of normally hyperbolic manifolds, which involves not only
convergence but convergence at a certain exponential rate. For simplicity, we present only the
formula for the stable case, when λ < 0 and the asymptotic phase is the phase in the future.

Using (2.4) and the fact that K is uniformly differentiable (so that it preserves rates of
convergence up to a constant), we have for 0 < η � 1,

W s
K(θ,0) = {P ∈ R

2 | |Xt(P )−Xt(K(θ, 0))| ≤ Cη,P e
−(|λ|−η)t for all t ≥ 0}

= {K(θ, s), s ∈ R}
= {P ∈ R

2 | |Xt(P )−Xt(K(θ, 0))| → 0 as t→∞}
= {P ∈ R

2 | |Xt(P )−Xt(K(θ, 0))| ≤ CP e
−|λ|t for all t ≥ 0}.

(2.10)
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1768 GEMMA HUGUET AND RAFAEL DE LA LLAVE

The first characterization ofW s
K(θ) in (2.10) is the standard definition in the theory of normally

hyperbolic manifolds, which involves rates of convergence.
The third line of (2.10) is a purely topological characterization; it involves just conver-

gence irrespective of the rate. The link between all the characterizations in (2.10) is the
characterization given in the second line of (2.10). The difference between the first and fourth
lines of (2.10) is that in the first line we just assume that there is an open interval of rates
of convergence. In the fourth line, we obtain that the endpoint of the rates of convergence
allowed in the first line is also allowed.

The proof of the equivalence of all the characterizations follows from the observation that
it is valid when the dynamics are described by the linear flow Λt (see (2.7)) and that the
change of variables provided by K does not change the rates of convergence (or, of course,
true convergence) of the orbits.

The characterizations above show that, for the problem at hand, the orbits that converge
do so exponentially fast and the exponential rate is always the optimal one (i.e., there are no
polynomial corrections). This result strongly relies on the low dimensionality of the problem
and is false in more general normally hyperbolic manifolds.

3. Statement of the main analytical result: Theorem 3.2. To formulate Theorem 3.2
precisely, we need some definitions of norms in which to measure functions.

3.1. Definition of norms. We use the standard supremum norms in KAM theory. They
seem to give the sharpest results in loss of differentiability. As for the numerical work with
them, see section 7.1.4.

We denote

Tρ = {θ ∈ C/Z | |Im(θ)| ≤ ρ},
Bβ = {s ∈ C | |s| ≤ β},
Dβ,ρ = Tρ ×Bβ.

(3.1)

Definition 3.1. Given a periodic function f(θ) =
∑

k∈Z f̂ke
2πikθ and a number ρ > 0, we

define

(3.2) ‖f‖ρ = sup
θ∈Tρ

|f(θ)|.

Given a family of periodic functions K(θ, s) =
∑

n∈NKn(θ)s
n with Kn(θ) periodic and two

numbers ρ, β > 0, we define

(3.3) ‖K‖β,ρ = sup
|s|≤β,θ∈Tρ

|K(θ, s)|.

Note that the definitions above are valid in the cases that the functions are real valued or
vector valued.

We consider the spaces Aρ and Aβ,ρ consisting of the functions for which the norms ‖ · ‖ρ
and ‖·‖β,ρ, respectively, are finite. We consider them equipped with the corresponding norms,
which makes Aρ and Aβ,ρ Banach spaces.

Some elementary properties of these norms are presented in section 5.1.
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3.2. Statement of the main analytical result.
Theorem 3.2. Let X be an analytic vector field in a domain of R

2 which extends to a
domain C ⊂ C

2.
Assume that we can find an analytic parameterization K : T× [−1, 1]→ R

2 and numbers
ω, λ in such a way that the following hold:

• K(Tρ ×Bβ) ⊂ C, dist(K(Tρ ×Bβ),C
2 − C) = ζ > 0.

• ‖X ◦K −DKAω,λ||β,ρ < ε.
• For some 0 < δ < ρ/2, we have

(3.4) εδ−1C ≤ 1,

where C is an explicit expression developed in the proof depending on supx∈C |D2X(x)|,
supx∈Tρ×Bβ

|DK(x)|, |DK−1(x)|, |D2K(x)|.
Then, there exists K∗ an analytic local diffeomorphism and ω∗, λ∗ ∈ R such that

(3.5) X ◦K∗(θ, s) = DK∗(θ, s)Aω∗,λ∗ .

Furthermore,

‖K −K∗‖β−δ,ρ−δ, |ω − ω∗|, |λ− λ∗| ≤ Cε.(3.6)

Here, following the standard practice in KAM arguments, we denote by the letter C some
quantities that depend on the quantities indicated after (3.4) even if the meaning could be
different from line to line. In particular, the constant C that appears in the conclusions (3.6)
is different from the constant C that appears in the hypothesis (3.4). Indeed, there are several
pairs of constants that work.

The proof of Theorem 3.2 is given in section 5. It is based on a rapidly convergent iteration.
This iteration, which takes advantage of some geometric calculations, is not only the method
of proof but also yields efficient algorithms. For this reason, we discuss the iterative step in a
separate section (see section 4).

Note that Theorem 3.2 has the format of a posteriori results of numerical analysis. That
is, it states that if the initial approximation solves the equation with sufficient accuracy
depending on explicit “condition numbers,” then there is a true solution nearby. Moreover,
one can bound the difference between the initial approximation and the true solution by the
residual of (2.4) evaluated on the initial approximation.

The solution produced by Theorem 3.2 is also unique in a neighborhood except for the
reparameterizations discussed in section 2.2. Moreover, solutions depend smoothly on param-
eters. We discuss these results in section 6.

4. The iterative step for the computation of (K, ω, λ). In this section we present
the procedure, based on the Newton method, for obtaining a more approximate solution
(K,ω, λ) of (2.4) out of a sufficiently approximate one. More precisely, we state explicitly
the functional equation that needs to be solved, we describe the algebraic manipulations to
simplify this equation, and finally we provide two methods for solving the simplified equation:
one using Fourier series and another one using integral representations.

This procedure will be the basis of both the convergence proof of Theorem 3.2 (see sec-
tion 5) and the numerical algorithm (see section 4.4).
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4.1. The Newton method. Given an approximate solution (K,ω, λ) of (2.4) such that

(4.1) X ◦K −DKAω,λ = E,

the Newton method seeks an improved solution (K + Δ, ω + σ, λ + η), in such a way that
(Δ, σ, η) eliminates E “in the linear approximation.”

Since X ◦ (K +Δ) ≈ X ◦K +DX ◦KΔ and D(K +Δ) = DK +DΔ, we have that the
equation for the Newton method is

(4.2) (DX ◦K)Δ− (DΔ)Aω,λ −DKAσ,η = −E.

One should think of (4.2) as an equation for Δ, η, and σ when all the other quantities are
known. Indeed, X is given by the problem and (K,ω, λ) is the known approximation we are
trying to improve.

Note that at this stage it is not clear that (4.2) has a solution because we have periodicity
requirements on K. The fact that (4.2) has solutions will be established in section 4.2.

If we discretize our functions in some appropriate basis of functions satisfying the period-
icity conditions, (4.2) yields a linear equation that can be solved using a linear solver. This is
a reasonably practical approach in many circumstances [19]. The main drawback is that one
needs to solve a linear system which requires one to invert a full matrix of the dimension of
the discretization.

In this paper, however, we take a different approach. We use several identities to obtain
a change of variables which reduces (4.2) to a much simpler equation (up to a certain error
which is smaller than the original error and does not change the quadratic character of the
Newton method). This is what we call a quasi-Newton method, and we discuss it in detail in
the next section.

Remark 4.1. The use of these identities in linearization problems was pointed out in [31]. A
more systematic study based on “group structure” of the equations is in [48]. Some extensions
of this approach were used in [26] for Hamiltonian systems, taking advantage of the geometric
properties of the system. In our case, the geometric property we take advantage of is, mainly,
the lower dimensionality of the system.

4.2. The quasi-Newton method. Consider an approximate solution (K,ω, λ) of (2.4) sat-
isfying (4.1). Notice that taking derivatives of (4.1) we obtain that our approximate solution
(K,ω, λ) also satisfies

(4.3) (DX ◦K)DK −D2K Aω,λ −DKDAω,λ = DE,

where

DAω,λ =

(
0 0
0 λ

)
.

We emphasize that both (4.1) and, hence, (4.3) give information that is on hand at the
beginning of the iterative step.

Next, we show how to use (4.3) to simplify the equation for the Newton method (4.2).
The crucial idea is that rather than looking for (Δ, σ, η) in (4.2), we look for (W,σ, η), where

(4.4) Δ = DKW.
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Note that if DK is invertible, both Δ and W are equivalent unknowns in the sense that if we
know one, we can find the other one. Then, if we substitute (4.4) into (4.2), we obtain that
(4.2) is equivalent to

(4.5) (DX ◦K)DKW −D2KW Aω,λ −DKDW Aω,λ −DK Aσ,η = −E.

Using (4.3), we obtain that (4.5) is equivalent to (recall that D2KW Aω,λ = D2K Aω,λ W
because D2K is a symmetric quadratic form)

(4.6) DKDAω,λ W +DEW −DKDW Aω,λ −DKAσ,η = −E.

The quasi-Newton method consists just in dropping the term DEW from (4.6), which we
argue, heuristically at the moment, is “quadratically small” because it is the product of two
terms which are small (think of W as of the same order of smallness as E). This heuristic
idea that DEW is small will be made rigorous when we perform estimates in section 5.2.

Hence, we will consider the equation for (W,σ, η),

(4.7) DKDAω,λW −DKDW Aω,λ −DK Aσ,η = −E,

and then consider the improved solution (K +DKW , ω + σ, λ+ η). This will be referred to
as the quasi-Newton step.

If we premultiply (4.7) by DK−1, we obtain

(4.8)

(
0 0
0 λ

)
W −DW Aω,λ −Aσ,η = −DK−1E.

If we express (4.8) in components, using the shorthand Ẽ = DK−1E and denoting the
components of Ẽ and W by subindices, Ẽ = (Ẽ1, Ẽ2) and W = (W1,W2), we obtain

− (ω∂θ + λs∂s)W1 − σ = −Ẽ1,

λW2 − (ω∂θ + λs∂s)W2 − ηs = −Ẽ2.
(4.9)

The remarkable feature of (4.9) is that it involves only a linear operator with constant
coefficients. As we will see next, these equations can be solved very efficiently either in
Fourier coefficients (see Lemma 4.2) or using explicit (and fast converging) integral formulas
(see Lemma 4.3).

4.3. Solutions of the constant coefficient linearized equations. In this section, we study
the solvability of equations (4.9) using both (formal) Fourier series and improper (but rapidly
convergent) integrals. The latter are convenient when the functions are discretized using
splines or collocation methods, like when the vector field X is known only at some points
obtained experimentally. Detailed estimates will be established in section 5. Nevertheless, for
the purpose of implementing algorithms, only the existence and the form of the solutions are
needed.

4.3.1. Solutions of linearized equations by Fourier methods.
Lemma 4.2. Consider a formal series Ẽ =

∑
Ẽj,ks

je2πikθ. Then, if Ẽ00 = 0, the equation
for u,

(4.10) (ω∂θ + λs∂s)u = Ẽ,

has the one-dimensional family of formal series solutions
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∑
j∈N, k∈Z

uj,ks
je2πikθ

with

uj,k =
Ẽj,k

2πiωk + λj
if (j, k) 
= (0, 0),

u0,0 = α

(4.11)

for any α ∈ R. The solutions given in (4.11) are the only formal series solutions of (4.10).
Furthermore if Ẽ00 
= 0, there are no formal series solutions of (4.10).

If Ẽ10 = 0, then the equation for u,

(4.12) −λu+ (ω∂θ + λs∂s)u = Ẽ,

has the one-parameter family of formal series solutions

∑
j∈N, k∈Z

ujks
je2πikθ

with

ujk =
Ẽjk

2πiωk + λ(j − 1)
if (j, k) 
= (1, 0),

u1,0 = α

(4.13)

for any α ∈ R. The solutions given by (4.13) are the only formal series solutions of (4.12).
Furthermore, if Ẽ1,0 
= 0, (4.12) has no solutions.

Proof. Taking Fourier series on both sides of (4.10) we have

ujk(λj + 2πiωk) = Ẽjk.

It is easy to see that λj + 2πiωk = 0 if and only if j = 0, k = 0. Therefore, the solution u is
obtained by setting ujk = Ẽjk/(λj + 2πiωk) when (j, k) 
= (0, 0) and u00 is arbitrary.

Similarly, we observe that (4.12) is equivalent to

(λj − λ+ 2πiωk)ujk = Ẽjk.

Again, we note that λ(j − 1) + 2πiωk = 0 if and only if j = 1, k = 0, and then the same
argument as before applies.

Consider the expressions given by (4.11) and (4.13). If Ẽ is not just a formal power series,
but rather a smooth function, the solutions above will also have several regularity properties.
The reason is that regularity of the error implies fast decay properties for the Fourier–Taylor
coefficients, which in turn imply fast decay of the Fourier–Taylor coefficients of the solutions
and, hence, regularity properties of the solutions. Detailed estimates will be presented in
section 5.
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4.3.2. Solutions of linearized equations by improper integrals.
Lemma 4.3. Consider Ẽ : T× [−1, 1]→ R

2, which is a Cr function r ∈ N∪{∞, ω}, r ≥ 1.
Assume that we are in the stable case (λ < 0).

If
∫ 1
0 Ẽ(θ, 0)dθ = 0, (4.10) has the solutions

(4.14) u(θ, s) ≡ α+
1

ω

∫ θ

0
Ẽ(σ, 0) dσ −

∫ ∞

0
[Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)]dt.

Furthermore, if
∫
Ẽ(θ, 0) 
= 0, there is no C0 solution of (4.10). The only solutions of

(4.10) in C0(T× [−1, 1]) are (4.14).
If r ≥ 2,

∫ 1
0 ∂sẼ(θ, 0)dθ = 0, (4.12) has the solutions

u(θ, s) = A(θ) + sB(θ) +

∫ ∞

0
e−λt[Ẽ(θ + ωt, seλt)

− Ẽ(θ + ωt, 0)− seλt∂sẼ(θ + ωt, 0)] dt,

(4.15)

where

A(θ) =

∫ ∞

0
eλtẼ(θ − ωt, 0) dt,

B(θ) = α+
1

ω

∫ θ

0
∂sẼ(σ, 0) dσ.

Furthermore, if
∫ 1
0 ∂sẼ(θ, 0)dθ 
= 0, there is no C1 solution of (4.12). The only solutions of

(4.12) in C2(T× [−1, 1]) are those given by (4.15).
Proof. We observe that if we particularize (4.10) to s = 0, we obtain

ω∂θu(θ, 0) = Ẽ(θ, 0).

Hence, by the fundamental theorem of calculus, the only continuous solutions of (4.10) should
satisfy

(4.16) u(θ + ωT, 0)− u(θ, 0) =

∫ T

0
Ẽ(θ + ωt, 0) dt.

We see that the expression (4.16) is periodic in T if and only if
∫ 1
0 Ẽ(θ, 0) dθ = 0. Hence,

if
∫ 1
0 Ẽ(θ, 0) dθ 
= 0, there is no solution u. In the rest of the discussion we will assume∫ 1

0 Ẽ(θ, 0) dθ = 0. We also note that the expression (4.16) is a solution of (4.10) on the set
s = 0.

Also, by the fundamental theorem of calculus and adding and subtracting terms we obtain
that any solution of (4.10) should satisfy

u(θ + ωT, seλT )− u(θ, s)

=

∫ T

0
[Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)] dt +

∫ T

0
Ẽ(θ + ωt, 0) dt

=

∫ T

0
[Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)] dt + u(θ + ωT, 0)− u(θ, 0),

(4.17)
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because u(θ + ωT, seλT )− u(θ + ωT, 0) converges to 0 as T →∞, and

|Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)| ≤ ceλt.

We obtain that the integral (4.17) is uniformly convergent, and we obtain that the function u
is the only candidate for a solution.

Taking T →∞ in the expression (4.17) we have

u(θ, s) = u(θ, 0)−
∫ ∞

0
[Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)] dt,

and using again the fundamental theorem of calculus we have

u(θ, 0) = u(0, 0) +

∫ θ

0
∂θu(σ, 0)dσ = α+

1

ω

∫ θ

0
Ẽ(σ, 0)dσ,

which gives (4.14).
Since the integrand in (4.17) converges fast enough, we can compute the derivatives of

the integral by computing the derivatives of the integrand and, therefore, conclude that u is
indeed a solution of (4.10).

To prove the second claim of Lemma 4.3, we proceed as before. We start by computing
candidates for u(θ, 0) and ∂su(θ, 0), and then we show that the integrand converges fast
enough that we can justify that they are indeed solutions. This strategy is very common in
linearization problems and in invariant manifold theorems.

We observe that using the integrating factor e−λθ/ω in (4.12) we have

−λe−λθ/ωu(θ, s) + e−λθ/ω(ω∂θ + λs∂s)u(θ, s) = e−λθ/ωẼ(θ, s)

and therefore
(ω∂θ + λs∂s)[e

−λθ/ωu(θ, s)] = e−λθ/ωẼ(θ, s).

Using the fundamental theorem of calculus

e−λ(θ+ωT )/ωu(θ + ωT, seλT )− e−λθ/ωu(θ, s) =

∫ T

0
e−λ(θ+ωt)/ωẼ(θ + ωt, seλt)dt

and multiplying by eλθ/ω , we have the variation of parameters formula

(4.18) e−λTu(θ + ωT, seλT )− u(θ, s) =

∫ T

0
e−λtẼ(θ + ωt, seλt)dt.

We observe that using the variation of parameters formula (4.18) for s = 0, we obtain

e−λTu(θ + ωT, 0)− u(θ, 0) =

∫ T

0
e−λtẼ(θ + ωt, 0) dt,

which after multiplying by eλT and performing the change of variables θ̃ = θ + ωT becomes

u(θ̃, 0) = u(θ̃ − ωT, 0)eλT +

∫ T

0
eλ(T−t)Ẽ(θ̃ − ω(T − t), 0) dt

= u(θ̃ − ωT, 0)eλT +

∫ T

0
eλtẼ(θ̃ − ωt, 0) dt.
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Taking limits as T →∞, we obtain the expression for A in (4.15).
Now, we observe that if we take derivatives with respect to s of (4.12) and evaluate at

s = 0, we obtain

−λ∂su(θ, 0) + ω∂θ∂su(θ, 0) + λ∂su(θ, 0) = ∂sẼ(θ, 0),

which we rewrite as
ω∂θ[∂su(θ, 0)] = ∂sẼ(θ, 0).

Therefore, we have that if
∫ 1
0 ∂sẼ(θ, 0) dθ = 0, there is no periodic solution. Otherwise, we

obtain B in (4.15).
Equation (4.12) is obviously linear, and we have found solutions A(θ), sB(θ) corresponding

to the right-hand side (RHS) Ẽ(θ, 0), s∂sẼ(θ, 0). Therefore it suffices to find solutions for an
RHS of (4.12) of the form

˜̃E(θ, s) = Ẽ(θ, s)− Ẽ(θ, 0)− s∂sẼ(θ, 0).

Again, we will find a candidate ũ(θ, s) and verify that indeed it is a solution.
The variation of parameters formula (4.18) gives

e−λT ũ(θ + ωT, seλT )− ũ(θ, s) =

∫ T

0
e−λt ˜̃E(θ + ωt, seλt) dt.

We note that, because ˜̃E is C2 and ˜̃E(θ, 0) = 0, ∂s
˜̃E(θ, 0) = 0,

| ˜̃E(θ + ωt, seλt)| ≤ Ce2λt.

Hence, the integral in the RHS is convergent if we take the limit T →∞.
Since we have found the linear parts for u(θ, s), it is natural to guess that ũ(θ, s) ≤ Cs2.

Thus, we guess that the only solution for (4.12) is

(4.19) ũ(θ, s) =

∫ ∞

0
e−λt ˜̃E(θ + ωt, seλt) dt.

To prove that (4.19) is indeed a solution of (4.12), we note that taking derivatives under
the integral sign (which is justified by the rapid convergence to zero of the integrand and its
derivatives), we obtain that (4.19) satisfies (4.12).

Now we observe that, using the definition of ũ, if there was a solution u of (4.12), it would
satisfy

−λ(u− ũ) + (ω∂θ + λs∂s)(u− ũ) = Ẽ(θ, 0) + s∂sẼ(θ, 0),

but we have already established the uniqueness of this previous approximation.
Of course, from the form of the solutions (4.14) and (4.15) we can also obtain regularity

properties, but this will be done in section 5.
Note that, since λ < 0, the integrals defining A are uniformly convergent. The integrals

in (4.15) are also uniformly convergent because, by Taylor’s theorem,

|Ẽ(θ + ωt, seλt)− Ẽ(θ + ωt, 0)− seλt∂sẼ(θ + ωt, 0)]| ≤ Ce2λt.
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4.4. Algorithm for the quasi-Newton step. In this section we specify step by step the
implementation of the quasi-Newton step.

The theory of solvability of linearized equations developed in Lemma 4.2 indicates how to
approach the solution of (4.9). We determine the unknowns σ, η so that the equations are all
solvable, namely,

σ =

∫ 1

0
Ẽ1(θ, 0)dθ,(4.20)

η =

∫ 1

0
∂sẼ2(θ, s)|s=0dθ.

Therefore, we are led to the following algorithm.
Algorithm 4.4. Consider a vector field X : R2 → R

2. Given K : T × [−1, 1] → R
2, ω ∈ R,

λ ∈ R, compute the following:
1. α← X ◦K.
2. β ← DK.
3. E ← α− β Aωλ.
4. Ẽ = DKE. Denote Ẽ = (Ẽ1, Ẽ2).
5. σ =

∫ 1
0 Ẽ1(θ, 0) dθ,

η =
∫ 1
0 ∂sẼ2(θ, s)|s=0 dθ.

6. Find W1 solving
(ω∂θ + λs∂s)W1 = Ẽ1 − σ.

We also impose the normalization
∫
W1|s=0 = 0, so that the solution is unique.

7. Find W2 solving
(ω∂θ + λs∂s)W2 − λW2 = Ẽ2 − ηs.

We also impose the normalization
∫
∂sW2|s=0 = 0, so that the solution is unique.

8. Denote W = (W1,W2). The improved solution is

K̃ = K +DKW, ω = ω + σ, λ = λ+ η.

A remarkable feature of Algorithm 4.4 is that even if it is a quadratically convergent
algorithm, at no stage of the algorithm it required to compute (much less to invert) a matrix
of the dimension of the discretization. We need only perform algebraic operations among
functions, compute derivatives, and solve the cohomology equations.

All the above operations can be implemented either in Taylor–Fourier series or using a
discretization in a grid of points and interpolating using, e.g., splines. We discuss the numerical
implementation details in section 7.

Remark 4.5. Notice that the solution W1 obtained in step 6 is unique up to the addition
of a constant and W2 computed in step 7 is unique up to the addition of a multiple of the
first order coefficient. The solutions obtained for η, σ are unique. The indeterminacy in the
solutions of 6 and 7 can be used to achieve other normalizations (see section 6.1). These are
the only indeterminacies of the modified Newton equation (see sections 2.2 and 6.1).

5. Convergence of the iterative step and proof of Theorem 3.2. In this section we
prove Theorem 3.2, which establishes the convergence of Algorithm 4.4 provided that we start
with a sufficiently approximate solution of (2.4).
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To obtain convergence proofs we need to supplement the discussion in section 4 with
considerations of function space and estimates on the solution and the error that quantify the
assertion that the result of the iterative step satisfies the invariance equation more accurately.
Finally, we need to show that the procedure for producing more accurate solutions can be
iterated, hence obtaining a sequence of functions which converge to a solution.

The a posteriori results such as Theorem 3.2 are very typical of results on convergence of
methods based in Newton–Kantorovich algorithms, which have an iterative method leading
to a fixed point. Nevertheless, since our iterative step involves taking derivatives, we will have
to use Nash–Moser estimates rather than the more elementary Kantorovich ones. This will
require introducing norms to measure the distance between functions. Although Nash–Moser
methods are very robust and can work with several norms, we will discuss only the most
customary supremum norms introduced in Definition 3.1.

5.1. Some elementary properties of the norms in Definition 3.1. In this section we
review some elementary properties of the norms introduced in section 3.1.

Proposition 5.1. Consider the notation introduced in Definition 3.1. For any f, g ∈ Aρ and
K,L ∈ Aβ,ρ, we have

‖f · g‖ρ ≤ ‖f‖ρ‖g‖ρ,
‖K · L‖β,ρ ≤ ‖K‖β,ρ‖L‖β,ρ.

(5.1)

The proof of Proposition 5.1 is immediate using that the supremum of the product is less
than the product of the supremums.

Proposition 5.2. For any δ > 0, we have for any f ∈ Aρ, K ∈ Aβ,ρ,

‖∂θf‖ρ−δ ≤ Cδ−1‖f‖ρ,
‖∂sK‖β−δ,ρ ≤ Cδ−1‖K‖β,ρ,
‖∂θK‖β,ρ−δ ≤ Cδ−1‖K‖β,ρ.

(5.2)

This is a very standard result in complex analysis that follows from the Cauchy formula
for the derivative as a contour integral (see [1, 39]).

Proposition 5.3. Let X be an analytic vector field in a domain C ⊂ C
2. Let K : Tρ×Bβ →

C
2 be such that

dist(K(Tρ ×Bβ),C
2 − C) ≥ ζ > 0.

Then, the following hold:
• X ◦K ∈ Aβ,ρ. In particular, X ◦K is analytic on Tρ ×Bβ .
• For all γ : Tρ ×Bβ → C

2 with ‖γ‖β,ρ sufficiently small, we have

(5.3) ‖X ◦ (K + γ)−X ◦K − (DX ◦K) γ‖β,ρ ≤ C‖γ‖2β,ρ.

The proof of Proposition 5.3 follows from the observation that, for each x ∈ Tρ, we can
use Taylor’s theorem and then take the supremum. This gives that the constant C appearing
in (5.3) can be taken to be

C =
1

2
sup
x∈C
||D2X||.
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Another useful property of the norms is that they are log convex in ρ. This is just
Hadamard’s three circle theorem [1, 39]. For all ρ1, ρ2 > 0, 0 ≤ α ≤ 1, we have

(5.4) ||φ||αρ1+(1−α)ρ2 ≤ ||φ||
α
ρ1 ||φ||

1−α
ρ2 .

5.2. Estimates for the iterative step. In this section we quantify the argument presented
heuristically showing that the error in (2.4) after the iterative step is bounded by the square
of the error before the step. There are some subtleties (standard in KAM theory) that need
to be taken into account: (a) The bounds after the step are in a slightly smaller domain; (b)
the bounds have constants that blow up (like a power) on the loss of analyticity; and (c) the
bounds have constants that depend on some nondegeneracy conditions which can be written
explicitly and consist of algebraic expressions involving derivatives of K.

Lemma 5.4. Assume that X is analytic in some domain U ⊂ C
2. Let K : Dβ,ρ = Tρ×Bβ →

U belong to Aβ,ρ.
Assume that

d(Range(K(Dβ,ρ)),C
2 − U) ≥ ζ > 0.

Assume, furthermore, that for some m ≥ 0,

‖K‖β,ρ ≤ m,

‖DK‖β,ρ, ‖D2K‖β,ρ ≤ m+,

‖DK−1‖β,ρ ≤ m− ,

ω ≥ m̃ , and λ ≤ −m̃.

(5.5)

Let E be the error function defined as

E = X ◦K −DKAω,λ,

and let δ > 0 be such that

(5.6) δ−1m‖E‖β,ρ ≤ ζ/100.

Then, there is a constant C depending only on ζ,m+,m−, m̃ such that the improved solution
(K+Δ, ω+σ, λ+ η) obtained after the quasi-Newton step specified in Algorithm 4.4 satisfies

(5.7) ‖X ◦ (K +Δ)−D(K +Δ)Aω+σ,λ+η‖β−δ,ρ−δ ≤ Cδ−1‖E‖2β,ρ.

Proof. We want to estimate the error of the improved approximation (X+Δ, ω+σ, λ+η),
where Δ = DKW , and (W,σ, η) are obtained through Algorithm 4.4 (see steps 4–7). The
proof follows just walking through the argument presented in section 4.4 and adding and
subtracting appropriate terms in the linear expansion.

First we note that the formula for computing the Fourier coefficients of the function W is
specified in (4.11) and (4.13). Then, using that Ẽ = DKE and Proposition 5.1, we have that

|σ|, |η| ≤ ‖Ẽ‖β,ρ
≤ ‖DK‖β,ρ‖E‖β,ρ
≤ C‖E‖β,ρ,

‖W‖β,ρ ≤ C

(
1

ω
+

1

λ

)
‖E‖β,ρ,

(5.8)
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where C is a constant that depends on m+.
The following identity is obtained just adding and subtracting some terms (those we

declared as the leading coefficients and those that we cancel) and grouping

X ◦ (K +Δ)−D(K +Δ)Aω+σ, λ+η

= X ◦ (K +DKW )−D(K +DKW )(Aω,λ +Aσ,η)

= X ◦ (K +DKW )−DKAω,λ −DKAσ,η −D2KWAωλ

−D2KWAσ,η −DKDWAω,λ −DKDWAσ,η

= X ◦ (K +DKW )−X ◦K −DX ◦KDKW

+ [DX ◦KDK −D2KAω,λ −DKDAω,λ]W

+X ◦K −DKAω,λ

+DKDAω,λW −DKDWAω,λ −DKAσ,η

−DKDWAσ,η

−D2KWAσ,η.

(5.9)

The different lines (which we denote by �1 − �6) in the last expression of (5.9) can be
estimated as follows.

The third line (�3) in (5.9) is just E, and (W,σ, η) are chosen so that the third and fourth
lines of (5.9) cancel exactly (see (4.7)).

We recall that we denote by C numbers that are controlled by some function of the
condition numbers m in (5.5) as well as ω, λ, and supx∈C |D2X|.

The first line of (5.9) can be estimated using the Taylor remainder and the bound for
‖W‖β,ρ obtained in (5.8). We obtain

‖�1‖β,ρ ≤
1

2
‖D2X‖C (‖DK‖β,ρ‖W‖β,ρ)2 ≤

1

2
C‖W‖2β,ρ

≤ C‖E‖2β,ρ.
(5.10)

The second line of (5.9) can be estimated observing that the expression in brackets is the
derivative of E (see (4.3)). Then, using Cauchy bounds (Proposition 5.2) and the bound for
‖W‖β,ρ obtained in (5.8) as well as the Banach algebra properties (Proposition 5.1), we obtain

‖�2‖β−δ,ρ−δ ≤ Cδ−1‖E‖β,ρ‖W‖β,ρ
≤ Cδ−1‖E‖2β,ρ.

The fifth and sixth lines of (5.9) can be estimated straightforwardly using the estimates
for σ, η, and W in (5.8) and Cauchy bounds (Proposition 5.2) by

‖�5‖β−δ,ρ−δ ≤ Cδ−1‖W‖β,ρ|(σ, η)|
≤ Cδ−1‖E‖2β,ρ,

‖�6‖β,ρ ≤ C‖W‖β,ρ|(σ, η)|
≤ C‖E‖2β,ρ.

(5.11)
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1780 GEMMA HUGUET AND RAFAEL DE LA LLAVE

Taking the minimum of these estimates we obtain the bound in (5.7).

Remark 5.5. In contrast with the usual KAM problems, we do not lose derivatives in the
solutions of the linearized problem. In that case, the loss of derivatives in the Newton step
is because the functional equation (2.4) involves computation of derivatives to straighten the
vector field and composition of functions (which is not a differentiable operator unless one
loses some domain).

5.3. Repeating the iteration and end of the proof of Theorem 3.2. The proof is very
standard in KAM theory. We follow very closely the presentation in [25] for KAM problems.

We assume by induction that the iterative step can be carried out n times (i.e., that
hypothesis (5.6) is verified for the first n steps). We denote by superindices (n) the parame-
terization K after n steps of the iterative process. For all the other objects we use subindices.
We will show that, under certain assumptions on the size of δ0 and the error in the ini-
tial approximation ε0, which will be independent of n, hypothesis (5.6) will be verified for
n+1. Moreover, we will show that the error for successive approximations decreases very fast
(superexponentially).

We start by fixing for n ≥ 1

(5.12) δn =
1

4
δ02

−n,

where δ0 is the global analyticity loss denoted by δ in Theorem 3.2. We will show that this
choice of δn is acceptable when the error in the initial approximation ε0 is small enough.

The condition numbers m−,m+, and m̃ will be changing in the iteration. We will assume
inductively that they are twice as bad as the initial value. We will show that this induction
assumption is maintained if ε0 is small enough. We will denote by C the constant that
corresponds to the values of m,m+, and m̃, which are twice the original values.

Denoting by εn the value of the error at step n, the estimates for the iterative step can be
written as

(5.13) εn ≤ C(δ02
−n−1)−1ε2n−1.

Repeating (5.13), we obtain

εn ≤ Cδ−1
0 2n+1ε2n−1

≤ (Cδ−1
0 )2n+1(Cδ−1

0 )222nε2·2n−2

≤ (Cδ−1
0 )1+2+22+···+2n−1

2(n+1)+2(n)+22(n−1)+···+2nε2
n

0(5.14)

≤ (Cδ−1
0 )2

n
22

n+1
∑n+1

k=1 k2−k
ε2

n

0

≤ (Cδ−1
0 )2

n
22

n+1
∑∞

k=0 k2
−k
ε2

n

0

≤ (Cδ−1
0 )2

n
22

n+2
ε2

n

0

≤ (Cδ−1
0 22ε0)

2n .

Notice that if Cδ−1
0 22ε0 < 1, then εn is superexponentially small. The fact that εn

decreases superexponentially while δn decreases only exponentially (5.12) has the consequence
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that the inductive assumption (5.6) will be satisfied for all the iterative steps if the initial error
ε0 is small enough.

Furthermore, denoting Dβn,ρn the domain of definition of K(n) with (βn, ρn) = (βn−1 −
δn−1, ρn−1 − δn−1), we have, using the estimates for each step and Cauchy estimates,

‖DK(n) −DK(0)‖βn,ρn ≤
n∑

j=1

‖DK(j) −DK(j−1)‖βj ,ρj ≤
n∑

j=1

Cεjδ
−1
j

≤
n∑

j=1

(Cδ−1
0 ε0)

2jδ−1
0 2j .

Similarly, we obtain

‖D2K(n) −D2K(0)‖ηn,ρn ≤
n∑

j=1

(Cδ−1
0 ε0)

2jδ−2
0 22j .

Hence, we see that if ε0 is small enough, we obtain that the assumption that the change
of m+ is small enough is satisfied.

Similarly, we see that the other smallness assumptions of the change are satisfied if ε0
is sufficiently small. We get, therefore, that the inductive assumptions amount to a finite
number of smallness assumptions on ε0.

Note also that, adding and subtracting terms and using (5.8), we have

||K(0) −K(∞)||β∞,ρ∞ ≤
∞∑
n=0

||K(n) −K(n+1)||β∞,ρ∞

≤
∞∑
n=0

||K(n) −K(n+1)||βn+1,ρn+1

≤
∞∑
n=0

Cεn ≤ Cε0.

(5.15)

The last inequality, of course, depends on ε0δ
−1 being sufficiently small so that the su-

perexponential convergence implies that the dominant term in the infinite sum above is the
first one. Indeed, observe that the recurrence for the error (5.13) can be rewritten more
transparently as

εn ≤
(
C(δ02

−n−1)−1εn−1

)
εn−1.

Using (5.14) we obtain that for ε0 sufficiently small, we have C(δ02
−n−1)−1εn−1 ≤ 1/2. Hence,

we can estimate the sums by a geometric series with an initial term ε0 and ratio 1/2.
Analogous consideration leads to estimates of |ω − ω∗|, |λ− λ∗|.
Remark 5.6. For the experts in KAM theory, we note that in our case, the size of the

correction is bounded by the error without any factor from the loss of analyticity. The factors
δ−1 come only from the fact that the functional we are studying is not differentiable. In the
regular KAM theory, the corrections at each step require a factor of the loss of differentiability.
In both cases, we obtain that the total change in the function is bounded by a multiple of
the first step. In the standard KAM case, this first step is the error times a power of the
analyticity loss. In our case, the step is bounded by a step of the error.
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6. Some remarks and extensions of the analytic proof. In this section we will show that
the proof of Theorem 3.2 also leads to the conclusion that K∗, ω∗, and λ∗ are locally unique
(up to obvious choices of origins of coordinates and scaling factors in K). Moreover, we will
show that the solutions depend smoothly on parameters and that there are versions of the
theorem for finitely differentiable vector fields.

6.1. Local uniqueness.
Theorem 6.1. Let (K,ω, λ) and (K̃, ω̃, λ̃) be solutions of (2.4) for the same vector field X.

If

(6.1) ‖K − K̃‖β,ρ, |ω − ω̃|, |λ− λ̃| ≤ C

for a constant C that depends on the condition numbers of the solution (K,ω, λ), β, and ρ,
then

(6.2) ω = ω̃, λ = λ̃,

and there are θ0, b ∈ R, such that

K̃(θ, s) = K(θ + θ0, bs).

6.1.1. Proof of Theorem 6.1. The proof is very similar to those of the local uniqueness
results in other papers [26, 6] which also use automatic reducibility methods. The key obser-
vation is that the linearized equation admits a unique solution if we impose a normalization.
In the language of abstract implicit function theorems, this is expressed as saying that the
linearized equation admits a “left inverse.” For a discussion of this from an abstract point of
view, we refer the reader to [6, Appendix A].

To overcome the ambiguity pointed out in section 2.2, we need to introduce a definition
of normalized solutions.

Definition 6.2. Given a solution (K,ω, λ) of (2.4), we say that another embedding K̃ is
K-normalized when ∫

dθΠ1

[
(K̃ −K)DK−1

]
s=0

= 0,
∫

dθΠ2

[
DK̃DK−1

]
s=0

= 1,

(6.3)

where Π1,Π2 denote the projections over the first and second components, respectively.
The interpretation of (6.3) is that, when we express the difference between the solutions

in the natural frame of reference of K, the first coordinate has average zero. Furthermore,
the vector field representing the stable directions of the solutions has integral 1. These nor-
malizations are natural since they eliminate the indeterminations we already identified in the
solutions of (2.4), namely the change of the origin in the angle variable and the change of
scale in the linear variable.

Lemma 6.3. Assume there exists a constant C such that ‖K − K̃‖β,ρ ≤ C. Then there
exist small θ0 and b close to 1 such that K̃ ◦ Bθ0,b is K-normalized, where Bθ0,b(θ, s) = (θ +
θ0, bs).D
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Proof. The proof is similar to that of Lemma 14 in [26]. It is based on the application of
the implicit function theorem to the function FK(θ0, b) defined by evaluating (6.3) at K◦Bθ0,b.
That is,

FK
1 (θ0, b) =

∫
dθΠ1

[
(K ◦Bθ0,b −K)DK−1

]
s=0

,

FK
2 (θ0, b) =

∫
dθΠ2

[
D(K ◦Bθ0,b)DK−1

]
s=0

.

(6.4)

Hence, to prove Theorem 6.1, it suffices to show that if we have two solutions of (2.4),
namely (K,ω, λ) and (K̃, ω̃, λ̃), and that K̃ is K-normalized, then they are equal. To do so, it
will be useful to introduce a more abstract point of view similar to that in [6]. We introduce
the notation

(6.5) T (K,ω, λ) ≡ X ◦K −DKAω,λ

so that (2.4) can be written as

(6.6) T (K,ω, λ) = 0.

If we are given two solutions (K,ω, λ) and (K̃, ω̃, λ̃) of (6.6), we can write, using Taylor’s
theorem from one to the other,

0 = T (K̃, ω̃, λ̃)

= T (K,ω, λ) +DT (K,ω, λ)[K̃ −K, ω̃ − ω, λ̃− λ] +R

= DT (K,ω, λ)[K̃ −K, ω̃ − ω, λ̃− λ] +R,

(6.7)

where R is the reminder of the Taylor expansion of the functional T . The fact that T is
differentiable and the form of the derivative have been established in Lemma 5.4.

Note that T involves only composing X on the RHS with K, taking derivatives of K and
performing some algebraic operations. Hence, we have that

(6.8) ||R||ρ−δ ≤ Cδ−1(||K̃ −K||2ρ + |ω̃ − ω|2 + |λ̃− λ|2).

The identity (6.7) relates the increments in the unknown to the Taylor estimates in exactly
the same way that the corrections of the Newton method were related to the error. We can
regard (6.7) as an equation for (K̃ −K, ω̃−ω, λ̃−λ). Using that these equations have unique
solutions (because K̃ is K-normalized), we have

||K̃ −K||ρ−2δ ,|ω̃ − ω|, |λ̃− λ| ≤ Cδ−1||R||ρ−δ

≤ Cδ−2(||K̃ −K||2ρ + |ω̃ − ω1|2 + |λ̃− λ|2).
(6.9)

Using Hadamard’s three circle theorem (5.4) with α = 1/2, ρ1 = ρ+ 2δ, and ρ2 = ρ− 2δ,
we obtain

||K̃ −K||2ρ ≤ ||K̃ −K||ρ+2δ ||K̃ −K||ρ−2δ .D
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Hence,

||K̃ −K||ρ−2δ + |ω̃ − ω|+ |λ̃− λ|
≤ Cδ−2(||K̃ −K||ρ+2δ + |ω̃ − ω|+ |λ̃− λ|)
· (||K̃ −K||ρ−2δ + |ω̃ − ω|+ |λ̃− λ|).

(6.10)

Therefore, if Cδ−2(||K̃ −K||ρ+2δ + |ω̃ − ω|+ |λ̃ − λ|) < 1, we conclude that K = K̃, ω = ω̃,
and λ = λ̃. The statement of Theorem 6.1 is obtained just by redefining ρ.

6.2. Dependence on parameters. In many applications, the models depend on extra
parameters. We will show how the automatic reducibility methods used in the proof of
Theorem 3.2 lead to very efficient computations of the perturbative expansions with respect
to these parameters. We will also show, following [32], that these perturbative expansions
converge.

6.2.1. Lipschitz dependence on parameters. If we consider a family of vector fields Xμ

and we assume Lipschitz dependence of the vector field with respect to the parameter μ,
we can use Theorem 3.2 to obtain Lipschitz dependence of the solution with respect to the
parameter μ.

Following the notation introduced in (6.5), denote

Tμ(K,ω, λ) ≡ Xμ ◦K −DKAω,λ,

so that a solution (Kμ, ωμ, λμ) of (2.4) for the vector field Xμ can be written as

(6.11) Tμ(Kμ, ωμ, λμ) = 0.

Consider (Kμ, ωμ, λμ) satisfying (6.11). Then, using that Xμ is Lipschitz dependent with
respect to parameter μ, we clearly have

‖Tμ̃(Kμ, ωμ, λμ)‖β−δ,ρ−δ = ‖Tμ̃(Kμ, ωμ, λμ)− Tμ(Kμ, ωμ, λμ)‖β−δ,ρ−δ

= ‖Xμ̃ ◦Kμ −Xμ ◦Kμ‖β−δ,ρ−δ ≤ Cδ−1|μ− μ̃|.

So, we have that (Kμ, ωμ, λμ) is as an approximate solution of (6.11) for values of the parameter
μ close to the original one.

Hence, we can apply Theorem 3.2 and obtain that for |μ− μ̃| sufficiently small, there exists
Kμ̃ an analytic local diffeomorphism and ωμ̃, λμ̃ ∈ R such that

‖Kμ −Kμ̃‖β−2δ,ρ−2δ , |ωμ − ωμ̃|, |λμ − λμ̃| ≤ Cδ−1|μ− μ̃|.

6.2.2. Computation of perturbative expansions on parameters. Consider a parametric
family of vector fields Xμ as well as a solution (K0, ω0, λ0) of (6.11) for μ = 0. We want to
compute a formal solution of (6.11) for μ 
= 0 by considering asymptotic expansions on the
parameter μ,

Kμ =
∑
n

μnKn,

ωμ =
∑
n

μnωn, λμ =
∑
n

μnλn.
(6.12)

D
ow

nl
oa

de
d 

05
/0

7/
14

 to
 1

47
.8

3.
13

3.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTATION OF LIMIT CYCLES AND THEIR ISOCHRONS 1785

We discuss two different methods for computing the asymptotic expansions efficiently.
The convergence will be discussed in the next subsection.

An order-by-order method. We assume inductively that we have computed the expan-
sion (6.12) up to order n− 1, and we want to show that it is possible to compute the
expansion up to order n.
We substitute (6.12) into (2.4) and by matching coefficients of order n, we obtain

(6.13) (DXμ ◦K0)Kn −DKnAω0,λ0 −DK0Aωn,λn = Sn(K0, . . . ,Kn−1),

where Sn is an explicit polynomial expression in K0, . . . ,Kn−1 whose coefficients are
derivatives of Xμ evaluated at K0. These coefficients can be calculated efficiently
using the methods of automatic differentiation when Xμ is formed using elementary
functions (polynomials, exponentials, trigonometric functions, etc.).
We observe that (6.13) are identical to (4.2), the equation we studied in section 4.2.
Hence, we can use the same method used there with some minor differences that we
discuss next.
Note that because K0 satisfies exactly the invariance equation (2.4), the factorization
of (6.13) into elementary steps achieved in Algorithm 4.4 holds exactly. Furthermore,
all the auxiliary quantities involved in the factorization need to be computed only
once because for all steps we consider only the linearization around K0, which does
not change during the iteration.

A quadratically convergent method. A faster method for computing the perturbative
expansions (6.12) consists in considering K(θ, s, μ); that is, K is a function of the
parameter μ. It is easy to see that Algorithm 4.4 lifts to functions of three variables
and that one can also obtain quadratic convergence in the space of functions in these
three variables using the argument in section 5.

6.2.3. Convergence of perturbative expansions. Convergence of perturbative expansions
(6.12) is guaranteed by Theorem 3.2. It suffices to take the solution of (6.11) for μ = 0 as
an approximate solution of (6.11), and by Theorem 3.2 we have that there exists a solution
(Kμ, ωμ, λμ) of (6.11) for μ small and complex. Then, using Lemma 6.3 we can assume that
the solutions are K0-normalized in the sense of Definition 6.2. We also know that functions
(Kμ, ωμ, λμ) are differentiable for μ small and complex. Hence, they are analytic in μ.

6.3. Finite differentiability. There is a standard procedure in [31, 30], systematized and
extended in [48], that shows that one can deduce results for finite differentiable problems from
quantitative results such as Theorem 3.2 for analytic problems.

The key point is the characterization of finitely differentiable functions by the speed of
approximation by analytic functions summarized in the following lemma.

Lemma 6.4. A function f : Td × Bl is r times continuously differentiable, r ∈ N, and the
r derivative is Hölder continuous with exponent α, 0 < α < 1, if and only if we can find a
sequence of functions fn, each of them analytic in a complex extension of size ρn = 2−n, such
that

• ||fn − fn−1||ρn ≤ C2−n(r+α),
• ||fn − f ||C0 → 0.
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A streamlined poof of Lemma 6.4 can be found in [48]. It is also well known that the
characterization given by Lemma 6.4 is false for α = 0, 1.

Notice that (2.4) is linear in X. If X is Cr+α, we can construct a sequence Xn which is
analytic in decreasing domains. If (K0, ω0, λ0) is analytic and solves (2.4) for X0 with a good
enough approximation, we can apply Theorem 3.2 and construct a true solution (K1, ω1, λ1) of
(2.4) for X0. This will be an approximate solution of (2.4) for X1; then, applying Theorem 3.2,
we can construct an exact solution (K2, ω2, λ2) of the problem for X1, which will be an
approximate solution for the problem for X2, etc.

In general, under appropriate inductive assumptions in the domain, we have that

||Xn ◦Kn −DKnAωn,λn ||ρn ≤ C||Xn −Xn−1||ρn ≤ C2−(r+α)n.

Applying Theorem 3.2, we obtain that

||Kn+1 −Kn||ρn+1 , |ωn+1 − ωn|, |λn+1 − λn| ≤ C2−(r+α−1)n.

Hence, we conclude that K is Cr−1+α.

7. Numerical implementation. In this section we discuss some aspects of the numerical
implementation.

7.1. Implementation of Algorithm 4.4. In this section we discuss several possible ways
to implement Algorithm 4.4. The implementations require choices on the discretization of
functions and on the ways to perform the elementary operations (algebraic operations, com-
position, derivatives, integrals, etc.). Many practical properties of the algorithm depend on
these choices, among them

(a) storage requirements,
(b) speed,
(c) accuracy,
(d) stability, and
(e) parallelizability.
Next we discuss several possible discretizations and the numerical properties of each of

them.

7.1.1. Fourier–Taylor series. This is a very well established method in celestial mechanics
(see [2, 9, 40] for classical implementations and [16, 20] for more modern implementations).

In this representation, one stores the Fourier–Taylor coefficients of a function

(7.1) f(θ, s) =
∑

j∈N, k∈Z
fjks

je2πikθ.

For the discretization (7.1), steps 6 and 7 of Algorithm 4.4 are diagonal (see expressions
(4.11) and (4.13) in Lemma 4.2). Therefore, N Fourier-Taylor coefficients require only O(N)
operations and O(N) storage. Similarly, the computation of the derivative in step 2, as well
as addition and multiplication of functions by numbers, also require only O(N) operations.

The most difficult calculation is the computation of X ◦ K in step 1. When X can be
obtained applying elementary operations (addition, multiplication, trigonometric functions,
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exponentials, etc.) there is a well-defined toolkit that goes under the name of automatic
differentiation.

It consists of a set of techniques for computing the derivatives of arbitrary order of a
function evaluated at a given point, accurate to working precision, avoiding in this way the
numerical problems inherent in symbolic and numerical differentiation. They are based on
writing the function as a sequence of algebraic operations (sum, product, etc.) and elementary
transcendental functions (exp, sin, cos, log, power, etc.) and then systematically applying the
chain rule to these operations (see [23] and also the Web page of the automatic differentiation
community http://www.autodiff.org/).

Take, for instance, the case of the exponential function. Consider the Taylor expansion of
a function f in the variable s,

f(θ, s) =
∑
j∈N

fj(θ)s
j,

and suppose that we want to find the Taylor expansion of the function exp(f):

exp(f)(θ, s) =
∑
j∈N

[exp(f)]j(θ)s
j.

If we apply the chain rule to exp(f), we obtain the relation

∂s exp(f) = exp(f)∂sf.

Substituting f by its Taylor expansion and equating terms of order n we obtain the recursive
expression

(7.2) (n+ 1)[exp(f)]n+1(θ) =
n∑

�=0

[exp(f)]n−�(θ)(�+ 1)f�+1(θ).

Note that (7.2) allows us to compute [exp(f)]n+1(θ) provided that we know [exp(f)]0(θ), . . . ,
[exp(f)]n−1(θ). The recursion can be initialized because [exp(f)]0 is just the constant exp(f0).

Similar algorithms can be obtained for sin f , cos f , log(1 + f), and fα, or indeed for any
function of f that satisfies a differential equation or some recurrence on the coefficients.

Finally, one can apply similar algorithms to compute the Fourier series of the Taylor
coefficients [exp(f)]j(θ) (think of them as the sum of two polynomials in e2πiθ and e−2πiθ).
Hence, one can use the previous algorithm to compute

exp

⎛
⎝∑

j≥0

fk(e
2πiθ)k

⎞
⎠ ,

exp

⎛
⎝∑

j≥0

fk(e
−2πiθ)k

⎞
⎠

and then use the addition formula for the exponentials.
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7.1.2. Fourier-real mixed representation. A variant of the Fourier–Taylor representation
which has proved very useful is to keep at the same time both a representation based on the
Fourier–Taylor coefficients and a discrete representation in real space

f(j/N, e2πi�/N )

for j = 0, . . . , N − 1 and � = 0, . . . , N − 1.
Since we keep both the Fourier–Taylor representation and the discrete representation,

we can use the representation that makes the computation faster in each step of the algo-
rithm. Thus, steps 2—differentiation—and 6 and 7—solving the cohomology equations—of
Algorithm 4.4 are diagonal in Fourier–Taylor representation, while step 1—evaluation of the
vector field—is diagonal in the discrete representation. Of course, the FFT algorithm allows
us to switch from real space to Fourier space in O(N logN) computations.

Note that Taylor–Fourier series can be considered also as Fourier series in two variables.
Given a function f(θ, s) =

∑
fn(θ)s

n, when we consider f(θ, e2πis), it becomes just a Fourier
series. Hence, it is possible to compute the composition X ◦ K in step 1 by evaluating X
on the discretization K(θj, e

2πisk) and using the Fast Fourier transform (FFT) to obtain the
Fourier series of X ◦K in the variables θ and s.

An alternative which requires a higher operation count but which is customary in celestial
mechanics [2, 40] is to deal with operations among periodic functions using FFT methods but
to use automatic differentiation or the customary methods of polynomial manipulation (e.g.,
the Cauchy product formula to deal with the products).

Going back to the example discussed in the previous section, we can compute the Fourier
expansions of Taylor coefficients [exp(f)]j(θ) just evaluating the exponential function on the
points θj = j/N for j = 0, . . . , N − 1 and then applying the FFT to obtain the Fourier
coefficients.

In this way, if we discretize in M Fourier modes and L degree polynomials, we have
N = M L and the operation count of one step is O(M logM L2) (slightly higher than the
O(N logN) obtained by Fourier methods).

In practice, for most computers, one can find highly optimized implementations of the
FFT, for example in [14], so that the algorithm is O(aN logN + bN) with a� b.

7.1.3. Splines/Chebyshev polynomials. When the vector field is not analytic or is given
by empirical measurements, a method of choice for discretizing the vector field and the function
K is to use splines [8]. By now, splines, including multidimensional splines, are well supported
in many packages [15, 10].

The discretization in terms of splines takes O(N) operations to evaluate the vector field,
compute derivatives, etc. However, the evaluation of splines makes nontrivial the computation
of solutions of cohomology equations (4.10) and (4.12). In this case, it is more efficient to
use solutions (4.14) and (4.15), which require only quadratures. We note that if the spline
representation (by polynomials of low order) is known, the quadratures can be computed in
closed form and evaluated rather fast (again only O(N) operations).

Thus, using the spline discretization, a step requires only O(N) operations. Furthermore,
given that the operations required for splines are local, they can be easily parallelized, espe-
cially in machines with multiple cores. Hence, splines seem to be extremely fast, even for a
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large number of data points.
An alternative to the traditional splines that is of recent interest is the use of Chebyshev

functions, which are in some way close to the Fourier series. See [34].

7.1.4. Numerical norms. Depending on the discretizations used, the norms that are ap-
propriate may be different.

If we use splines, the error can be measured easily in Cr spaces. Analytic norms are not
appropriate for splines since the functions involved are not analytic.

If we use Fourier series, the norms that are easy to compute are those that can be expressed
in terms of Fourier series. Amongst the most effective norms in Fourier analysis are the
weighted �1 norms because for them it is easy to compute the norm of operators in terms of
matrix elements. For example, ||f ||w�1 =

∑
k |k|n|f̂k|eρ|k| is a norm that has many advantages:

it is easy to compute reliably, it is easy to compute for operators, and it satisfies the Banach
algebra property for n large enough.

For the experts we remark that one could have developed the theoretical results such
as Theorem 3.2 in terms of weighted �1 norms of the Fourier coefficients, but it turns out
that estimates of the composition operator are not so easy. Also, the characterization of finite
differentiable functions by approximation is only true in the supremum norms considered here.

In practice, one can get useful upper bounds of ||f ||ρ by noting that ||f ||ρ ≤ ||f ||w�1 or,
more generally,

(7.3) ||f ||ρ ≤
(
||fk||w�1

)1/k
.

The bounds (7.3) are very easy to implement, and they are very sharp in practice. Indeed,
it is a consequence of the theory of Banach algebras [38, Thm. 18.9] that, for any norm which
is a Banach algebra under multiplication, one has

||f ||ρ = lim
k→∞

(
||fk||w�1

)1/k
.

7.2. Other aspects of the numerical implementation. Algorithm 4.4 has been incorpo-
rated in a more general program that computes the globalization of isochrons. In this section
we discuss other details of the program.

Initial guess. To apply the Newton method we need to start with an initial approx-
imation for the function K and the parameters λ and ω. To do so, we will use a
Poincaré section and reduce the problem to finding a zero of the Poincaré map. This
will provide K0 (the periodic orbit) and ω = 1/T , where T is the period of the orbit.
A reasonable approximation for K1 and λ can be obtained by observing that

DX ◦K0(θ)K1(θ) = ω
d

dθ
K1(θ) + λK1(θ).

Hence, we can solve for U(θ) the variational equation

DX ◦K0(θ)U(θ) = ω
d

dθ
U(θ),

U(0) = Id2,
(7.4)
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and we will have that eλ/ω will be an eigenvalue of U(1) and K1(0) will be the corre-
sponding eigenvector.
Note that once we obtain the result for a point, say θ = 0, it is easy to propagate
using that

(7.5) K1(θ) = U(θ)K1(0)e
−λθ/ω .

Our initial approximation for K will be K(θ, σ) = K0(θ) + K1(θ)σ. We store K0(θ)
and K1(θ) for equidistant values of θ; that is, θj = j/N for j = 0, . . . , N − 1. Notice
that this is equivalent to storing the coefficients of the Fourier series up to degree N
by means of the FFT algorithm.

Newton step. We use a Fourier–Taylor and mixed representation to implement Algo-
rithm 4.4. See section 7.1 for a detailed description. Since X can be obtained by
applying elementary operations, we use automatic differentiation methods to perform
the Taylor expansions as described in section 7.1.1. In order to pass from a grid rep-
resentation to Fourier series and vice versa we use the FFT. In our program we have
used the fftw3 library [14].
At each step of the Newton method we double the order of the Taylor series, so that
after n Newton steps we have computed the Fourier–Taylor series up to order L = 2n.
The Newton method stops when the solution has been computed up to an error of
order 10−11 up to the desired order L. The norm we use to estimate the error is the
�1 norm.

Local approximation. Up to this point we assume that we have converged to an ap-
proximate solution K of the invariance equation. We need to determine the domain
Ωloc where the solution K is accurate; that is, the function K satisfies the invariance
equation up to a certain tolerance E that we established at 10−10.
Given a fixed tolerance E we compute

(7.6) Ωloc := {(θ, σ) ∈ T× R | ‖X(K(θ, σ)) −DK(θ, σ)Aω,λ‖ < E},

where ‖ · ‖ is a norm in R
2. We remark that Ωloc contains the limit cycle γ. Notice

that the higher the order L the larger the Ωloc. We compute the local isochron of
K0(θ) by fixing θ = θ0 and evaluating the function K on (θ0, s) ∈ Ωloc.

Globalization of the isochrons. Since the flow of the vector field X takes isochrons to
isochrons, we can obtain several points on the isochron of phase θ, Sθ, by integrating
backwards for a time t points on the isochron of phase θ+ ωt obtained from the local
approximation:

Sθ = X−t(Sθ+ωt).

Note that if Sθ+ωt is known as a small curve, for t > 0, the isochron Sθ is much longer.
Hence, this procedure extends the isochron to a larger domain Ω. We refer to this
procedure as the globalization of isochrons.
We use the procedure described in [19], which follows the numerical method proposed
in [42]. The main idea is to select a nonuniform mesh of points on the isochron so that
the globalization procedure provides dense points on the isochron.
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The integration method used is a Taylor method (we have used the routines provided
by Jorba and Zou; see [22]). We used an adaptive step size, degree, and tolerance
(absolute and relative) of order 10−16.

8. Numerical examples. We present here the application of the numerical method de-
scribed in the previous section to some relevant examples in the literature.

Rayleigh oscillator. It is a Van der Pol–type oscillator [44], and it was introduced by
Rayleigh to show the appearance of sustained vibrations in acoustics [36]. The equa-
tions have the form

ẋ = −y + μ(x− x3),
ẏ = x.

The system is analytic, has an unstable fixed point (focus) at (0, 0), and for μ = 1 has
a stable limit cycle of period T = 6.663 and characteristic exponent λ = −1.059. We
show the isochrons in Figures 1 and 2.

Morris–Lecar model. It was initially conceived as a model for an electrically excitable
barnacle muscle [29], but well studied in the neuroscience literature, after [37], as a
paradigm for different types of neuronal excitability. The model takes the form

CV̇ = Iapp − gL(V − VL)− gKω(V − VK)− gCam∞(V )(V − VCa),

ẇ = φ
w∞(V )− w

τw(V )
,

(8.1)

where

m∞(V ) =
1

2
(1 + tanh((V − V1)/V2)),

w∞(V ) =
1

2
(1 + tanh((V − V3)/V4)),

τw(V ) = (cosh((V − V3)/(2V4)))
−1 .

We consider three sets of parameters that correspond to three different types of bifur-
cations from steady state to periodic behavior as Iapp varies: Hopf, saddle-node on an
invariant circle (SNIC), and homoclinic (see [13]). We will refer to them as ML-Hopf,
ML-SNIC, and ML-Hom, respectively. Some parameters are common for the three
types of bifurcations. Namely, C = 20, VL = −60, VK = −84, VCa = 120, V1 = −1.2,
V2 = 18, gL = 2, gK = 8. The rest of the parameters are listed in Table 1. For each
bifurcation type we consider a value of the parameter Iapp for which the system is
in the oscillatory regime but “close” to the critical value. The value of Iapp that we
considered for each set of parameters, as well as the period and the characteristic ex-
ponent of the limit cycle, are indicated in Table 1. We show the isochrons in Figures 3,
4, and 5.

Reduced (INa,p + IK)-model. This model is somehow equivalent to the Morris–Lecar
model. It was introduced in [21] and describes a fast persistent sodium current and a
slower persistent potassium current:

CV̇ = Iapp − gNam∞(V )(V − VNa)− gKn(V − VK)− gL(V − VL),

ṅ = n∞(V )− n,
(8.2)
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A B

C D

Figure 1. The Rayleigh oscillator. First component x of the functions Kn(θ) for n = 1 . . . 64 colored
according to the corresponding order n for (A) b = 0.25, (B) b = 1, and (C) b = 1.5. (D) 16 local isochrons
uniformly distributed in time along the limit cycle (red) computed using the expansions up to n = 64 shown in
panels (A) and (B) corresponding to b = 0.25 (blue curves) and b = 1 (green curves), respectively. The x- and
y-nullclines (grey) and the fixed pound (open circle) at (0, 0) (unstable focus) are included for reference.

where the open-state probability functions are

m∞(V ) =
1

1 + exp(−(V − Vmax,m)/km)
,

n∞(V ) =
1

1 + exp(−(V − Vmax,n)/kn)
,

and the parameters are Cm = 1, gNa = 20, VNa = 60, gK = 10, VK = −90, gL = 8,
vL = −80, Vmax,m = −20, km = 15, Vmax,n = −25, kn = 5.
For Iapp = 10, the system has a stable limit cycle of period T = 7.0735 and charac-
teristic exponent λ = −3.91 that has a strong slow-fast dynamics. The limit cycle
encircles an unstable fixed point (focus) at (−26.83, 0.41). We show the isochrons in
Figure 6.

8.1. Numerical examples; Some considerations. We have chosen these examples to em-
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A B

Figure 2. The Rayleigh oscillator. (A) 16 local isochrons uniformly distributed in time along the limit cycle
(red) computed using the functions Kn up to order L = 16, 32, 64, and 128 with b = 1. (B) Globalization of the
local isochrons (green curves) corresponding to L = 64 in (A). Global isochrons are colored according to their
phases. The x- and y-nullclines are shown in gray, and the fixed point at (0, 0) corresponding to an unstable
focus is represented by an open circle.

Table 1
Parameter values for the Morris–Lecar model for the corresponding type of bifurcation. For the values of

Iapp indicated the system has a stable periodic orbit of period T and characteristic exponent λ.

Parameter Hopf SNIC Homoclinic

φ 0.04 0.067 0.23
gCa 4.4 4 4
V3 2 12 12
V4 30 17.4 17.4
Iapp 91 45 37

T 99.27 99.192 33.94
λ −0.0919 −0.1198 −0.06

phasize certain aspects of the algorithm. The Rayleigh oscillator is quite simple, and it serves
as a good first test for our algorithm. We use it to discuss the effect in the local approxi-
mation of increasing the order L of the Taylor expansion of K(θ, s), as well as the role of
the parameter b (see section 2.2) in the numerical computation. The other two examples are
models from computational neuroscience. The Morris–Lecar model with three different sets
of parameters has been chosen to illustrate the isochrons in different types of bifurcations and
also in the presence of other invariant objects that confine the region where the isochrons are
defined. The (INa,p + IK)-model has been chosen to illustrate how the algorithm performs in
the case of a strong time-scale separation between the two variables.

For the Rayleigh oscillator, we have used N = 211 = 2048 Fourier modes for each Kn, for
the Morris–Lecar models we have used N = 212 = 4096 Fourier modes, and for the (INa,p+IK)-
model we have used N = 213 = 8192 Fourier modes. We have computed Taylor expansions
up to order L = 26 = 64 for all of them. The program takes only a few seconds (around 10s)
on a regular laptop to compute the local approximation K.
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A B

C D

Figure 3. Morris–Lecar near a Hopf bifurcation. Set of parameters as in Table 1 under the Hopf column.
(A) First component of some representative Kn, namely n = 1, 2, 4, 8, 16, 32, 64. (Inset) K1

n functions were
zoomed in on the range [0.9, 1]. (B) 16 isochrons uniformly distributed in time along the limit cycle (red)
computed using the functions Kn up to order L = 64 shown in (A) for some representative values of n. (C)
Globalization of the local isochrons shown in (B) (green curves in (C)). (D) Zoom of the global isochrons around
the unstable limit cycle (solid black curve). Global isochrons spiral around it. In panels (B)–(D) isochrons are
colored according to their phases. The V - and w-nullclines are shown in gray, the fixed point at (−26.3, 0.13)
corresponding to a stable focus is represented by a filled circle, and the unstable limit cycle is shown in black.

We already mentioned that the solution K is not unique; indeed, if K(θ, σ) is a solution of
the invariance equation, so is K(θ+ θ0, bs) for any θ0 ∈ [0, 1) and b ∈ R. We choose θ0 so that
the zero phase for the oscillator corresponds to the maximum value of the x- or V -coordinate
(in neuroscience, the peak of the spike). Notice than when K1 is multiplied by a constant
b, the subsequent Kn functions will be multiplied by bn. Theoretically, this scaling will scale
only the domain of K and therefore the radius of convergence of the Taylor series but will not
affect the computed isochron. Computationally, it is well known that the roundoff becomes
very problematic if we are working with numbers that are some orders of magnitude apart.
By choosing b appropriately, it is possible to aim for having the successive Kn more or less
constant in size so that roundoff is greatly reduced. We discuss the choice of b in detail in the
next section for the Rayleigh example.
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A B

C D

Figure 4. Morris–Lecar near an SNIC bifurcation. Set of parameters as in Table 1 under the SNIC column.
(A) First component of some representative Kn, namely n = 1, 2, 4, 8, 16, 32, 64. (B) 32 isochrons uniformly
distributed in time along the limit cycle (red) computed using the functions Kn up to order L = 64 shown in
(A) for some representative values of n. (C) Globalization of the local isochrons shown in (B) (green curves in
(C)). (D) Zoom of the global isochrons around the unstable fixed point (open circle). The V - and w-nullclines
are shown in gray, and the fixed point (5.09, 0.31) which corresponds to an unstable focus is represented by an
open circle.

8.1.1. The Rayleigh oscillator and the role of the parameter b. We explore the role
of b with the Rayleigh example using N = 2048 Fourier coefficients. In Figure 1(A)–(C) we
show the first component of the Kn functions computed up to n = L = 64 for three different
values of b. For small values of b, Kn go to zero very fast as n increases, with the result
that increasing the order L does not provide any extra information since we are just adding
terms that are 0 (see Figure 1(A), where b = 0.25, and the computed local isochron for this
value of b in Figure 1(D)). For large values of b, Kn functions blow up as n increases and,
eventually, those numbers will be too large to computationally operate with them causing
large errors (see Figure 1(C), where b = 1.5). If we increase n even more, the results are not
reliable. For moderate values of b, Kn functions can be kept at a reasonable range and the
local approximation extends to a larger neighborhood (see Figure 1(B) and (D)). It is worth
remarking that the range of suitable values of b shrinks as n increases. Meanwhile, for n
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Figure 5. Morris–Lecar near a homoclinic bifurcation. Set of parameters as in Table 1 under the Homoclinic
column. (A) First component of some representative Kn, namely n = 1, 2, 4, 8, 16, 32, 64. (B) 32 isochrons
uniformly distributed in time along the limit cycle (red) computed using the functions Kn up to order L = 64
shown in (A) for some representative values of n. (C) Globalization of the local isochrons shown in (B) (green
curves in (C)). Global isochrons spiral around the unstable limit cycle (solid black) and are confined by the stable
manifold of the saddle point (black curve with arrows pointing towards the saddle point represented by an open
triangle). (D) The isochron corresponding to phase 0. Local approximation is shown in green and globalization
in blue. In panels (B)–(D) isochrons are colored according to their phases. The V - and w-nullclines are shown
in gray, the fixed points at (−35.7, 0.0), (−23.8, 0.02), and (4.5, 0.3) correspond to a stable node (filled square),
a saddle (open triangle), and a stable focus (filled circle), respectively, and the stable and unstable manifolds of
the saddle point as well as the unstable limit cycle are shown in black.

small, many values of b can be appropriate to keep the coefficients Kn to a moderate size; as
n increases some of the values of b which were appropriate for low n may cause Kn functions
to blow up or vanish. Take, for instance, the case shown in Figure 1(C), where b = 1.5. Up
to n = 16, Kn are of the order 102 at most. Hence, this value of b would be good if we had
to compute Kn up to order 16. In the case shown in Figure 1(A), Kn are smaller than 10−4

for n ≥ 6. So, b would be good enough if we just want to compute n up to order 6 or smaller.
In all the examples, we have done this adjustment manually. We think that an automatic
implementation could be designed.

Another issue about b is that since we impose a uniform contraction rate λ for the nor-
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A B

C D

Figure 6. The (INa,p + IK)-model near an SNIC bifurcation. (A) First component of some representative
Kn, namely n = 1, 2, 16, 32, 64. (Inset) Kn functions were zoomed in on the range [0.95, 1]. (B) 32 isochrons
uniformly distributed in time along the limit cycle (red) computed using the functions Kn up to order L = 64
shown in (A) for some representative values of n. (C) Globalization of the local isochrons shown in (B) (green
curves in (C)). (D) Zoom of the global isochrons around the unstable focus (open circle). In panels (B)–(D)
isochrons are colored according to their phases. The V - and n-nullclines are shown in gray, and the fixed point
at (−26.8, 0.4) corresponding to an unstable focus is represented by an open circle.

mal variable, the change of coordinates K may take values that are some magnitudes apart,
especially when the stable limit cycle has different contraction rates along it. In these cases,
it is not possible to choose a uniform b such that Kn have order 1 for all values of θ and the
successive Kn go to zero for some range of values of θ (see Figure 1(B) for θ in the ranges
[0, 0.3] and [0.5, 0.8]). Thus, for values of θ in the mentioned range, increasing the degree L
of the Taylor expansion does not have any effect on the growth of the local domain where the
isochron can be computed semianalytically (see Figure 2(A)). Indeed, for values of θ in the
mentioned range, which correspond to the isochrons on the right and left portions of the limit
cycle, the local isochron does not grow further when we increase L above 32 (in some cases
even 16). However, for those values of θ with nonzero Kn for large n (θ values around 0.4
and 0.9; see Figure 1(B)), the local isochrons increase when we increase the order of the local
approximation. See Figure 2(A). This situation becomes more dramatic for systems that have
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an accentuated slow-fast dynamics such as the (INa,p + IK)-model.

8.1.2. The Morris–Lecar model. For the ML-Hopf model, the oscillations bifurcate from
the fixed point through a subcritical Hopf bifurcation. Thus, for a small range of values of Iapp
the system shows bistability between a stable steady state (focus) and a stable limit cycle.
The regions of attraction of these two objects are separated by an unstable limit cycle. See
Figure 3(B). Hence, the isochrons of the stable limit cycle are confined by the unstable limit
cycle and they spiral around it. See Figure 3(C) and (D).

For the ML-SNIC model, the oscillations bifurcate from the fixed point through an SNIC
bifurcation. That is, a saddle and a node coalesce and disappear, giving rise to a stable limit
cycle that bifurcates from the homoclinic of the saddle point. Thus, for values of Iapp close
to the critical value, the stable limit cycle inherits the slow-fast dynamics of the homoclinic
connection. Indeed, the system moves slowly near the “ghost” of the saddle-node fixed point.
One can observe the slow-fast dynamics by looking at the spatial distance between isochrons
that are equally spaced in time. See Figure 4(B) and (C). In the regions where isochrons stay
close to each other, the dynamics are slow, whereas where they are separated, the dynamics
are fast. In this case, the extended isochrons spiral around the unstable fixed point (focus)
inside the limit cycle. See Figure 4(C) and (D). Notice that the local approximation extends
to a large neighborhood. See Figure 4(B) and (C).

For the ML-Hom model, the oscillations bifurcate from a homoclinic, but in this case the
node and the saddle persist. See Figure 5(B). Moreover, for a certain range of parameters the
system presents tristability: two stable fixed points (a node and a focus) and one stable limit
cycle. See Figure 5(B). In this case, the region where the isochrons for the stable limit cycle
are defined is confined between the stable manifold of the nearby saddle and the unstable
limit cycle lying in the interior. See Figure 5(C) and (D). Notice that the isochrons also spiral
around the unstable limit cycle.

8.1.3. The (INa,p+IK)-model and the slow-fast dynamics. We have chosen this exam-
ple because it presents a clear time-scale separation between the two variables, so it challenges
our numerical algorithms. The oscillations emerge through an SNIC bifurcation as in the ML-
SNIC example. We have chosen a value of Iapp that is slightly above the critical value. Notice
that the limit cycle clearly tracks the left and right branches of the V -nullcline, and the jumps
between those two branches occur at a fast time scale. See Figure 6(B). This time-scale separa-
tion causes a strong difference in the contraction rates towards the limit cycle: while the limit
cycle is strongly contractive along the left and right branches, it shows a small contraction
along the upper and lower portions. An immediate consequence of this fact is that one cannot
find a value of b that keeps Kn in a good computational range for all phases. See Figure 6(A).
Hence, for most values of θ (in the range 0–0.9), the local approximation of the isochrons is
barely observable (the local neighborhood size is tiny), whereas for the other values one can
obtain a pretty large local isochron (values between 0.9–1). See Figure 6(B), and compare
with Figure 6(A). Notice that even with a small approximation we can apply the globalization
process, so it does not affect the isochron globalization. See Figure 6(C) and (D).

Moreover, since we need to capture the behavior of the Kn function in a small piece of the
domain (range 0.9–1) so that the invariance equation can be solved up to high order, we need
to increase the size of the discretization grid (equivalently, the number of Fourier coefficients).
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Even if for certain regions of the domain a few points would be enough, the fact that the
FFT requires equidistant points forces us to pay the price of increasing the size N of the grid.
So, we used N = 213 = 8192 and L = 28 = 64 to compute Kn with an error of order 10−10.
Fortunately, the algorithm described here allows us to perform this computations in seconds
on a regular laptop.

9. Discussion. We presented efficient algorithms to compute the limit cycle and the local
isochrons up to high order. The algorithms are supplemented with rigorous theoretical results
of convergence and with numerical implementation details. We have tested them in different
relevant examples for which we have computed local isochrons up to order 64.

We call attention to the fact that the main theorem (Theorem 3.2) is formulated in the
a posteriori format. That is, Theorem 3.2 shows that given an approximate solution of the
invariance equation (2.4), which satisfies some explicit nondegeneracy conditions, then there
is a true solution nearby. Theorems in an a posteriori format can be used to validate the
computations and allow us to be confident about the calculations even when they are close
to breakdown. Hence, the calculations obtained using Algorithm 4.4 can easily be turned
into computer assisted proofs. It suffices to estimate rigorously the error and the condition
numbers.

From the analytic point of view, we stress that the method also leads to several other
consequences, such as uniqueness and smooth dependence on parameters. Some of them can
be obtained by the standard methods of ODEs (notably the smooth dependence on parameters
for the limit cycle). We obtain analytic regularity of the foliation by isochrons (note that the
general theory of normally hyperbolic invariant manifolds produces only finitely differentiable
results and that this is sharp in examples which are excluded by our restricted class of models).

The numerical method works well irrespective of other invariant objects in the system that
confine the basin of attraction to the limit cycle. Winfree referred to these sets as phaseless
sets [47]. We have shown examples with an unstable limit cycle of a different period inside, so
that the isochrons spiral around it (Figures 3 and 5), and with a saddle point in the vicinity
of the limit cycle whose invariant manifolds then bound the domain where the isochrons are
extended (Figure 5).

An important point for our method is to find a value of b such that the coefficients Kn

can be kept at order 1, so that one can avoid the roundoff errors. However, quite often, orbits
do not approach the limit cycle uniformly along it; indeed, the contraction is stronger around
certain phases than others. The immediate consequence of this nonuniform contraction is that
one cannot find a value of b that keeps Kn in a suitable range for all values of θ. Instead,
for a given b only for a fraction of the domain, the function Kn takes values in a suitable
computational range, while for the rest of the domain, Kn goes to zero. This is even more
dramatic for stiff systems, as in the (INa,p + IK)-model.

Moreover, in the case of stiff systems one has to approximate functions that, although they
are analytic, have Fourier coefficients that decrease very slowly and not uniformly. Therefore,
one needs to use a large number of Fourier coefficients to approximate them correctly. We
think that for these cases, other methods of discretization which are more adaptive, like
splines, could give some improvements.

Finally, we want to emphasize the advantages of computing a local approximation of the
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isochrons up to high order, beyond using them to compute the global isochrons. Actually, the
globalization of the isochrons could be performed just with the linear approximation (L = 1)
(see, for instance, [33]). However, the fact that we have a parameterization K computed
“semianalytically” in a large neighborhood around the limit cycle provides us with relevant
information about the oscillator.

On one hand, the value of the PRC not only on the limit cycle (s = 0) but also in a
neighborhood of it (s > 0) immediately follows from K. So, the effects of the perturbation
on the normal variable s are also known. This allows us to study perturbations that displace
the trajectory away from the limit cycle as well as perturbations that occur when the system
is not on the limit cycle [35, 7, 46].

On the other hand, one can obtain high order PRCs from the parameterization K or, even
better, go beyond PRCs and use the fact that when the parameterization K is known we can
obtain the new phase just inverting the map K. Thus, if a brief (but not necessarily weak)
perturbation displaces the point (x, y) to (x′, y′), the new phase θ′ and normal variable s′ are
given just by K−1(x′, y′). Fast and accurate methods for computing isochrons are needed to
study coupled oscillators beyond the restriction of weak perturbations.

REFERENCES

[1] L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex
Variable, 3rd ed., International Series in Pure and Applied Mathematics, McGraw–Hill, New York,
1978.

[2] R. Broucke and K. Garthwaite, A programming system for analytical series expansions on a computer,
Celestial Mech., 1 (1969), pp. 271–284.
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Wydawnietwo Naukowe, Warsaw, 1965.
[40] D. S. Schmidt, Polypak: An algebraic processor for computations in celestial mechanics, in Computer

Algebra, D. Chudnovsky and R. Jenks, eds., Marcel Dekker, New York, 1989, pp. 111–120.
[41] W. E. Sherwood and J. Guckenheimer, Dissecting the phase response of a model bursting neuron,

SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 659–703.
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