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We consider heteroclinic attractor networks motivated by models of competition between neural pop-
ulations during binocular rivalry. We show that gamma distributions of dominance times observed
experimentally in binocular rivalry and other forms of bistable perception, commonly explained by
means of noise in the models, can be achieved with quasiperiodic perturbations. For this purpose,
we present a methodology based on the separatrix map to model the dynamics close to heteroclinic
networks with quasiperiodic perturbations. Our methodology unifies two different approaches, one
based on Melnikov integrals and the other one based on variational equations. We apply it to two
models: first, to the Duffing equation, which comes from the perturbation of a Hamiltonian system
and, second, to a heteroclinic attractor network for binocular rivalry, for which we develop a suitable
method based on Melnikov integrals for non-Hamiltonian systems. In both models, the perturbed
system shows chaotic behavior, while dominance times achieve good agreement with gamma distri-
butions. Moreover, the separatrix map provides a new (discrete) model for bistable perception which,
in addition, replaces the numerical integration of time-continuous models and, consequently, reduces
the computational cost and avoids numerical instabilities. Published by AIP Publishing. https://doi.
org/10.1063/1.5050081

We study the dynamics resulting from quasiperiodic per-
turbations of heteroclinic attractor networks. This is a
novelty with respect to previous studies which only con-
sider periodic perturbations. We compute explicitly a map
that describes the perturbed dynamics close to the het-
eroclinic cycle and show that there exist chaotic orbits.
From a modeling point of view, the study of heteroclinic
attractor networks was motivated by models of competi-
tion between neural populations during binocular rivalry.
We have proved that important features attributed to
psychophysical experiments of bistable perception can be
reproduced by quasiperiodic perturbations with two or
more non-resonant frequencies. This fact was known for
noisy perturbations but not for deterministic ones. Our
methodology, based on the separatrix map, unifies two
different approaches, one based on Melnikov integrals
and another one on variational equations. Moreover, we
present an extension of the Melnikov approach to compute
the separatrix map for non-Hamiltonian systems. Our
results provide a new (discrete) model for bistable percep-
tion, which, in addition, replaces the numerical integration
of a time-continuous model.

I. INTRODUCTION

Heteroclinic networks consist of the union of several het-
eroclinic cycles, that is, a chain of separatrix connections

a)Author to whom correspondence should be addressed:
gemma.huguet@upc.edu

between saddle points; see Ref. 7 for a more general and
precise definition. The mathematical interest on heteroclinic
cycles and networks boosted in the late 1980s (see Refs. 5,
6, 10, 21, 26, 28, and 29, among others; see Ref. 30 for a
more recent one), and soon it emerged as a suitable approach
to model physical phenomena, mostly in ecology/population
dynamics (see, for instance, Refs. 3, 4, 23, and 24) and
more recently in neuroscience: generation and reshaping of
sequences in neural systems,37 transient cognitive dynamics,
metastability and decision making,38 decision making with
memory,9 sequential memory or binding dynamics,1 and cen-
tral pattern generators.44 Here, we focus on a specific appli-
cation to cognitive neuroscience, namely, the phenomenon
of bistable perception (see Ref. 8), as a paradigmatic exam-
ple to understand the effect of quasiperiodic perturbations on
heteroclinic networks.

Bistable perception consists of spontaneous alternances
of sensory percepts. In humans, data are mainly obtained from
psychophysical experiments that provide perceptual traces
whose statistics help one to understand the operating regimes
of the involved brain areas. In particular, the distribution of
dominance times (periods of time when a unique percept
is detected, here called Tdom) is believed to encode switch-
ing mechanisms. As reported along the literature, see, for
instance, Refs. 19, 32, and 42 and subsequent works, such
distribution of dominance times typically follows a gamma
distribution.

Models of bistable perception (see Ref. 25 for a review)
have two main ingredients: the presence of two states in
the phase space that represent the two percepts, plus a
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mechanism allowing to switch from one state to another,
which can be either a negative feedback (endogenous) or
noise. To account for the two states, the most well-known
paradigms are oscillations32,45 and the existence of two (cross-
inhibiting) point-attractors.31,33,40 Ashwin and Lavric in Ref. 8
proposed a heteroclinic attractor network model for binocular
rivalry (HBR, from now on) as another paradigm to account
for the switching mechanism, inspired on previous models of
winnerless competition for neural processes; see, for instance,
Refs. 36–38. In these heteroclinic networks, the dominance
time corresponds to the time spent nearby each saddle of the
heteroclinic cycle. On the other hand, in all models, noise is
believed to play a more dominant role than negative feedback
in shaping the trajectories of the models to fit the statistical
distribution of dominance times (see Refs. 33 and 34). In par-
ticular, in Ref. 8, the authors show that noisy perturbations
lead to a gamma-like distribution of dominance times Tdom

for the heteroclinic attractor network.
In this paper, we use heteroclinic attractor network mod-

els to focus on the nature of the perturbations. As explained
above, models in the literature whose output fits to gamma dis-
tributions employ noisy perturbations. To delve into this issue,
we decided to explore a minimal perturbation scheme lead-
ing to gamma distributions of dominance times; in particular,
we consider the effects of quasiperiodic perturbations with a
finite number of (non-resonant) frequencies and use appro-
priate tools from dynamical systems theory to study them.
Besides being of mathematical interest, this issue has also a
modeling relevance since it impinges onto the question of how
many inputs are necessary for a specific brain area to make a
perceptual decision (see also the discussion in Sec. IV).

We study heteroclinic attractor network models with peri-
odic and, as a novelty, quasiperiodic perturbations with up
to three frequencies. Our goal is to describe the dynamics
of the heteroclinic attractor network around the heteroclinic
connections by means of a composition of maps between spe-
cific Poincaré sections: a concatenation of local maps close
to the saddle points together with global maps that describe
the dynamics close to the heteroclinic connections. This con-
catenated map, known as the separatrix map,2,11,18,35,39,46 is
presented here as an alternative discrete model for bistable
perception. For this map, we carry out a thorough study of the
dynamics around the heteroclinic cycle, explore the existence
of chaos by means of the computation of Lyapunov exponents,
and monitor the dominance (passage) times of the chaotic
trajectories. Of course, studying a map avoids numerically
unstable computations and increases simulation speed.

We present a methodology that (i) introduces the sep-
aratrix map as a model close to heteroclinic networks, (ii)
incorporates quasiperiodic perturbations, and (iii) unifies two
different approaches, one based on Melnikov integrals and
another one based on variational equations.

We first apply our methodology to a classical model, the
Duffing equation,22 which has a single saddle and a double
homoclinic loop. We use this model as a benchmark since it
can be considered as the simplest version of a heteroclinic
network. Once the mathematical methodology has been set-
tled down in the benchmarking model, we extend it to the
HBR model introduced in Ref. 8. For the Duffing equation,

the unperturbed system is Hamiltonian. Thus, we provide the
separatrix map analytically by means of Melnikov theory in
appropriate action-angle variables and numerically from the
variational equations in the original variables. For the HBR
model, the unperturbed system does not come from a Hamil-
tonian system, but we take advantage of the exact knowledge
of the heteroclinic connections to define a substitute of the
action variable and develop a suitable method of Melnikov
integrals for non-Hamiltonian systems. Again, as in the Duff-
ing equation, we also compute the separatrix map by means
of variational equations and compare both approaches, which
show good agreement.

In both cases, we develop the separatrix map for
quasiperiodic perturbations and perform a numerical study of
the dynamics around the perturbed separatrices for specific
choices of the set of frequencies. For these quasiperiodic per-
turbations, we show that the system exhibits chaotic behavior
around the separatrices and, remarkably, gamma distributions
of dominance times, thus showing that noise is not essential
to explain such statistics.

The contents of the paper is organized as follows. In
Sec. II, we present the main concepts and tools by means of
the Duffing equation. The Poincaré sections for this model
are defined in Sec. II A. In Sec. II B, we construct the
local maps nearby the saddles, whereas global maps are com-
puted in Sec. II C. By composing local and global maps, in
Sec. II D, we then obtain two equivalent separatrix maps as
a first-order approximation of the dynamics of the system
around the perturbed separatrices. In Sec. II E, we perform
a numerical study of the dynamics of the separatrix map for
a specific choice of the parameters. In Sec. III, we carry out
the same study for the HBR model introduced in Ref. 8. In
Sec. III A, we compute the separatrix map using variational
equations, and in Sec. III B, we develop the adapted Mel-
nikov theory. Section III C is devoted to numerical study.
We include three appendixes with some technical details: the
development of the variational equations for the Duffing sys-
tem in Appendix A, the optimal choice of Poincaré sections in
Appendix B, and values of histogram fittings in Appendix C.

II. DISSIPATIVE SEPARATRIX MAP FOR THE DUFFING
EQUATION

We use the Duffing equation as a benchmark to obtain the
separatrix map both using Melnikov integrals and variational
equations. Both methods use the linear local approximation,
but they differ in the way to compute a global map that will
be explained in detail for each case. The Duffing equation is
obtained, see Ref. 22, from the Hamiltonian

H(x, y) = y2

2
− x2

2
+ x4

4
, (1)

where (x, y) ∈ R
2 and can be written as the system{

ẋ = y,
ẏ = x − x3.

(2)

The flow of system (2) is organized around the double-
loop separatrix �0 given by H(x, y) = 0; see Fig. 1(a). The
level sets {H(x, y) = h} of every energy value h ∈ R can be
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FIG. 1. (a) Level sets of the Hamiltonian of the Duffing equation (1) and section Jc defined in (3). (b) The zero level set in the space (u, v). (c) Projections,
J in,out
σ , of the Poincaré sections defined in (8) on the phase space (u, v).

parameterized as

�h = �−
h ∪ �+

h =
⋃
σ=±

{[xσ (s, h), yσ (s, h)], s ∈ [−Th, Th]},
(3)

with

[xσ (0, h), yσ (0, h)] ∈ Jc := {(−∞, −1) ∪ (1, +∞)} × {0},
Th > 0 and T0 = ∞. For h > 0, �h is a connected curve sur-
rounding �0, while for h < 0, �−

h and �+
h are two disjoint

closed curves lying in different connected components of the
bounded region defined by �0; see again Fig. 1(a). For h = 0,
the double-loop �0 can be explicitly parameterized as

xσ (s, 0) = σ

√
2

cosh(s)
, yσ (s, 0) = ẋσ (s, 0)

= −σ
√

2 sinh(s)

cosh2(s)
, σ = ±. (4)

We will focus on a perturbed version of the Duffing equation,⎧⎨
⎩

ẋ = y,
ẏ = x − x3 − γ y + βx2y + ε

∑n
i=1 ai cos(θi),

θ̇ = ω,
(5)

where (x, y) ∈ R
2, θ = (θ1, . . . , θn) ∈ T

n, ω = (ω1, . . . ,ωn) ∈
R

n, ai ∈ R, for i = 1, . . . , n, and ε,β, γ ≥ 0 are small param-
eters.

Observe that the perturbation has two parts, one
autonomous (depending on x and y) and another non-
autonomous (depending on θ ), which will play different roles
in our study. In fact, the autonomous part has been extensively
treated in the literature; see, for instance, Ref. 22. In particular,
for ε = 0, the point (x, y) = (0, 0) is a saddle point with eigen-
values λ± = (−γ ±

√
γ 2 + 4)/2, and the bifurcation diagram

in the (γ ,β) parameter space has a curve of (dissipative)
homoclinic connections of the form β = 5/4 γ + O(γ 2); see
Ref. 22, Sec. 7.3 and Remark 2.3.

A. Poincaré sections for the separatrix map

The separatrix map was first introduced in Refs. 11, 18,
39, and 46 as a powerful method of analysis to describe the

dynamics close to a homoclinic/heteroclinic loop. It is a singu-
lar Poincaré map (see Ref. 43, Chap. 4) defined on a Poincaré
section near the saddle points.

In this section, we describe how to construct the separa-
trix map for the perturbed Duffing equation (5). The separatrix
map consists of the composition of two maps: the local map
that describes the dynamics in a neighbourhood of the saddle
points and the global map that describes the dynamics in the
vicinity of the homoclinic loop.

We first introduce a new coordinate system (u, v)
such that the linearized system around the saddle point
(0, 0) becomes diagonal. Let λ− and λ+ be the nega-
tive and positive eigenvalues of the saddle point, respec-

tively, and let v− = 1/
√

1 + λ2−(1, λ−) = μ−(−λ+, 1) and

v+ = 1/
√

1 + λ2+(1, λ+) = μ+(−λ−, 1) be a pair of cor-

responding eigenvectors, where μ+ := λ+/
√

1 + λ2+ and

μ− := λ−/
√

1 + λ2− (notice that we have used that λ+λ− =
−1). Then, the coordinate change(

x
y

)
= C

(
u
v

)
, where C =

(−μ−λ+ −μ+λ−
μ− μ+

)
, (6)

transforms system (5) into
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = Fu(u, v, θ , ε) = λ−u + f u(u, v)

+ε λ−
μ−(λ− − λ+)

∑n
i=1 ai cos(θi),

v̇ = Fv(u, v, θ , ε) = λ+v + f v(u, v)

−ε λ+
μ+(λ− − λ+)

∑n
i=1 ai cos(θi),

θ̇ = ω,

(7)

where [f u(u, v), f v(u, v)] is the transformation of the perturba-
tion (0, −x3 + βx2y) under the change of variables (6) and so,
it consists of a pair of homogeneous polynomials of degree 3.

We then consider four segments J in
σ and Jout

σ , σ ∈ {+, −},
in a neighbourhood of the saddle point, which are transver-
sal to the unperturbed separatrix �0 and located close to
the saddle point [see Figs. 1(b) and 1(c)]. If we consider
the angular variable θ ∈ T

n, we denote by 
in,out
σ = J in,out

σ ×



103111-4 Delshams, Guillamon, and Huguet Chaos 28, 103111 (2018)

T
n the corresponding sections in the extended phase space.

Mathematically,


in
σ = {(u = σu∗, v, θ)} = {[σ , s = s∗

0(h), h, θ ]},

out
σ = {(u, v = σv∗, θ)} = {[σ , s = −s∗

1(h), h, θ ]}. (8)

The relationship between u∗, v∗ and s∗
0(h), s∗

1(h) is given by(
u∗

−
)

= C−1

(
x+[s∗

0(h), h]
y+[s∗

0(h), h]

)
and

(−
v∗

)
= C−1

(
x+[−s∗

1(h), h]
y+[−s∗

1(h), h]

)
.

Remark 2.1. For the sake of clarity, we will omit the sign σ
in the derivation of the separatrix map.

B. The local map

The local map describes the dynamics from section

in := 
in

+ ∪
in
− to section 
out := 
out

+ ∪
out
− by approx-

imating it by the linearized dynamics around the saddle point
(0, 0) of (7) for ε = 0. Thus,

v∗ = eλ+T v + O(ε, γ , |u|3 + |v|3),

u = eλ−T u∗ + O(ε, γ , |u|3 + |v|3), and T = 1

λ+
ln

∣∣∣∣v∗

v

∣∣∣∣ .

Assuming that |u|, |v|, ε, and γ are small, we can neglect
the terms O(ε, γ , |u|3 + |v|3) and write the local map in the
variables (u, v, θ) as

TL : 
in → 
out,
(v, θ) 	→ (ū, θ̄ ),

with
ū

u∗ =
∣∣∣ v

v∗

∣∣∣ν ,

θ̄ = θ + ω

λ+
ln

∣∣∣∣v∗

v

∣∣∣∣ ,
(9)

where ν = −λ−/λ+ > 0.
Equivalently, using the global variable h = 2μ+μ− uv +

γO2(u, v), the local map in the variables (h, θ) is given up to
first order in (u, v) by

TL : 
in → 
out,
(h, θ) 	→ (h̄, θ̄ ),

where

h̄

2μ+μ−u∗v∗ =
(

h

2μ+μ−u∗v∗

)ν
,

θ̄ = θ + ω

λ+
ln

∣∣∣∣2μ+μ−u∗v∗

h

∣∣∣∣ ,

(10)

where we have used that h and h̄ are given in first order in
(u, v) by h = 2μ+μ−u∗v and h̄ = 2μ+μ−ūv∗.

C. The global map

The global map describes the dynamics from section

out to section 
in by means of the linearized dynamics
around the separatrix. In this section, we will discuss two
different approaches to compute it. In one case, we will use

variational equations to describe the dynamics around the
separatrix for β = 5/4γ + O(γ 2) and γ ≥ 0 and consider-
ing ε as the perturbation parameter. In the other case, we will
use Melnikov integrals to describe the dynamics around the
unperturbed separatrix assuming that both ε and γ (and β) are
the perturbation parameters.

1. The global map via variational equations

In this section, we will compute the global map in
the variables (u, v, θ) using variational equations. In these
variables, the global map is defined as

TG : 
out → 
in,
(u, θ) 	→ (v̄, θ̄ ),

(11)

where (u∗, v̄, θ̄ ) = ϕ[τ ∗(u, v∗, θ); u, v∗, θ ] and ϕ(t; w0) is the
solution of system (7) with initial condition w0.

In order to obtain an approximation of the global map,
we consider the local dynamics around the separatrix � that
exists for β = 5/4γ + O(γ 2) and ε = 0. Thus, we now con-
sider the parameter ε as a variable (i.e., ε̇ = 0) and denote
by ϕ̂(t; u, v, θ , ε) the flow of the extended system (7) adding
ε̇ = 0, and T̂G the extended global map. Moreover, let us
consider the point ws := (us, v∗, θ s, ε = 0), where us is the
u-coordinate of the point p = {Jout ∩ �} and θ s ∈ T

n. The
image of this point under the extended global map is the point
(u∗, vs, θ s + ωT ∗, 0), where vs is the v-coordinate of the point
q = {J in ∩ �} and

T ∗ = τ ∗(ws), where ws = (us, v∗, θ s, 0), (12)

which is independent of θ s when ε = 0. Thus, for any point
of the form (u, v∗, θ , ε) = (us +�u, v∗, θ s +�θ , ε), its image
for T̂G is given by

T̂G(u, v∗, θ , ε) = T̂G(ws)+ DT̂G(ws) ·�+ O(�2),

= (u∗, vs, θ s +ωT ∗, 0)+ DT̂G(ws) ·�
+ O(�2),

where � = (�u, 0,�θ , ε). Notice that

DT̂G(ws) = Dϕ̂[τ ∗(ws); ws]

= Dwϕ̂[τ ∗(ws); ws] + ∂ϕ̂

∂t
[τ ∗(ws); ws]Dwτ

∗(ws),

where w = (u, v, θ , ε). Of course, Dwϕ̂ can be computed by
means of solving variational equations and Dwτ

∗ can be
obtained from

ϕ̂u[τ ∗(w); w] = u∗,

where ϕ̂u denotes the u-coordinate of the extended flow ϕ̂.
Thus, we have

Dwτ
∗ = −

(
∂ϕ̂u

∂t

)−1

Dwϕ̂
u.

Working out the details (see Appendix A), we obtain that

T̂G(u, v∗, θ , ε) = (u∗, vs, θ s + ωT ∗, 0)+ [0,αv�u

+ ερv(θ),αθ�u +�θ + ερθ (θ), ε] +O(�2),
(13)
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with

αv = ϕ̂v
u − Fv

Fu
ϕ̂u

u , ρv(θ) = ϕ̂v
ε − Fv

Fu
ϕ̂u
ε ,

αθ = −ω ϕ̂
u
u

Fu
, ρθ(θ) = −ω ϕ̂

u
ε

Fu
,

(14)

where Fu and Fv are given in (7); the subindex in ϕ̂ denotes
derivation with respect to that variable and the superindex
denotes the corresponding coordinate. Moreover, they are
obtained by means of solving variational equations (see
Appendix A). Using that �θ = θ − θ s and �u = u − us, and
disregarding the terms of O(�2) in (13), the global map TG

describing the dynamics from 
out to 
in is given by

TG : 
out → 
in,
(u, θ) 	→ (v̄, θ̄ ),

where

v̄ = vs + αv(u − us)+ ερv(θ),

θ̄ = θ + ωT ∗ + αθ(u − us)+ ερθ (θ).
(15)

Since u − us and ε are assumed to be small, the contribution
of the terms αθ(u − us) and ερθ is negligible compared to the
finite term ωT ∗. Moreover, one can see that the terms us and
vs are O2(u∗, v∗). Therefore, considering only the dominant
terms, we can write the global map as

v̄ = αu + ερ(θ),

θ̄ = θ + ωT ∗,
(16)

where α = αv and ρ = ρv(θ) are defined in (14) and T ∗ is
defined in (12). Notice that we have removed the subscript v
from α and ρ.

Remark 2.2. In the literature, the parameter α is taken to be
α = 1 (see Refs. 2 and 20). In this paper, we do not assume
it to be 1, but we will compute it explicitly for some examples
(see Sec. II E).

2. The global map via Melnikov integrals

In this section, we will compute the global map using
the variables (h, s) by means of the Melnikov integral. Tak-
ing advantage of the fact that the unperturbed system (2) is
Hamiltonian, we have that

ḣ = Hyq,

ṡ = 1 + syq,

θ̇ = ω,

where H is the Hamiltonian function in (1) and q(x, y, θ) =
−γ y + βx2y + ε

∑n
i=1 ai cos(θi) is the perturbation in (5).

All the functions of the above expression are evaluated on
x = x(s, h) and y = y(s, h), introduced in (3).

Therefore, the global map describing the dynamics from

out to 
in is defined as

TG : 
out → 
in,
(h, θ) 	→ (h̄, θ̄ ),

where, using that s∗
i (h) = s∗

i (0)+ O(h), for i = 0, 1, we have

h̄ − h =
∫ s∗0

−s∗1
Hyq = M (θ)

+ (γ + β + ε)O(u∗, v∗, |h|, ε, γ ,β),

θ̄ − θ = ω(s∗
0 + s∗

1)+ O(|h|, γ , ε,β),

(17)

where s∗
i denotes s∗

i (0) and M (θ) is the Melnikov integral for
system (5) on the level curve H(x, y) = h = 0.

We compute the Melnikov integral on the positive branch
of the level curve H(x, y) = 0, i.e., M (θ) = M+(θ) (the case
for the negative branch is analogous). Let us denote x0(t) =
x+(t, 0) and y0(t) = ẋ0(t) = y+(t, 0) the parameterization of
�+

0 given in Eq. (4). Then,

M (θ) =
∫ ∞

−∞

∂H

∂y
[x0(t), y0(t)] q[x0(t), y0(t), θ + ωt]dt

=
∫ ∞

−∞
ẋ0(t)

[−γ ẋ0(t)+ βx2
0(t)ẋ0(t)

+ε
n∑

i=1

ai cos(θi + ωit)

]
dt

= −γ
∫ ∞

−∞
ẋ2

0(t) dt + β

∫ ∞

−∞
x2

0(t)ẋ
2
0(t) dt

− ε

n∑
i=1

ai sin(θi)

∫ ∞

−∞
ẋ0(t) sin(ωit)dt,

where in the last term, we have used that the integral on
(−∞, ∞) of an odd function is zero.

We compute each integral separately. Thus,

∫ ∞

−∞
ẋ2

0(t)dt = 2
∫ ∞

−∞

sinh2(t)

cosh4(t)
dt = 4

3
,

∫ ∞

−∞
x2

0(t)ẋ
2
0(t)dt

= 4
∫ ∞

−∞

sinh2(t)

cosh6(t)
dt = 16

15
,

and ∫ ∞

−∞
sin(ωit)ẋ0(t)dt = sin(ωit)x0(t)]

∞
−∞

− ωi

∫ ∞

−∞
cos(ωit)x0(t)dt

= −ωi

√
2

∫ ∞

−∞

cos(ωit)

cosh(t)
dt = −

√
2ωiπ

cosh(πωi/2)
,

where the last integral has been computed by the residue
theorem (see Ref. 15). Thus, the Melnikov integral has the
form

M (θ) = M+(θ) = −4

3
γ + 16

15
β +

√
2πε

n∑
i=1

aiωi sin(θi)

cosh(πωi/2)
.

(18)

Remark 2.3. Note that M (θ) = 0 for ε = 0 and β = 5/4γ .
Therefore, system (5) has a homoclinic orbit for ε = 0 and
β = 5/4γ + O(γ 2); see also Ref. 22, Sec. 7.3.
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D. The separatrix map

We describe how to construct the separatrix map for the
perturbed Duffing equation (5) both via variational equations
and Melnikov integrals.

1. The separatrix map via variational equations

We combine the local and global maps given in (9)
and (16), respectively, to obtain explicit formulas for the
separatrix map in the variables (u, θ).

Notice that when v > 0, the local map takes points from

in to 
out

+ , but when v < 0, the local map takes points from

in to
out

− . Recovering the variable σ in (8), we can write the
separatrix map as

S := TL ◦ TG : 
out → 
out,
(u, θ , σ) 	→ (ū, θ̄ , σ̄ ),

where

ū

u∗ = σ |v∗|−ν |αu + ερ(θ)|ν ,

θ̄ = θ + ωT ∗ + ω

λ+
ln

∣∣∣∣ v∗

αu + ερ(θ)

∣∣∣∣ mod 2π ,

σ̄ = sign[αu + ερ(θ)].

(19)

By scaling the variables u and v by u∗ and v∗, respectively,
i.e., u := u/u∗ and v := v/v∗, the global map becomes

ū = |α̃u + ερ̃(θ)|ν ,
θ̄ = θ + ωT ∗ + ω

λ+
ln

∣∣∣∣ 1

α̃u + ερ̃(θ)

∣∣∣∣ mod 2π ,

σ̄ = sign[α̃u + ερ̃(θ)],

where ρ̃(θ) = 1

v∗ ρ(θ) and α̃ := u∗

v∗ α. Notice that if we

choose u∗ = v∗ then α̃ = α.

2. The separatrix map via Melnikov integrals

We combine the local and global maps given in (10)
and (17), respectively, to obtain explicit formulas for the
separatrix map in the variables (h, θ).

Notice first that the local map takes points from
in
+ (resp.


in
−) to 
out

+ or 
out
− depending on the value of h at the section


in
+ (resp. 
in

−). Thus, recovering the variable σ in (8) and
using the dominant terms given in (10) and (17), we can write
the separatrix map as

S := TL ◦ TG : 
out → 
out,
(h, θ , σ) 	→ (h̄, θ̄ , σ̄ ),

where

h̄

2μ+μ−u∗v∗ =
(

h + Mσ (θ)

2μ+μ−u∗v∗

)ν
,

θ̄ = θ + ω(s∗
0 + s∗

1)+ ω

λ+
ln

∣∣∣∣2μ+μ−u∗v∗

h + Mσ (θ)

∣∣∣∣ ,

σ̄ = −σ sign[h + Mσ (θ)].
(20)

By scaling the variable h and redefining h := h/(2μ+μ−u∗v∗),
the global map can be simply written as

h̄ = [
h + M̃σ (θ)

]ν
,

θ̄ = θ + ω(s∗
0 + s∗

1)+ ω

λ+
ln

∣∣∣∣ 1

h + M̃σ (θ)

∣∣∣∣ ,

σ̄ = −σ sign[h + M̃σ (θ)],

where M̃σ (θ) := 1

2μ+μ−u∗v∗ Mσ (θ).

E. Numerical computations

We compute numerically the separatrix map for the per-
turbed Duffing equation using variational equations, and we
refer to Sec. II E 1 for the differences between the separatrix
map obtained using this approach and the one obtained via
Melnikov integrals.

We consider a quasiperiodic perturbation consisting of
at most 3 frequencies given by ω1 = 1, ω2 =

√
5−1
2 , and

ω3 = √
769 − 27. We choose them in order to pick three fre-

quencies that are as much incongruent as possible. Indeed,
ω3 = √

769 − 27 is the real number that provides the best
constant C = C(ω3) ≈ 0.233126 . . . in the inequalities

|k0 + k1ω2 + k2ω3| ≥ C(|k0| + |k1| + |k2|)−2, (21)

for all integers satisfying |k1|, |k2| ≤ K := 220, k0 ∈ Z,
amongst all numbers ω3 that are the decimal part of num-
bers of the form

√
p, with p being a prime number smaller

than 1000.41 An alternative to these frequencies is to choose
ω2 = �, where � is “the cubic golden number,” i.e., the real
cubic root of x3 + x − 1 = 0, � ≈ 0.6823, and ω3 = �2. In
this case, C = 2(5 +�+ 4�2)/31 ≈ 0.4867 in the expres-
sion (21).14 Simulations with these two sets of frequencies do
not show significant differences (results not shown).

We first compute the separatrix map for two orders of
magnitude of γ [and β, since β is chosen as β = 5/4γ +
O(γ 2) so that the map for ε = 0 has a homoclinic orbit; see
remark 2.3]. In both cases, we introduce the parameter r such
that u∗ = v∗ = r and we chose r = 0.1 (see Appendix B for
a justification). The coefficients of the map (16) are com-
puted according to the formulas given in (14), which involve
solving numerically the variational equations around the sep-
aratrix (see Appendix A). For the numerical integration, we
have used a Runge-Kutta method of order 7/8 with a fixed
tolerance of 10−12.

For γ = 0.008, the map (19) is given by

ū = sr1−ν |αu + ερ(θ)|ν ,
θ̄i = θi + ωi 7.3752858056

+ ωi/0.9960080000 ln(r/|v|), for i = 1, 2, 3,

σ̄ = sign(v),

(22)

where α = 0.9733201532, r = 0.1, and

ρ(θ) = a1[9.7591847996 cos(θ1)+ 15.6872106985 sin(θ1)]

+ a2[−13.2851558002 cos(θ2)+ 11.5920512181 sin(θ2)]

+ a3[−7.9272168789 cos(θ3)+ 16.9623679354 sin(θ3)],

with θ = (θ1, θ2, θ3) ∈ T
3 and a1, a2, a3 ∈ R.
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FIG. 2. Maximal Lyapunov exponent (computed using MEGNO) for the orbits of several separatrix maps of the Duffing equation with initial conditions on the
phase space (u, θ) (θi = θ , for i = 1, 2, 3): (top) separatrix map (22) corresponding to γ = 0.008 with r = 0.1 and ε = 0.001 and (bottom) separatrix map (23)
corresponding to γ = 0.08 with r = 0.1 and ε = 0.001. The number of frequencies in the perturbation is (a) 1 frequency, (b) 2 frequencies, and (c) 3 frequencies.

For γ = 0.08, the same value as in Ref. 42, the map is
given by

ū = sr1−ν |αu + ερ(θ)|ν ,
θ̄i = θi + ωi 7.3784656185

+ ωi/0.9607996803 ln(r/|v|), for i = 1, 2, 3,

σ̄ = sign(v),

(23)

where α = 0.7629736972, r = 0.1, and

ρ(θ) = a1[9.9901759770 cos(θ1)+ 13.0767449862 sin(θ1)]

+ a2[−10.9333035475 cos(θ2)

+ 11.2761757850 sin(θ2)]

+ a3[−5.7535147048 cos(θ3)

+ 15.6518248196 sin(θ3)],

with θ = (θ1, θ2, θ3) ∈ T
3 and a1, a2, a3 ∈ R. Notice that the

coefficient α in (22) for γ = 0.008 is larger than in (23)
for γ = 0.08, showing that the separatrix becomes more
contractive as γ increases (Sec. II E 1).

In order to understand the dynamics of these maps, we
have carried out a numerical exploration of the Lyapunov

exponents for different orbits of the system with different
initial conditions. We run the MEGNO program12,13 to com-
pute the maximal Lyapunov exponent for the maps (22)
and (23) with ε = 0.001 and three different perturbations:
a periodic perturbation (a1 = 1, a2 = 0, a3 = 0), a quasiperi-
odic perturbation with 2 frequencies (a1 = 1, a2 = 1, a3 = 0)
and a quasiperiodic perturbation with 3 frequencies (a1 =
1, a2 = 1, a3 = 1). Results for the maximal Lyapunov expo-
nent for different initial conditions are shown in Fig. 2. For
the case of a periodic perturbation (1 frequency), the Lya-
punov exponent is negative, and both maps show non-chaotic
behavior for all the initial conditions tested [see Fig. 2(a)].
Indeed, the orbits of the system tend to a periodic orbit,
and in the case of the map with γ = 0.008, we observed
several limiting periodic orbits (results not shown) for dif-
ferent initial conditions. This explains why the range of the
Lyapunov exponents computed for γ = 0.008 is larger than
the one for γ = 0.08. For the case of quasiperiodic pertur-
bations with 2 or 3 frequencies, the Lyapunov exponent is
positive for all the initial conditions tested for the map with
γ = 0.08 and a large domain of the initial conditions tested
for the map γ = 0.008, thus showing chaotic behavior [see
Figs. 2(b) and 2(c)]. Notice that there is a small area of initial

FIG. 3. Iterates of the separatrix map
(22) corresponding to γ = 0.008 with
r = 0.1, ε = 0.001, and a perturbation
with two frequencies, with initial con-
ditions in the non-chaotic region [see
Fig. 2(b) top]. (a) Iterates on the (u, θ1)

space and (b) iterate number vs angle
variable θ1.
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FIG. 4. Histograms of the dominance times (time to return to the Poincaré section
out
v=±r) and the u-value at section v = ±r for the map in (22) corresponding to

γ = 0.008 with a perturbation with (a) 1, (b) 2, and (c) 3 frequencies, ε = 0.001, r = 0.1 and initial conditions u = 0, θi = 0, σ = 1, and γ = 0.008. We have
used 100 000 iterates. Dominance times histograms (top) are fitted to gamma (green) and log-normal (red) distributions (fittings not distinguishable), and impact
histograms (bottom) are fitted to normal distributions (blue); see Appendix C. Notice here that the u-values of the iterates for the quasiperiodic perturbation of
3 frequencies impact, in some cases, outside r = 0.1. This is not a problem since the map computes the times correctly. If the initial condition for the case with
1 frequency is chosen as u = 0.1, the orbit converges to a different periodic orbit, and we obtain a histogram which is also a delta function but centered at a
different position (results not shown). Histograms have been normalized to have area 1.

conditions for which the map corresponding to γ = 0.008
and a quasiperiodic perturbation with two frequencies shows
non-chaotic behavior [see Fig. 2(b) top]. The iterates for an
initial condition in this non-chaotic region are shown in Fig. 3,
where the numerical exploration shows the existence of an
attracting invariant curve.

In the cases for which we detected chaotic behavior
for the orbits of the system, we explored the distribution
of the dominance times Tdom corresponding to the time
intervals between impacts on sections 
out

± . Mathematically,
Tdom = (θ̄i − θi)/ωi, which is independent of i. In addition,
we also computed the distribution of impacts on the sections

out

± (given by the values of u along the orbit). In particular,
we considered initial conditions u = 0, θi = 0, for i = 1, 2, 3
and σ = +1 and computed the corresponding iterates for both
separatrix maps (22) and (23) and the three different perturba-
tions. In Figs. 4 and 5, we show the corresponding histograms
of the dominance times and the impacts on the section 
out.
Notice that for the cases where we observed chaotic behavior,
the histograms show a log-normal or gamma distribution for
time differences Tdom and a normal distribution for impacts
[see Figs. 4 and 5, (b) and (c)], while for the case of one
frequency, the histograms are just a delta function for both
distributions [see Figs. 4(a) and 5(a)].

We compare the results for histograms with those
obtained with a perturbation consisting of white noise
instead of a periodic or quasiperiodic function. Thus, we

consider the following system of stochastic differential
equations:

du = λ−u + f u(u, v)du + εudWu,

dv = λ+v + f v(u, v)dv + εvdWv,
(24)

where f u, f v are defined in (7) and dWu, dWv are zero mean,
independent Wiener processes. We computed the values of
u and Tdom on the section 
out and obtained the histograms
shown in Fig. 6. Considering a noisy perturbation in the orig-
inal variables (x, y) leads to similar results (not shown); see
also Ref. 42. Notice that the shape of histograms follows a
log-normal or gamma distribution for time histograms and
a normal distribution for impacts (see Fig. 6). Notice also
that, as observed for the case of a quasiperiodic perturbation,
the case γ = 0.008 contracts in a weaker way. In order to
properly compare the histograms with the ones obtained with
quasiperiodic perturbations, we fit the histograms with a log-
normal and gamma distribution (see Appendix C). We show
the fittings to a log-normal distribution altogether in Fig. 7.
The same fittings are obtained for a gamma distribution. We
clearly see that for 2 and 3 frequencies, the histograms are
similar to the ones obtained with noise.

1. Comparison between separatrix maps for the
Duffing equation

Using Melnikov integrals, we have obtained the
separatrix map given in (20) which has an analytical
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FIG. 5. Histograms of the dominance times (time to return to the Poincaré section 
out
v=±r) and the u-value at section v = ±r for the map in (23) corresponding

to γ = 0.08 with a perturbation with (a) 1, (b) 2, and (c) 3 frequencies, ε = 0.001, r = 0.1 and initial conditions u = 0, θi = 0, σ = 1, and γ = 0.008. We have
used 100 000 iterates. Dominance times histograms (top) are fitted to gamma (green) and log-normal (red) distributions (fittings not distinguishable), and impact
histograms (bottom) are fitted to normal distributions (blue); see Appendix C. Histograms have been normalized to have area 1.

expression, while using variational equations about the per-
turbed separatrix [γ �= 0, β = 5/4γ + O(γ 2)], we have
obtained the separatrix map (19) which requires numeri-
cal computations. We want to compare the results obtained
numerically with those obtained analytically by means of two
different methods. We know that both maps are equivalent up
to O(γ ).

Let us express the map (19) in terms of h. Disregard-
ing higher order terms in (u, v), we have h = μuv∗, where
μ = 2μ+μ− = −1/(λ+ − λ−), and replacing u by h/(μv∗)

in system (19), we have

h̄

μu∗v∗ =
(
α(u∗/v∗)h + εμu∗ρ(θ)

μu∗v∗

)ν
,

θ̄ = θ + ωT ∗ + ω

λ+
ln

∣∣∣∣ μv∗u∗

α(u∗/v∗)h + εμu∗ρ(θ)

∣∣∣∣ ,

σ̄ = −σ sign[h + εμρ(θ)],
(25)

FIG. 6. Histograms of the dominance
times (time to return to the Poincaré
section 
out

v=±r) and the u-value at section
v = ±r obtained from the integration
of the system of differential equations
(24) with γ = 0.008 and ε = 5 · 10−4

(left) and γ = 0.08 and ε = 10−3 (right).
Time histograms (top) are fitted to
gamma (green) and log-normal (red)
distributions (fittings not distinguish-
able) and impact histograms (bottom)
are fitted to normal distributions (blue),
see Appendix C. We have used 10 000
iterates and initial conditions u = 0 and
v = r. We have integrated the system
using an Euler-Maruyama method with a
stepsize of�t = 10−6 for γ = 0.008 and
�t = 10−5 for γ = 0.08. For γ = 0.008,
the homoclinic is less contractive;
therefore, the noise is chosen smaller to
avoid that trajectories drift away from
the separatrix. Histograms have been
normalized to have area 1.
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FIG. 7. (a) γ = 0.008 and (b) γ = 0.08. Comparison between fittings to log-
normal distribution of the dominance times histograms in Figs. 4–6 (similar
results for fittings to gamma distribution).

where in the last expression, we have used that the sign of v is
the same as (resp. the opposite of) the sign of h in 
in

− (resp.

in

+).
Now, we are going to compare the map in the variables

(h, θ) given in (20) with equations (25). First, notice that to
obtain the map (20) using the Melnikov integral, we assumed
that at t = 0, the separatrix �+

0 intersects section Jc [see
definition given in (3)], while using the variational equations,
at t = 0, the separatrix intersects the section Jout. Thus, let us
take s = s∗

1 as the time it takes to go from Jout to Jc along
the separatrix �+

0 . Then, we replace M (θ) given in (18) by
M̃ (θ) = M (θ + ωs) in the map (20).

Comparing the map (20) with M̃ (θ) instead of M (θ) with
expressions (25), we have that the following equalities must
be satisfied:

T ∗ = s∗
0 + s∗

1,

αu∗/v∗ = 1,

εμu∗ρ(θ) = M̃ (θ).

(26)

Next, we will show that these equalities are satisfied up to
O(γ , u∗, v∗). The first line can be checked straightforwardly,
and for the second line, since we have that α = 1 + O(γ ) [see
Fig. 8(a)], thus assuming that u∗ = v∗, we have that there is
agreement between both maps up to O(γ ).

The third line must be checked numerically, and since
we have chosen β = 5/4 γ , M̃ is just a trigonometric poly-
nomial in θ , so we need to compare the coefficients of the
function M̃ (θ) with those of ρ(θ). Indeed, ρ(θ) is a func-
tion of the form ρ(θ) = ∑

i Ai cos(ωiθ)+ Bi sin(ωiθ), where
Ai and Bi satisfy Ai = Ci sin(ωiφi) and Bi = Ci cos(ωiφ), with

FIG. 8. For different values of γ and different values of r of the Poincaré
section, we show (a) the coefficient α in (16) computed numerically using
variationals around the perturbed separatrix and (b) the difference in L1-norm
(in log-scale) between the function ε−1 M̃ (θ) and the function rμρ(θ) [see
expression (26)].

φi = 1/ωi arctan(Ai/Bi). Thus, we can write

ρ(θ) =
n∑

i=1

Ci sin(θ + ωiφi),

where Ci = Ai/ sin(ωiφi), and clearly, both functions ρ(θ)
and M̃ (θ) = M (θ + ωs) given in (18) have the same harmon-
ics if φi = s for all i. This is true when γ = 0 (results not
shown) and for this case coefficients ofμu∗ρ(θ) and ε−1M̃ (θ)

coincide up to an error which is O(r). In Fig. 8(b), we show
the comparison between both functions using the L1-norm for
different values of γ and r. Clearly, the error grows with γ
and r.

III. HETEROCLINIC NETWORK MODEL FOR
BINOCULAR RIVALRY (HBR MODEL)

In this section, we want to apply the technique of the sep-
aratrix map explored in Sec. II for the Duffing equation to
study models of bistable perception. We will consider a model
of a specific phenomenon of bistable perception, namely,
binocular rivalry. In binocular rivalry, two different images
are presented to the two eyes simultaneously, and perception
alternates between these two images.25 For this purpose, we
consider the model proposed by Ashwin and Lavric in Ref. 8
that we will refer to as HBR model:⎧⎨

⎩
ṗ = h(p)+ x2(1 − p)+ y2(−1 − p),
ẋ = f (p, x, y)+ Ixx + εηx,
ẏ = g(p, x, y)+ Iyy + εηy,

(27)

where h(p) = −p(p − 1)(p + 1), f (p, x, y) = [(0.5 − p)(p +
1)− x2 − y2]x, and g(p, x, y) = f (−p, y, x). The variable p
represents the activity in the “arbitration” component, where
p = 1 (p = −1, respectively) represents perception of the left
(resp., right) eye stimulus, and x and y represent the activity
pattern associated with stimulus to the left and to the right eye,
respectively. The quantities Ix, Iy ≥ 0 represent external inputs
to the system for x and y, respectively.

The model has three equilibria for ε = 0, namely,
(p, x, y) = (1, 0, 0) which corresponds to the left dominant
(LD) resting state, (p, x, y) = (−1, 0, 0), which corresponds to
the right dominant resting state (RD), and (p, x, y) = (0, 0, 0),
which corresponds to a neutral state. The neutral state is
asymptotically unstable with eigenvalues (1, 0.5 + Ix, 0.5 +
Iy), while the LD and RD states are saddle points with eigen-
values (−2, −1 + Ix, Iy) and (−2, Ix, −1 + Iy), respectively,
for Ix, Iy > 0. For the three equilibria, the associated eigenvec-
tors are the canonical basis. Moreover, x = 0 and y = 0 are
invariant subspaces. The system has two heteroclinic orbits
(by symmetry) �±

LD→RD from the LD to the RD saddle points
lying on the plane x = 0 and two heteroclinic orbits (again by
symmetry) �±

RD→LD from the RD to the LD saddle points lying
on the plane y = 0 [see Fig. 9(a)].

As for the Duffing equation, we are going to consider a
quasiperiodic perturbation representing external input to the
system for x and y, i.e.,

ηx(θ) = ηy(θ) =
n∑

i=1

ai cos(θi), with θ̇ = ω, (28)
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FIG. 9. (a) Saddle points and heteroclinic orbits (27) for Ix = Iy = ε = 0. [(b) and (c)] Views of the 2-D transversal sections used in the Poincaré maps
defined in (30). Each Poincaré section consists of two components, each one denoted with a sign subindex which is omitted here. (b) Positive components
of the Poincaré sections (i.e., for x > 0 and for y > 0), both nearby p = −1 and p = 1. (c) All components of the Poincaré sections nearby p = 1. Recall that

in,out ± = J in,out ± × T

n; see (27). (d) The four Poincaré maps that define the total separatrix map S = TL
+ ◦ TG

− ◦ TL
− ◦ TG

+. From left to right TG
+ : 
out+ →


in− TL
− : 
in− → 
out− TG

− : 
out− → 
in+ TL
+ : 
in+ → 
out+.

where θ = (θ1, . . . , θn) ∈ T
n, ω = (ω1, . . . ,ωn) ∈ R

n, and
ai ∈ R for i = 1, . . . , n.

In order to study the dynamics of system (27) and (28)
close to the heteroclinic cycles, we will compute the separa-
trix map. As for the Duffing equation, in Sec. III A, we will
provide details of the computation of the separatrix map using
variational equations along the heteroclinic cycles for ε = 0
and Ix, Iy > 0. In Sec. III B, we will provide details of the
computation of the separatrix map via Melnikov integrals, for
which this model will be computed numerically.

Finally, we will compare the results with the case of a
noisy perturbation,

ηx = ηy = dW , (29)

where dW is a zero mean Wiener process. We have also
considered ηx = εxdWx and ηy = εydWy, for two zero mean
independent Wiener process dWx and dWy as in Ref. 8, and
numerical simulations (results not shown) show qualitatively
the same features.

A. Derivation of the separatrix map via variational
equations

We consider system (27) with perturbation (28) and
compute the return map using variational equations as in
Sec. II C 1. Here, we have one more state variable, say p,
but the procedure is analogous. First, we define 2-dimensional
sections close to the LD saddle point with p = 1 and to the
RD saddle point with p = −1, both transversal to the flow of

system (27) for ε = 0 [see also Figs. 9(b) and 9(c)]:

Jout+
σ = {(p = 1 + q, x, σy∗)},
J in+
σ = {(p = 1 + q, σx∗, y)},

Jout−
σ = {(p = −1 + q, σx∗, y)},
J in−
σ = {(p = −1 + q, x, σy∗)},

(30)

where σ ∈ {+, −} and x∗, y∗ > 0 are fixed. When considering
the angular variable θ ∈ T

n, we denote by


in±,out±
σ = J in±,out±

σ × T
n (31)

the corresponding sections in the extended phase space.
Notice that for the Duffing equation, we included a vari-

able σ that allows us to distinguish whether the trajectory hits
the section 
out±,in±

+ or 
out±,in±
− . However, since the system

has the symmetry (p, x, y) → (−p, y, x), the information pro-
vided by σ does not affect the results, so we are not going
to include σ to simplify the reading. For the same reason, we
will denote


in±,out± = 

in±,out±
+ ∪
in±,out±

− , (32)

and only consider two heteroclinic connections, namely,
�+

RD→LD and �+
LD→RD, for which we will omit the superindex

from now on.
First, we are going to obtain an approximation of the local

maps TL
± from section 
in± to 
out± using the linearized

dynamics around the saddle points with p = 1 for TL
+ and
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p = −1 for TL
− [see Fig. 9(d)]. Thus, we have

TL
+ : 
in+ −→ 
out+,

(q, y, θ) 	→ (q̄, x̄, θ̄ ),
(33)

where

q̄ = q exp
(−2Ty

)
,

x̄ = x∗ exp
[
(−1 + Ix)Ty

]
,

θ̄ = θ + ωTy,

(34)

with

Ty = 1

Iy
ln

(
y∗

y

)
. (35)

Similarly, the map TL
− : 
in− −→ 
out− is described by

(q̄, ȳ, θ̄ ) = TL
−(q, x, θ)

= [
q exp (−2 Tx) , y∗ exp

[
(−1 + Iy) Tx

]
, θ + ωTx

]
,

(36)

with Tx = 1

Ix
ln

(
x∗

x

)
.

Next, we are going to obtain an approximation of the
global maps TG

± from sections 
out± to 
in∓ [see Fig. 9(d)].
Consider first the global map

TG
+ : 
out+ −→ 
in−,

(q, x, θ) 	→ (q̄, x̄, θ̄ ),
(37)

defined as

TG
+(q, x, θ) = ϕ[τ ∗(1 + q, x, y∗, θ); 1 + q, x, y∗, θ ],

where ϕ is the flow of system (27) and (28) and τ ∗(1 +
q, x, y∗, θ) > 0 is the minimal global time such that ϕ[τ ∗(1 +
q, x, y∗, θ); 1 + q, x, y∗, θ ] ∈ 
in−.

We will obtain an approximation of the global map
by computing the linear dynamics around the separatrix
�LD→RD for Ix, Iy ∈ (0, 1) and ε = 0. Thus, as in Sec. II C 1,
we consider the parameter ε as a variable (ε̇ = 0) and
denote by ϕ̂(t; p, x, y, θ , ε) the flow of the extended system
(27) and (28) adding ε̇ = 0, and T̂+

G the extended global
map. Consider a point of the form (1 + q, x, y∗, θ , ε) = (1 +
qs +�q, xs +�x, y∗, θ s +�θ , ε), where {(1 + qs, xs, y∗)} =
�LD→RD ∩ Jout+ and θ s ∈ T

n. Notice that xs = 0. Its image is
given by

T̂+
G (q, x, y∗, θ , ε) = T̂+

G (q
s, xs, y∗, θ s, 0)

+ DT̂+
G (q

s, xs, y∗, θ s, 0) ·�+ O(�2)

= (q̄s, x̄s, y∗, θ s + ωT ∗, 0)

+ [αq�x + βq�q + ερq(θ
s),αx�x

+ βx�q + ερx(θ
s), 0,�θ + αθ�x

+ βθ�q + ερθ (θ
s), ε] + O(�2)

where � = (�q,�x, 0,�θ , ε), {(−1 + q̄s, x̄s, y∗)} =
�LD→RD ∩ J in−, T ∗ = τ ∗(1 + q̄s, xs, y∗, θ s), which is
independent of θ s when ε = 0. Moreover, analogously to (14)

but taking into account that now there is an extra variable p,
we have the following expression for the coefficients:

αx = ϕ̂x
x − Fx

Fy
ϕ̂y

x , βx = ϕ̂x
p − Fx

Fy
ϕ̂y

p, ρx(θ) = ϕ̂x
ε − Fx

Fy
ϕ̂y
ε ,

αq = ϕ̂p
x − Fp

Fy
ϕ̂y

x , βq = ϕ̂p
p − Fp

Fy
ϕ̂y

p, ρq(θ) = ϕ̂p
ε − Fp

Fy
ϕ̂y
ε ,

αθ = −ω ϕ̂
y
x

Fy
, βθ = −ω ϕ̂

y
p

Fy
, ρθ(θ) = −ω ϕ̂

y
ε

Fy
,

(38)
where Fw and ϕ̂w denote the w-coordinate of the vector field
(27) and the extended flow ϕ̂, respectively, for w = p, x, y.

Therefore, disregarding the terms of O(�2), the global
map (37) has the form below, which is analogous to expres-
sion (15) taking into account that there is an extra variable p
and xs = 0:

q̄ = q̄s + αq (x − xs)+ βq (q − qs)+ ερq(θ),

x̄ = αx(x − xs)+ βx(q − qs)+ ερx(θ),

θ̄ = θ + ωT ∗ + αθ(x − xs)+ βθ(q − qs)+ ερθ (θ).

(39)

Since x − xs, q − qs and ε are assumed to be small, the
contribution of the terms αθ(x − xs), βθ(q − qs), and ερθ is
negligible compared with the finite term ωT ∗. Recall xs = 0.
Moreover, one can see that the terms q̄s and qs are O2(y∗, x∗).
Therefore, considering only the dominant terms, we can write
the global map TG

+ as

q̄ = αqx + βqq + ερq(θ),

x̄ = αxx + βxq + ερx(θ),

θ̄ = θ + ωT ∗.

(40)

The global map

TG
− : 
out− −→ 
in+

(q, y, θ) 	→ (q̄, ȳ, θ̄ )

is the same as (40) because of the symmetry (p, x, y) 	→
(−p, y, x), just replacing x by y and x̄ by ȳ, that is,

q̄ = αqy + βqq + ερq(θ),

ȳ = αxy + βxq + ερx(θ),

θ̄ = θ + ωT ∗.

(41)

We finally define the separatrix map S (as in Sec. II D 1) by
combining the local and global maps described above in the
following way [see Fig. 9(d)]:

S := TL
+ ◦ TG

− ◦ TL
− ◦ TG

+ : 
out+ → 
out+,
(q, x, θ) → (q̂, x̂, θ̂ ).

(42)

For the sake of clarity, we will not provide the explicit global
expression of the map S and work only with the expressions
(34), (36), (40), and (41).

We conclude this section with an important remark. For
this particular model, αq ≈ 0, βq ≈ 0, αθ ≈ 0, and βx ≈ 0
in expressions (40) and (41) (see Sec. III C). Therefore, by
looking at these expressions and the ones for the local maps
in (34)–(36), it is clear that the dynamics of the variable q
decouples from the rest of the variables. Therefore, (42) will
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FIG. 10. Maximal Lyapunov exponent (computed using MEGNO) for the orbits of the separatrix map (42) [using the reduced version (48) of the global map]
for the HBR model with initial conditions on the phase space (x, θ) (θi = θ , for i = 1, 2, 3) and parameters Ix = Iy = 0.1, ε = 0.001, and r = 0.1. The number
of frequencies in the perturbation is (a) 1 frequency, (b) 2 frequencies, and (c) 3 frequencies.

be essentially a 2-dimensional map, since we can omit the
dynamics for q (see also Ref. 8).

B. Derivation of the separatrix map via Melnikov
integrals (semi-analytical derivation)

We can also obtain the separatrix map via Mel-
nikov integrals, as done in the study of the Duff-
ing equation; see Sec. II C 2. In the case of sys-
tem (27) with Ix = Iy = ε = 0, we can take advantage
of the knowledge of the heteroclinic connections given
by �LD→RD = {hLR = 0} ∩ {x = 0} and �RD→LD = {hRL =
0} ∩ {y = 0}, where hLR := p2 + 2 y2 − 1 and hRL := p2 +
2 x2 − 1. Let us denote the respective time-parameterizations
by {[p0(s), 0, y0(s)], s ∈ R}, where lims→∓∞ p0(s) = ±1 and
lims→∓∞ y0(s) = 0, and {[p0(−s), x0(s), 0], s ∈ R}, where
lims→∓∞ x0(s) = 0. More specifically, p0(s) = ξ

(
1 + ξ 2

)−1/2

and x0(s) = y0(s) = [
2(1 + ξ 2)

]−1/2
, where ξ = ξ(s) is

implicitly given by s = ξ
√
ξ 2 + 1 + arcsinh(ξ)− ξ 2. The

variables hLR and hRL play an analogous role to the Hamil-
tonian variable h used in Sec. II C 2.

We use the Poincaré sections already defined in (31).
For the sections 
out+ and 
in−, we will consider the set
of variables (hLR, x, θ), while for the sections 
in+ and

out−, we will consider the set of variables (hRL, y, θ). As in
Sec. III A, the separatrix map is composed by the concatena-
tion of the four Poincaré maps illustrated in Fig. 9(d), that is,
S = TL

+ ◦ TG
− ◦ TL

− ◦ TG
+.

The local maps are defined as in (33), and we only need
to rewrite them in the new variables. For instance,

TL
+ : 
in+ → 
out+,

(hRL, y, θ) 	→ (h̄LR, x̄, θ̄ ),

where

h̄LR =
(

hRL − 2x∗2
)
ψ2 + 2y∗2

+ 2ψ(1 − ψ)
(
−1 +

√
1 + hRL − 2x∗2

)
,

x̄ = x∗ exp
[
(−1 + Ix)Ty

]
,

θ̄ = θ + ωTy,

where the time Ty is defined in (35) and ψ := exp
(−2 Ty

)
.

The map TL
− : 
in− −→ 
out− is obtained in a similar way

and will be described as (h̄RL, ȳ, θ̄ ) = TL
−(hLR, x, θ).

To compute the global maps

TG
+ : 
out+ → 
in−,

(hLR, x, θ) 	→ (h̄LR, x̄, θ̄ ),

TG
− : 
out− → 
in+,

(hRL, y, θ) 	→ (h̄RL, ȳ, θ̄ ),

we use a different strategy. For instance, to obtain an expres-
sion for TG

+ up to the first order in terms of the perturbation
parameters Ix, Iy, and ε (similar expressions can be obtained
for TG

−), we remark that hLR = x = 0 (the heteroclinic con-
nection �LD→RD) is invariant for the flow of system (27)
and (28) when Ix = Iy = ε = 0. Therefore, hLR and x satisfy
differential equations that can be written as(

ḣLR

ẋ

)
=

(
a b
0 c

) (
hLR

x

)
+

(
m
n

)
, (43)

where m, n vanish when Ix = Iy = ε = 0. More specifically,
a, b, c, m, n are given by

a = a(p, x, y) := −2(p2 + x2 + y2),

b = b(p, x) := −2x2(1 − p),

c = c(p, x, y) := (0.5 − p)(p + 1)− x2 − y2,

m = mI(y) Iy + mε(θ)ε := (4 y2) Iy + [4ηy(θ)y]ε,

n = nI(x) Ix + nε(θ)ε := x Ix + ηx(θ)ε.

Note that if we approximate system (43) by evaluating the
functions a, b, c, m, and n on �LD→RD, that is, with p = p0(s),
x = 0, y = y0(s), then (43) becomes an uncoupled system of
linear ordinary differential equations in hLR and x(

ḣLR

ẋ

)
=

(
a0(s) 0

0 c0(s)

)(
hLR

x

)
+

(
m0(s)
n0(s)

)
, (44)

where a0(s) = −2[p0(s)2 + y0(s)2], m0(s) = [4y0(s)2]Iy +
[4ηy(θ + ω s)y]ε, c0(s) = [0.5 − p0(s)][p0(s)+ 1] − y0(s)2,
and n0(s) = ηx(θ + ω s)ε.

We introduce τ and τ̄ such that [p0(τ ), 0, y0(τ )] ∈
Jout+ and [p0(τ̄ ), 0, y0(τ̄ )] ∈ J in− and set hLR = hLR(τ ), h̄LR =
hLR(τ̄ ), x = x(τ ), and x̄ = x(τ̄ ). Then, we can solve the two
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FIG. 11. [(a)–(c)] Dominance times histograms computed using the sepa-
ratrix map (42) with a quasiperiodic perturbation of (a) 1 frequency, (b) 2
frequencies and (c) 3 frequencies (28) and ε = 10−3 and Ix = Iy = 0.1. We
show time to return to the section p = 0 by concatenating one local map and
one global map. We used 200 000 iterates. Initial condition is x = −0.1, θi =
0. (d) Dominance times for system (27) with noise (29) with ε = 10−3 and
Ix = Iy = 0.1. We show time to return to the Poincaré section p = 0 by inte-
grating the full system (27) (notice that this is equivalent to concatenate one
local map and one global map when we consider symmetry in the system).
We used 2000 iterates. For all histograms, we show fittings to gamma (green)
and log-normal (red) distributions (fittings not distinguishable). Histograms
have been normalized to have area 1.

uncoupled differential equations (44) and obtain an expres-
sion for the Poincaré map TG

+ up to order one in terms of
the perturbation parameters Ix, Iy, and ε, which can be seen
as analogous to the Melnikov integrals used in (17) for the
Duffing equation. More precisely, the map has the form

h̄LR = BhhLR + εPh(θ)+�I Iy,

x̄ = Axx + εPx(θ),

θ̄ = θ + ω(τ̄ − τ),

(45)

where

Bh = exp

[∫ τ̄

τ

a0(s)ds

]
,

Ph(θ) =
∫ τ̄

τ

4y0(t)ηy(θ + ωt) exp

[
−

∫ t

τ

a0(s)ds

]
dt,

�I =
∫ τ̄

τ

4y2
0(t) exp

[
−

∫ t

τ

a0(s)ds

]
dt,

Ax = exp

[∫ τ̄

τ

c0(s)ds

]
,

Px(θ) =
∫ τ̄

τ

ηx(θ + ω t) exp

[
−

∫ t

τ

c0(s)ds

]
dt.

(46)

The expression (45) and (46) provides a theoretical frame-
work to compute an approximation of the global map TG

+ for
Ix, Iy, and ε small enough, but the cumbersome parameteriza-
tion of �LD→RD makes a numerical resolution more advisable
(see Sec. III C).

C. Numerical computation

In this section, we show the numerical computations
of the separatrix map for the HBR model with perturba-
tion (28) and the same frequencies as in Sec. II E, that
is, ω = (ω1,ω2,ω3) = [1, (

√
5 − 1)/2,

√
769 − 27]. More-

over, we choose sections 
out±,in± with x∗ = y∗ = r [see
definition (30) for the sections] and r = 0.1 (see Appendix
B for a justification for this choice). Moreover, we consider
inputs I = Ix = Iy = 0.1 as in Ref. 8.

For these parameter values, we have computed the global
map (39) obtained using variational equations. We have also
computed the global map (45) using the alternative method
based on Melnikov integrals, and the comparison between
both methods is discussed in Sec. III C 1. For the rest of
the section, we focus on the map computed using variational
equations, since it is applicable to a wider parametric range of
I values.

For the specific choice of the parameters described above,
we compute numerically the coefficients of the map (39) using
the expressions in (38), and we obtain

q̄ = 0.005494470100 + ερq(θ),

x̄ = 0.0000123595x + ερx(θ),

θ̄ = θ + 19.2385452050ω

+ 7.1811476867(q + 0.0091291201)+ ερθ (θ),

(47)

where

ρq(θ) = a1[−0.0830186087 cos(θ1)− 0.0388801779 sin(θ1)]

+ a2[−0.0355217259 cos(θ2)− 0.1058303244 sin(θ2)]

+ a3[−0.0708199918 cos(θ3)+ 0.0786695423 sin(θ3)],

ρx(θ) = a1[−0.4340559240 cos(θ1)+ 0.7770758314 sin(θ1)]

+ a2[−2.9264485016 cos(θ2)+ 1.8586408166 sin(θ2)]

+ a3[1.9947756545 cos(θ3)+ 1.5403924072 sin(θ3)],

and

ρθ (θ) = a1[−3.9499622400 cos(θ1)+ 97.4619562829 sin(θ1)]

+ a2[−28.9752119958 cos(θ2)+ 158.9382104783 sin(θ2)]

+ a3[−13.2998112505 cos(θ3)+ 123.3597165763 sin(θ3)].

Notice that in expression (47), we have αq = βq = βx =
αθ = 0. Its reduced version (40) reads out as

q̄ = ερq(θ),

x̄ = 0.0000123595x + ερx(θ),

θ̄ = θ + 19.2385452050ω.

(48)

The local maps are obtained explicitly according to the for-
mulas in (34)–(36). Thus, we consider the separatrix map
S defined in (42) using the specific parameters computed
in (48) for the reduced version of the global map. Next,
we are going to explore the dynamics of this map (omit-
ting the dynamics for q which decouples from the other
two variables) for ε = 0.001 as in Ref. 8 and three different
perturbations: a periodic perturbation (a1 = 1, a2 = 0, a3 =
0), a quasiperiodic perturbation with 2 frequencies (a1 = 1,
a2 = 1, a3 = 0) and a quasiperiodic perturbation with 3 fre-
quencies (a1 = 1, a2 = 1, a3 = 1).
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FIG. 12. Comparison between fittings to log-normal distribution of the dom-
inance times histograms in Fig. 11 (similar results for fittings to gamma
distribution).

To explore the dynamics for each map, we consider a grid
of initial conditions on the plane (x, θ), where all the compo-
nents of the vector θ take the same value θ1 = θ2 = θ3, and we
compute for each corresponding orbit the maximal Lyapunov
exponent using the MEGNO algorithm. Results are shown in
Fig. 10. We observe that, independently of the initial condi-
tions, all the orbits show chaotic behavior (positive Lyapunov
exponent) for the three maps (1, 2, or 3 frequencies).

Moreover, we explored the distribution of dominance
times Tdom defined as the time difference between impacts on
the sections 
out+ and 
out−, i.e., Tdom = (θ̃i − θi)/ωi, where
θ̃i is the projection onto the θi component of TL ◦ TG. Notice
that Tdom is independent of the coordinate i. The dominance
times provide an approximation of the time spent near the
vicinity of the saddle points p = 1 (corresponding to the LD
state) and p = −1 (corresponding to the RD state). Notice
that this is equivalent to consider the time difference between
impacts on the section 
c corresponding to p = 0. The his-
tograms of Tdom for 1, 2, and 3 frequencies are shown in
Figs. 11(a)–11(c), respectively. We compare these histograms
with those obtained with a noisy perturbation (27) and (28)
[Fig. 11(d)]. We fit the histograms to gamma and log-normal
distributions (see Appendix C). Notice that differences are not
noticeable. In Fig. 12, we show the fittings altogether. We
observe that as the number of frequencies in the perturba-
tion increases, the histograms of the dominance durations shift
leftwards and they become more similar to the ones obtained
with noise.

1. Comparison between separatrix maps for the HBR
model

We have performed numerical simulations and com-
puted the coefficients in (46) for x∗ = y∗ = r = 0.1 and the
same three frequencies as before, that is, ω = (ω1,ω2,ω3) =
[1, (

√
5 − 1)/2,

√
769 − 27], which lead to

Bh = 0,

Ph(θ) = a1(−0.2774816480 cos θ1 − 0.0581912473 sin θ1)

+ a2(0.1756420310 cos θ2 − 0.3011001793 sin θ2)

+ a3(0.3250998384 cos θ3 + 0.0519822050 sin θ3),

FIG. 13. For different values of I = Ix = Iy, we show (a) the coefficient αx

in (40) computed numerically using variational equations along the hetero-
clinic connection to compare with the coefficient Ax = 0 in (49) and (b) the
difference in L1-norm between the function ρx(θ) in (40) and the function
Px(θ) in (49).

�I = 0.1147989903,

Ax = 0,

Px(θ) = a1(0.0490168560 cos θ1 − 0.8643742388 sin θ1)

+ a2(2.9257472656 cos θ2 + 0.5387775767 sin θ2)

+ a3(0.7848263649 cos θ3 + 2.0413493194 sin θ3).
(49)

We have checked that the global map (40) computed using
variational equations coincides with the map (45) with the val-
ues given in (49) when Ix, Iy are zero, and it remains close as
Ix and Iy increase. To illustrate this, we show in Fig. 13 the
comparison between the coefficient αx in (40) and Ax = 0 in
(49) and between the function ρx(θ) in (40) and Px(θ) in (49)
as a function of I = Ix = Iy.

IV. DISCUSSION

We have constructed the separatrix map for two differ-
ent systems, the Duffing equation (see Sec. II D) and the
3-dimensional HBR model introduced in Ref. 8 (see Secs. III
A and III B), both subject to periodic and, more relevantly for
the purpose of this study, quasiperiodic perturbations with at
most 3 non-resonant frequencies. The separatrix map asso-
ciated with a Poincaré section constitutes a powerful tool
to express in a simplified way the dynamics around homo-
clinic and heteroclinic trajectories of dynamical systems. The
ideas presented herein are extendable to more frequencies and
larger networks.

We have obtained the technical results using two strate-
gies: a Melnikov approach, valid only for small perturbations
but providing analytical descriptions, and variational equa-
tions, based on analytico-numerical integration. We have
compared both of them and checked its coincidence in the
region where it is expected to be fulfilled.

For the Duffing equation, we have first analyzed the
Lyapunov exponents for all the initial conditions. When per-
turbing with quasiperiodic perturbations with two or three
non-resonant frequencies, we generically obtain positive Lya-
punov exponents, thus indicating chaotic behavior. We have
then explored the distribution of the dominance times Tdom

between impacts on Poincaré sections, whose histograms
show a log-normal or gamma distribution. The fitting quality
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obtained is comparable to that obtained from noisy perturba-
tions of equivalent strength.

The results obtained for the Duffing equation persist for
the HBR model. Remarkably, as for the Duffing equation,
from the separatrix map, we also obtain a good agreement
with gamma distributions when perturbing with two and three
non-resonant frequencies. For this case, we have developed
a method based on Melnikov integrals for non-Hamiltonian
systems that have “action-like” variables vanishing at the het-
eroclinic connections. This Melnikov approach, as opposed
to the case for the Duffing equation, requires the numeri-
cal computation of the integrals because of the cumbersome
parameterization of the non-perturbed heteroclinic orbits. The
resulting discrete model can be thought of as a new model
for bistable perception, much easier to use than the full model
expressed in terms of differential equations. Altogether, the
methodology that we propose provides in both cases an
alternative discrete model (a map) which avoids numerically
unstable computations. More precisely, time-continuous mod-
els require the numerical integration close to saddle points,
while the separatrix maps resolves this issue by using the
linear approximation around the saddles. More refined maps
could be obtained by substituting the local maps by higher
order approximations (normal forms).

From a modeling point of view, we have proved that
important features attributed to psychophysical experiments
of bistable perception, namely, the gamma distribution of
dominance times, cannot only be reproduced by noisy per-
turbations but also by quasiperiodic perturbations with two
or more non-resonant frequencies. This fact was known for
noisy perturbations but not for deterministic ones.8,33,34 It is
worth noticing that the signal of a noisy perturbation presents
a continuous spectrum, and so, our result implies that the same
output distribution can be achieved by perturbing the system
with only few frequencies. One could argue that for finite
time simulations, as, for instance, those in Ref. 8, the spec-
trum is less richer than the theoretical prediction for infinite
time, but still the support of the spectrum in the input distri-
butions decays drastically in size when jumping from noisy to
quasiperiodic perturbations.

We would also like to draw the attention to the question
of what the noise is actually representing, since models in
the literature are not precise enough about the source of the
stochastic nature of bistable perception. It is believed that per-
ceptual switches are spontaneous and stochastic events (for
instance, a priorities) which cannot be eliminated by inten-
tional efforts, and it has been largely emphasized the relative
role of noise versus adaptation27,33, but, as far as we know,
there are no solid arguments that sustain that they must be
forcedly spontaneous and purely stochastic. The models usu-
ally contain two main variables that represent the ensembles
of neurons more directly related to the percepts (for instance,
the left and right eyes in binocular rivalry, the most well-
known phenomenon of bistable perception). Adding noise
to the model, on the other hand, entails the assumption that
this basic biperceptual system is receiving inputs from a con-
tinuous spectrum. However, electroencephalography (EEG)
studies (see, for instance, Refs. 17 and 16) suggest a prevalent
role of gamma-band frequencies. More precisely, transient

gamma-band synchrony in localized recurrent prefrontal and
parietal brain areas (responsible for executive functions) have
been reported to precede switching between percepts in binoc-
ular rivalry. These findings make plausible the conjecture that
a few number of frequencies in the input sources could be
sufficient to account for the statistics of perceptual switches.

This perspective of bistable perception using maps brings
up new possibilities to investigate this phenomenon which
are beyond the scope of this paper, for instance, studying in
depth the dynamics of these maps or its fitting to experimental
data. Here, we give a first step in this direction by comput-
ing the Lyapunov exponents and certifying the compatibility
with the obtained gamma distributions. As a future work, we
plan to use the separatrix map models to fit other experimental
(psychophysical) data.

We finish by pointing out that our results extend naturally
to other problems modeled by means of heteroclinic networks
already mentioned in the Introduction like decision-making,
memory-retrieval, central patterns generators, or ecological
models.
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APPENDIX A: VARIATIONAL EQUATIONS

Consider the system of the first variational equations
along the separatrix � for the extended system, consisting
of system (7) with the extra equation ε̇ = 0, as introduced in
Sec. II C 1, given by

d

dt
Dwϕ̂(t; w) = A(t)Dwϕ̂(t; w), Dwϕ̂(0; w) = Idn+3,

where

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Fu

∂u

∂Fu

∂v
0

∂Fu

∂ε
∂Fv

∂u

∂Fv

∂v
0

∂Fv

∂ε

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

|ϕ̂(t;ws)

,

with Fu, Fv given in (7), ϕ̂ is the flow of the extended system,
and ws = (us, v∗, θ s, 0) with (us, v∗) = {� ∩ Jout}.

Let us denote ϕ̂w the derivative with respect to w and ϕ̂w

the coordinate w, for w = u, v, θ , ε. Since

˙̂ϕθu,v,θ ,ε = 0, then ϕ̂θu,v,ε = 0, ϕ̂θθ = 1,

https://dynamicalsystems.upc.edu/en/computing/
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FIG. 14. Justification for the choice of
r. (a) Schematic representation of the
two compared times: global map (left)
and concatenation of three maps (right).
On trajectories shown in blue, the time
is computed using global maps, while
on trajectories shown in red, the time
is computed using local approximations.
[(b)–(d)] Function ET (r) showing the
difference between the time from section

out

0.001 to 
in
0.001 computed using a global

map or a combination of local and global
maps involving r for (b) the Duffing
equation with γ = 0.008, (c) the Duffing
equation with γ = 0.08, and (d) the HBR
model [see Eq. (B1) and Appendix B for
more details].

and since

˙̂ϕεu,v,θ ,ε = 0, then ϕ̂εu,v,θ = 0, ϕ̂εε = 1.

Therefore, we are left with the following equations

˙̂ϕu
u = ∂Fu

∂u
ϕ̂u

u + ∂Fu

∂v
ϕ̂v

u, ˙̂ϕv
u = ∂Fv

∂u
ϕ̂u

u + ∂Fv

∂v
ϕ̂v

u,

˙̂ϕu
v = ∂Fu

∂u
ϕ̂u

v + ∂Fu

∂v
ϕ̂v

v , ˙̂ϕu
v = ∂Fu

∂u
ϕ̂u

v + ∂Fu

∂v
ϕ̂v

v ,

˙̂ϕu
θ = 0, ˙̂ϕv

θ = 0,

˙̂ϕu
ε = ∂Fu

∂u
ϕ̂u
ε + ∂Fu

∂v
ϕ̂v
ε + ∂Fu

∂ε
, ˙̂ϕu

ε = ∂Fu

∂u
ϕ̂u
ε

+∂Fu

∂v
ϕ̂v
ε + ∂Fu

∂ε
.

Notice that only the equations for ϕ̂u
ε and ϕ̂v

ε depend on θ
through the term ∂Fu/∂ε and ∂Fv/∂ε, respectively. Therefore,
we will compute ϕ̂u

ε and ϕ̂v
ε for different initial conditions of

θ s. We use Fourier series to obtain an analytical expression for
ϕ̂u
ε and ϕ̂v

ε as a function of θ .
From the solution of the variational equations, we obtain

the first order approximation of the global map T̂G [see Eq.
(13)]. Indeed, let us take a vector (�u, 0,�θ , ε) onto the
Poincaré section 
out [where v = v∗, see (8)] and compute

αv,αθ , κv, κθ , ρv, ρθ such that
⎛
⎜⎜⎝
ϕ̂u

u ϕ̂u
v 0 ϕ̂u

ε

ϕ̂v
u ϕ̂v

v 0 ϕ̂v
ε

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

|(τ∗;ws)

⎛
⎜⎜⎝
�u
0
�θ

ε

⎞
⎟⎟⎠ +�t

⎛
⎜⎜⎝

Fu

Fv

ω

0

⎞
⎟⎟⎠

|ϕ̂(τ∗;ws)

=

⎛
⎜⎜⎝

0
αv�u + κv�θ + ρv(θ)ε

αθ�u + κθ�θ + ρθ(θ)ε

ε

⎞
⎟⎟⎠ ,

where τ ∗ = τ ∗(ws) is such that ϕ̂u[τ ∗(ws); ws] = u∗. From
the first coordinate, we obtain

�t = − ϕ̂
u
u�u + ϕ̂u

ε�ε

Fu
,

and therefore,

αv = ϕ̂v
u − Fv

Fu
ϕ̂u

u , κv = 0, ρv(θ) = ϕ̂v
ε − Fv

Fu
ϕ̂u
ε ,

αθ = −ω ϕ̂
u
u

Fu
, κθ = 1, ρθ(θ) = −ω ϕ̂

u
ε

Fu
,

(A1)

obtaining the formulas that are given in (13) and (14).

TABLE I. Parameters of the gamma and log-normal distributions obtained from the fitting of the dominance times histograms and parameters of the normal
distribution obtained from the fitting of the impact histograms shown in Figs. 4, 5, and 6 for simulations of the separatrix map (SM) with 2 and 3 frequencies
and the system with noise corresponding to the Duffing equation.

Gamma Log-normal Normal

Model Shape (a) Scale (λ) σ μ (scale = eμ) μ σ

γ = 0.008 SM 2 freq 105.584 0.08686 0.09766 0.96084 0.00022 0.02664
SM 3 freq 87.2084 0.09990 0.10748 0.93821 −0.00030 0.04286

Noise 84.2724 0.10647 0.10938 0.95094 −0.00073 0.03466
γ = 0.08 SM 2 freq 126.606 0.07405 0.08922 0.97069 0.00026 0.01996

SM 3 freq 98.6673 0.09110 0.10105 0.95199 0.00026 0.03072
Noise 95.3895 0.09917 0.10273 0.97411 −0.00093 0.01932
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TABLE II. Parameters of the gamma and log-normal distributions obtained
from the fitting of the dominance times histograms shown in Fig. 11 for simu-
lations of the separatrix map (SM) with 1, 2, and 3 frequencies and the system
with noise corresponding to the HBR model.

Gamma Log-normal

Shape (a) Scale (λ) σ μ (scale = eμ)

SM 1 freq 167.492 0.42598 0.07735 4.26527
SM 2 freq 87.1589 0.65399 0.10765 4.03872
SM 3 freq 55.9174 1.00719 0.13446 4.02414
Noise 38.0614 1.49805 0.16332 4.03324

APPENDIX B: CHOICE OF THE POINCARÉ SECTIONS

In both examples, the Duffing equation and the HBR
model, we have chosen sections 
in and 
out located at a
distance r = 0.1 from the saddle points. This choice is a
compromise between avoiding long computations along the
separatrices, which requires r to be as large as possible, and
maintaining the validity of the approximation of the local
dynamics by the linear map, which requires r to be as small as
possible. To assess this balance, we considered fixed sections
at a very small distance (r0) to the saddle, and, for r > r0, we
evaluated the time error induced by the fact of considering the
approximation of the local dynamics from section r0 to section
r instead of considering the global map. More precisely, for
the Duffing equation (for the HBR model, the procedure is
similar), we compare the global time from section v = r0 to
u = r0 (denoted by T r0

gl ) along the separatrix with the con-
catenation of three times [see also Fig. 14(a)]: (1) the time
T r0→r

loc to go from section v = r0 to section v = r > r0 com-
puted using the local approximation [T r0→r

loc = 1/λ+ ln(r/r0)]
plus (2) the global time (T r

gl) along the separatrix to go from
section v = r to u = r plus (3) the time T r→r0

loc to go from
section u = r > r0 to section u = r0 computed using the local
approximation [T r→r0

loc = 1/λ− ln(r0/r)]. That is, we compute
the error function

ET (r) = |T r0
gl − (T r0→r

loc + T r
gl + T r→r0

loc )|. (B1)

In Figs. 14(b) and 14(c), we show the function ET (r) with
r0 = 0.001 and 0.001 ≤ r ≤ 0.5 for γ = 0.008 and γ = 0.08,
respectively. By looking at these plots, it is clear that r = 0.1
is a good compromise.

An analogous computation for the HBR model gives the
results shown in Fig. 14(d). Again, it is clear that r = 0.1 is a
good compromise also for the HBR model.

APPENDIX C: FITTING OF THE HISTOGRAMS

The distributions of dominance times in Figs. 4, 5, 6 (top),
and 11 (top) have been fitted to log-normal and gamma distri-
butions. The probability density function for the log-normal
distribution is

fln(x) = 1

σx
√

2π
exp

(
− [ln(x)− μ]2

2σ 2

)
,

where μ is the mean and σ is the standard deviation of the
normally distributed logarithm of the variable. The probabil-
ity density function for the gamma distribution with a shape

parameter a and a scale parameter λ is

fg(x) = 1

�(a)λa
xa−1 exp(−x/λ).

Maximum likelihood fits of the time distributions to a log-
normal and gamma distribution give the parameter values
indicated in Table I for the Duffing equation and Table II for
the HBR model.

The distributions of impacts on sections
out in Figs. 4, 5,
and 6 (bottom) have been fitted to a normal distribution. The
probability density function for the normal distribution is

fn(x) = 1

σ
√

2π
exp

(
− (x − μ)2

2σ 2

)
,

where μ is the mean and σ is the standard deviation. The
parameter values obtained from the maximum likelihood fits
to the normal distribution for the Duffing equation are given
in Table I.
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