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Abstract. We present numerical algorithms that use small requirements of
storage and operations to compute the iteration of cocycles over a rotation. We

also show that these algorithms can be used to compute efficiently the stable

and unstable bundles and the Lyapunov exponents of the cocycle.

1. Introduction. The goal of this paper is to describe efficient algorithms to com-
pute iterations of matrix cocycles over rotations (quasi-periodic cocycles). These
quasi-periodic matrix cocycles appear naturally in the study of the variational equa-
tions around a quasi-periodic solution [12] and in the study of Schrödinger equations
over a quasi-periodic potential [18, 2, 17].

The algorithms we present can compute 2k iterations of the cocycle at N points
by repeating a renormalization step k times. If we denote by C(N) the number of
operations of a renormalization step, then the algorithms can compute 2k iterations
of the cocycle at N points requiring only C(N)k operations. Moreover, the storage
requirement is proportional to N and independent of k.

In addition, the method we present allows us to compute in a stable way the
Lyapunov spectrum and the invariant bundles of the cocycle, by combining the
renormalization procedure with the QR method to compute Lyapunov exponents.

Finally, we discuss how the iteration of cocycles can be used to obtain an ap-
proximation of the invariant bundles of the stable and unstable splitting by means
of a method similar to the power iteration method.

The paper is organized as follows. In Section 2 we review some of the basic
concepts on the theory of cocycles. In Section 3 we present the fast algorithms for
the iteration of cocycles, which constitute the main result of this paper. In Section
4 we discuss one of the main pitfalls of the iteration of cocycles and how it can be
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solved. Finally in Section 5 we show how the iteration of cocycles can be applied
to the computation of the rank-1 (un)stable bundles.

2. Some basic facts about cocycles. In this section, we review some standard
notations and some elementary results on the theory of cocycles.

2.1. Definition of cocycle. Given a matrix-valued function M : T` → GL(d,R)
and a vector ω ∈ R`, we defineM : Z×T` → GL(d,R) the cocycle over the rotation
Tω, defined as Tω(θ) = θ + ω, associated to the matrix M by:

M(n, θ) =


M(θ + (n− 1)ω) · · ·M(θ) n ≥ 1,

Id n = 0,

M−1(θ + (n+ 1)ω) · · ·M−1(θ) n ≤ −1.

(1)

Equivalently, a cocycle is defined by the recurrence relation:

M(0, θ) = Id,

M(1, θ) = M(θ),

M(n+m, θ) =M(n, Tmω (θ))M(m, θ).

(2)

We will say that M is the generator ofM. We omit from the notation ofM the
dependence on ω and M when it is clear from the context.

Note that if M(T`) ⊂ G where G ⊂ GL(d,R) is a group, thenM(Z,T`) ⊂ G. In
applications to Mechanics, the group G is the group of symplectic maps.

2.1.1. Cocycles for continuous time. Similarly as in the discrete case, given a matrix
valued function M and a vector ω ∈ R`, a continuous in time cocycle M(t, θ) is
defined to be the unique solution of

d

dt
M(t, θ) = M(θ + ωt)M(t, θ),

M(0, θ) = Id .
(3)

From the uniqueness part of Cauchy-Lipschitz theorem, we have the following
property

M(t+ s, θ) =M(s, θ + ωt)M(t, θ),

M(0, θ) = Id .
(4)

Note that (3) and (4) are the exact analogues of (1) and (2) in a continuous
context. Moreover, if M(T`) ⊂ G, where G is the Lie algebra of the Lie group G,
then M(R,T`) ⊂ G.

2.2. Some motivations. In this section we present two situations where cocycles
and their asymptotic properties play important roles, which serve as motivation for
our study.

2.2.1. Linearization around quasi-periodic solutions. Cocycles appear naturally in
the study of variational equations, which govern the growth of infinitesimal per-
turbations around an orbit. If we consider the growth of perturbations around a
quasi-periodic orbit, we are lead to quasi-periodic cocycles. Variational equations
are crucial in the study of stability properties of a solution or in Newton methods
to compute quasi-periodic solutions [12].
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Consider a map F : U ⊂ Rd 7→ Rd. Assume that F has a quasi-periodic solution
of frequency ω ∈ Rd, given by xn = K(nω), where K : Tl → Rd is the parameteri-
zation of the quasi-periodic orbit (sometimes also called the hull function). Then,

F ◦K = K ◦ Tω, (5)

where Tω denotes the rigid rotation Tω(θ) = θ + ω.
If we define M(θ) = (DF ◦ K)(θ), and denote by M the cocycle associated to

the matrix M , the chain rule shows that

M(n, θ) = DFn(K(θ)).

Indeed, the chain rule is the recurrence relation (2). Hence, iterating a cocycle is
the same as integrating forward in time the variational equations.

Remark 1. In the same vein, we note that continuous time cocycles (3) appear in
the linearization around quasi-periodic solutions of differential equations.

2.2.2. Schrödinger equations with a quasi-periodic potential. Quasi-periodic cocy-
cles appear also in the 1-dimensional discrete Schrödinger equations. See [18] for a
survey and [17].

The discrete time independent 1-dimensional Schrödinger equation with a quasi-
periodic potential V is given by the equation

− ψn+1 − ψn−1 + (2 + V (nω))ψn = Eψn (6)

where V : Tl → R, l ≥ 1, ω ∈ Rl and E is a real parameter usually called the
energy.

By setting un = ψn−1, it is easy to see that the second order equation (6) is
equivalent to the system: (

ψ
u

)
n+1

= M(nω)

(
ψ
u

)
n

(7)

with

M(θ) =

(
2− E + V (θ) −1

1 0

)
. (8)

Hence the asymptotic behavior of the solutions ψ to (6) – and hence whether E
is in the spectrum or not – are closely related to the asymptotic properties of the
cocycle generated by (8).

2.3. Dichotomy and hyperbolicity of cocycles. One of the most crucial prop-
erties of cocycles is hyperbolicity (or spectral dichotomies) as described in [15, 21,
22, 23, 20].

Definition 2.1. Given 0 < λ < µ we say that a cocycle M(n, θ) (resp. M(t, θ))
has a λ, µ− dichotomy if for every θ ∈ T` there exist a constant c > 0 and a splitting
depending on θ, such that

TRd = Es ⊕ Eu

which is characterized by:

(xθ, v) ∈ Es ⇔ |M(n, θ)v| ≤ cλn|v| , ∀n ≥ 0

(xθ, v) ∈ Eu ⇔ |M(n, θ)v| ≤ cµn|v| , ∀n ≤ 0
(9)

(resp.

(xθ, v) ∈ Es ⇔ |M(t, θ)v| ≤ cλt|v| , ∀t ≥ 0

(xθ, v) ∈ Eu ⇔ |M(t, θ)v| ≤ cµt|v| , ∀t ≤ 0).
(10)



326 GEMMA HUGUET, RAFAEL DE LA LLAVE AND YANNICK SIRE

Remark 2. The notation Es and Eu is meant to suggest that an important case is
the splitting between stable and unstable bundles. This is the case when λ < 1 < µ
and the cocycle is said to be hyperbolic. Nevertheless, the theory developed in
this section assumes only the existence of a spectral gap. Note that if M has a
λ, µ gap, then, M̃ = (λµ)−1/2M , has a hyperbolic gap and the iterations of M̃ are
straightforwardly related to those of M .

In the context of variational equations around quasi-periodic solutions described
in Section 2.2.1, the existence of a spectral gap means that at every point xθ of
the quasi-periodic solution K(θ), there is a splitting so that the vectors grow with
appropriate rates λ, µ under iterations of the cocycle. Recall that in this context the
generator of the cocycle is just the fundamental matrix of the variational equations,
so that the cocycle describes the growth of infinitesimal perturbations.

Remark 3. A system can have several dichotomies. However, Definition 2.1 will
be enough, since we can perform the analysis presented here for each spectral gap.

One fundamental problem for subsequent applications is the computation of the
invariant splittings (and, of course, to ensure their existence). This computation of
the invariant bundles is closely related to the computation of the iterations of the
cocycle.

It is known that the mappings θ → Es,uxθ are Cr if M(·) ∈ Cr for r ∈ N ∪ {∞, ω}
[10]. This result uses heavily that the cocycles are over a rotation.

Indeed, given a typical vector (xθ, v) ∈ Eu, we expect that, for n� 1, M(n, θ)v
will be a vector in EuxTnω (θ)

. This property suggests an an analogue of the power

method to compute leading eigenvalues of a matrix. Hence, computing large iterates
of cocycles is useful and serves as a first motivation for our algorithms to compute
iterations fast. Of course, when the unstable directions are two-dimensional, the
power method has difficulty computing the second eigenvalue. To overcome this
issue, in Section 3.3 we present algorithms that can compute all the Lyapunov
exponents using the QR decomposition.

2.4. Equivalence of cocycles, reducibility. In this section, we introduce re-
ducibility; a very important property in the theory of cocycles that we will use to
develop numerically stable algorithms.

Definition 2.2. We say the matrix cocycle M associated to the matrix-valued

function M̃ is equivalent to another cocycle M associated to the matrix-valued
function M if there exists a matrix valued function U : T` → GL(d,R) such that

M̃(θ) = U(θ + ω)−1M(θ)U(θ). (11)

It is easy to check that M̃ being equivalent toM is indeed an equivalence relation.

If M̃ is equivalent to a constant cocycle associated to a constant matrix-valued

function (i.e. independent of θ), we say that M̃ is reducible.
When (11) holds, we have

M̃(n, θ) = U(θ + nω)−1M(n, θ)U(θ). (12)

In particular, if M is a constant matrix, we have

M̃(n, θ) = U−1(θ + nω)MnU(θ),

so that the iterations of reducible cocycles are very easy to compute.
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Computing the reduction of a cocycle to a constant cocycle may be difficult in
practice. However, we will see in Section 4 that some approximate computations
may improve the numerical stability properties of our algorithm in a similar way to
the preconditioning methods, standard in numerical analysis.

We will also see that one can alter the numerical stability properties of the iter-
ations of cocycles by choosing appropriately the matrix U in (11). In that respect,
it is also important to mention the concept of “quasi-reducibility” introduced by
Eliasson [6].

3. Algorithms for fast iteration of cocycles over rotations. In this section
we present the algorithm for fast iteration of cocycles in its simplest form:

Algorithm 3.1 (Iteration of cocycles). Given a matrix M(θ), compute

M̂(θ) = M(θ + ω)M(θ). (13)

Set M̂ →M , 2ω → ω and iterate the procedure.

We writeRM = M̂ andRM = M̂ for the cocycle generated byRM . We refer to

RM = M̂ as the renormalized cocycle and the procedure R as the renormalization

procedure. The important property is that RM(n, θ) = M̂(n, θ) =M(2n, θ).
Therefore, applying k times the renormalization procedure in Algorithm 3.1, we

have (RkM)(n, θ) =M(2kn, θ), so that it amounts to computing 2k iterates.

3.1. Operation count for the algorithm. If we discretize the matrix-valued
function M by taking N points on T` (or N Fourier modes) and denote by C(N) the
number of operations required to perform a step of Algorithm 3.1, we can compute
2k iterates at a cost of kC(N) operations (applying the algorithm k times).

The value of C(N) depends on the details of the computation of (13), which
involves two main operations: a shift and a matrix multiplication. The first one is
diagonal (i.e., the number of operations is O(N)) in Fourier space, while the second
one is diagonal in real space. The main difficulty arises from the fact that, if we
have points on a equally spaced grid, then θ + ω will not be in the same grid. We
have at least three options:

1. Store the discretization in real space and compute M(θ+ ω) by interpolating
with nearby points.

2. Store the discretization in real space but compute the shift in Fourier space.
To do so, switch to Fourier space (using the Fast Fourier transform) to per-
form the shift operation and switch back to real space to perform the matrix
multiplication.

3. Store the discretization in Fourier space and use the Cauchy formula to per-
form the product of matrices.

The operation count of each of these options is, respectively,

C1(N) = O(N),

C2(N) = O(N logN),

C3(N) = O(N2).

(14)

Note that in the three cases above, the storage requirements for one renormal-
ization step are proportial to N and independent of k.

The above implementations of the renormalization step may have different sta-
bility and roundoff properties. We are not aware of any thorough study of these



328 GEMMA HUGUET, RAFAEL DE LA LLAVE AND YANNICK SIRE

stability or round-off properties (see for instance, [3] for an empirical comparative
study of the round-off effects for different methods of multiplying Fourier series).

3.2. Numerical implementation. We supply the code (see the version of the
paper in http://www.ma.utexas.edu for a program that computes iterations of
the Shrödinger cocycle (8) using Algorithm 3.1 and the strategy described in step
2 in Section 3.1. Notice that the code can be easily adapted to any other cocycle.
The file ‘fast2.c’ generates a program to compute iterations of the cocyle designed
to test for speed. The file ‘fast3.c’ generates a program to test the correctness of the
implementation of the elementary renormalization. When we run the program for
representative values of the parameters, namely λ = 0.1 and e = 0.2 on a regular
desktop we computed 210 iterations of the cocycle in about 12 seconds, which agree
up to the roundoff error with the ones obtained by direct iteration.

3.3. The QR method. In this section we present another version of Algorithm
3.1 that uses the QR decomposition to compute the iterates. It is well known (see
for instance [5, 4]), that the QR algorithm is rather stable to compute iterates.
One advantage is that, in the case that the spectrum has several gaps, the QR
algorithm can compute all the Lyapunov exponents of the cocycle in a stable way.
It is interesting to note that the QR method was the basis of the original proof of
the multiplicative ergodic theorem [16, 15].

The straightforward version of the QR algorithm consists of the following iter-
ation: given M(n, θ) = Qn(θ)Rn(θ) where Qn is an orthogonal matrix and Rn is
an upper triangular one, we compute M(θ + ωn)Qn(θ) and its QR decomposition
M(θ + ωn)Qn(θ) = Q̄n(θ)R̄n(θ). Then,

M(n+ 1, θ) = Q̄n(θ)Qn(θ)R̄n(θ)Rn(θ).

Denoting Qn+1(θ) = Q̄n(θ)Qn(θ) and Rn+1(θ) = R̄n(θ)Rn(θ), we have that Qn+1

is an orthogonal matrix and Rn+1 is an upper triangular one and we have obtained
the QR decomposition of the next iterate.

Notice that using the QR decomposition we can calculate the next iterate of the
cocycle by performing only multiplication of orthogonal and triangular matrices
and a QR decomposition. Clearly, all these operations are numerically stable (for
numerically stable versions of QR, we refer to [7, 1]). Moreover, the above procedure
allows us to compute all the Lyapunov exponents. The straightforward iteration
is affected by numerical errors and the round-off errors lead to iterations always
aligning with the fastest growing eigenvalue.

The above procedure requires a number of operations which is proportional to
the number of iterations. By combining Algorithm 3.1 with the QR decomposition
we can compute 2k iterates at a cost proportional to k and using only numerically
stable operations. This result is summarized in the following algorithm:

Algorithm 3.2 (Fast iteration of cocycles with QR decomposition). Given M(θ)
and a QR decomposition of M(θ),

M(θ) = Q(θ)R(θ),

perform the following operations:

(1) Compute S(θ) = R(θ + ω)Q(θ)
(2) Compute pointwise a QR decomposition of S, S(θ) = Q̄(θ)R̄(θ).

(3) Compute Q̃(θ) = Q(θ + ω)Q̄(θ)

R̃(θ) = R̄(θ)R(θ)
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M̃(θ) = Q̃(θ)R̃(θ)

(4) Set M ← M̃

R← R̃
Q← Q̃
2ω ← ω

and iterate the procedure.

Note that all the operations that we perform pointwise (multiplication of matrices
and the QR decomposition of matrices) have a cost proportional to N (number of
points on the grid) and are numerically stable.

3.4. The case of 1-dimensional rotations. In the case of one-dimensional maps,
one can be more precise in the description of the method. Indeed, if the frequency
ω has a continued fraction expansion

ω = [a1, a2, . . . , an, . . .],

it is well known that the denominators qn of the convergents of ω (i.e. pn/qn =
[a1, . . . , an]) satisfy

qn = anqn−1 + qn−2,

q1 = a1,

q0 = 1.

As a consequence, we can consider the following algorithm for this particular
case:

Algorithm 3.3 (Iteration of cocycles 1D). Given ω = [a1, . . . , an, . . .] and the
cocycle M over Tω generated by M(θ), define ω0 = ω, M0(θ) = M(θ) and for
n ≥ 1

M (n)(θ) = M (n−1)(θ + (an − 1)ωn−1) · · ·M (n−1)(θ + ωn−1)M (n−1)(θ)

is the generator of a cocycle M(n) over ωn = anω
n−1

By induction, we have

ωn = an · · · a1ω (mod 1)

M(a1 · · · an, θ) =M(n)(1, θ)

The advantage of this algorithm is that the effective rotation is decreasing to zero
so that the iteration of the cocycle is becoming close to the iteration of a constant
matrix. This method is somehow reminiscent of some algorithms that have appeared
in the mathematical literature [19, 14, 13].

4. The “straddle the saddle” phenomenon and preconditioning. The it-
eration of cocycles has more pitfalls than the the iteration of matrices because the
(un)stable bundle depends on the base point xθ.

In this section we describe a geometric phenomenon that causes some instability
in the iteration of cocycles. This instability –which is genuine and affects also the
direct iteration method – becomes more dramatic when we apply the fast iteration
methods described in Section 3. The phenomenon we will discuss was already
observed in [8], but its effect is significantly more drastic in the present algorithm.
Fortunately, once the phenomenon is detected, it can be eliminated by a simple
manipulation that we describe in Section 4.1.
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Since we have the inductive relation,

M(n, θ) =M(n− 1, θ + ω)M(θ),

we can think of computing M(n, θ) by applying M(n − 1, θ + ω) to the column
vectors of M(θ).

The jth-column of M , which we will denote by mj(θ), can be interpreted geo-
metrically as an embedding from T` to R2d and is given by M(θ)ej where ej is the
jth vector of the canonical basis of R2d. If the stable space of M(n− 1, θ + ω) has
codimension ` or less, there can be points θ∗ ∈ T` such that mj(θ

∗) ∈ Esxθ∗ and
such that for every θ 6= θ∗ we have mj(θ) /∈ Esxθ .

Clearly, for a fixed θ,

m
(n)
j (θ∗) =M(n− 1, θ∗ + ω)mj(θ

∗),

decreases exponentially as n grows. Nevertheless, for all θ in a neighborhood of θ∗

such that θ 6= θ∗

m
(n)
j (θ) =M(n− 1, θ + ω)mj(θ),

grows exponentially as n grows. The direction along which the growth takes place
depends on the projection of mj(θ) onto Euxθ+ω .

Take for instance the case when d = 2, ` = 1 and the stable and unstable
directions are one dimensional. Then, the unstable components will have different
signs and the vectors M(n − 1, θ + ω)mj(θ) will align in opposite directions. An
illustration of this phenomenon is shown in Figure 1.
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Figure 1. The straddle the saddle phenomenon. We plot one of
the components of the cocycle M(2k, θ) for the values k = 0, 3, 4.
The case k = 0 was scaled by a factor 200.

The transversal intersection of the range of mj(θ) with Es is indeed a true phe-
nomenon, and it is a true instability of the method. It cannot be cured by reducing
the truncation or round-off errors.

Unfortunately, if m
(n)
j is discontinuous as a function of θ, the discretization in

Fourier series or the interpolation by splines will be extremely inaccurate and the
Algorithm 3.1 will fail.
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This phenomenon is easy to detect when it happens because the derivatives grow
exponentially fast in some localized spots.

One important case where the straddle the saddle is unavoidable is when the
invariant bundles are non-orientable. This happens near resonances. In [11], it is
shown that, by doubling the angle the case of resonances can be studied comfortably
because then, non-orientability is the only obstruction to the triviality of the bundle.

4.1. Eliminating the “straddle the saddle” in the one-dimensional case.
Fortunately, once the phenomenon is detected, it can be eliminated. The main idea
is that one can find an equivalent cocycle which does not have the problem (or
presents it in a smaller extent).

In more geometric terms we observe that, even if the stable and unstable bundles
are geometrically natural objects, the decomposition of a matrix into columns is co-
ordinate dependent. Hence, one can choose a coordinate system which is reasonably
close to the stable and unstable bundles, so that if we denote by U the change of

coordinates, then the cocycle M̃ associated to the matrix

M̃(θ) = U(θ + ω)−1M(θ)U(θ),

is close to constant. Notice that his is true only in the one-dimensional case. The
picture is by far more involved when the bundles have higher rank.

This may seem somewhat circular, but the circularity can be broken using con-
tinuation methods. Given a cocycle which is close to constant, the fast iteration
methods work and they allow us to compute the splitting. Once we have computed
U for some M , we can use it to precondition the computation of the neighboring
M .

5. Computation of rank-1 stable and unstable bundles using iteration
of cocycles. The algorithms described in the previous section provide a fast way
to iterate the cocycle. We will see that this iteration method, which is similar to
the power method, gives the dominant eigenvalue λmax(θ) and the corresponding
eigenvector m(θ).

The methods based on iteration strongly rely on the fact that the cocycle has
one dominating eigenvalue which is simple.

Consider that we have performed k iterations of the cocycle (assume that we
perform scalings at each step) and we have computedM(n, θ), with n = 2k. Then,
one can obtain the dominant rank-1 bundle from the QR decomposition of the
cocycle M(n, θ), just taking the column of Q associated to the largest value in the
diagonal of the upper triangular matrix R. This provides a vector m(θ+ 2kω) (and
therefore m(θ) by performing a shift of angle −2kω) of modulus 1 spanning the
unstable manifold. Since,

M(θ)m(θ) = λmax(θ)m(θ + ω),

we have

λmax(θ) = ([M(θ)m(θ)]T [M(θ)m(θ)])1/2.

As it is standard in the power method, we perform scalings at each step dividing
all the entries in the matrix M(θ) by the maximum value among the entries of the
matrix.

Hence, for the simplest case that there is one dominant eigenvalue, the method
produces a section m (spanning the unstable sub-bundle) and a real function λmax,
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which represents the dynamics on the rank 1 unstable sub-bundle, such that

M(θ)m(θ) = λmax(θ)m(θ + ω).

Following [9], under certain non-resonant conditions (which are satisfied in the
case of the stable and unstable subspaces) one can reduce the 1-dimensional cocycle
associated to to the matrix M and a rotation ω to a constant. Hence, we can look
for a positive function p and a constant µ ∈ R, such that

λmax(θ)p(θ) = µp(θ + ω). (15)

Assuming that λmax(θ) > 0 (the case λmax(θ) < 0 is analogous), we can take
logarithms on both sides of the equation (15). This leads to

log λmax(θ) + log p(θ) = logµ+ log p(θ + ω),

and taking log µ to be the average of log λmax(θ) the problem reduces to solve the
equation for log p(θ). Finally, p(θ) and µ can be obtained just exponentiating.

We note that the results of the above algorithms could well serve as input for
the a-posteriori theorems described in [10, 12]. These a-posteriori theorems estab-
lish the existence of true invariant splittings provided that the computed solution is
approximately invariant with respect to some condition numbers that can be explic-
itly computed. Hence, these theorems provide criteria to validate the computational
results.
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[9] À. Haro and R. d. l. Llave, A parameterization method for the computation of invariant tori
and their whiskers in quasi-periodic maps: numerical algorithms, Discrete Contin. Dyn. Syst.
Ser. B, 6 (2006), 1261–1300.

http://www.ams.org/mathscinet-getitem?mr=MR2100420&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2672635&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1921668&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0800052&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1858550&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1417720&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2220541&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2240743&return=pdf


FAST ITERATION OF COCYCLES 333

[10] A. Haro and R. d. l. Llave, A parameterization method for the computation of invariant tori
and their whiskers in quasi-periodic maps: rigorous results, J. Differential Equations, 228

(2006), 530–579.

[11] A. Haro and R. de la Llave, A parameterization method for the computation of whiskers in
quasi periodic maps: numerical implementation and examples, SIAM Jour. Appl. Dyn. Syst.,

6 (2007), 142–207.
[12] G. Huguet, R. de la Llave and Y. Sire, Computation of whiskered invariant tori and their

associated manifolds: new fast algorithms, Discrete Contin. Dyn. Syst., 32 (2012), 1309–1353.
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