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Abstract. Some neurons in the nervous system do not show repetitive fir-
ing for steady currents. For time-varying inputs, they fire once if the input
rise is fast enough. This property of phasic firing is known as Type III ex-
citability. Type III excitability has been observed in neurons in the auditory
brainstem (MSO), which show strong phase-locking and accurate coincidence
detection. In this paper, we consider a Hodgkin-Huxley type model (RM03)
that is widely-used for phasic MSO neurons and we compare it with a mod-
ification of it, showing tonic behavior. We provide insight into the temporal
processing of these neuron models by means of developing and analyzing two
reduced models that reproduce qualitatively the properties of the exemplar
ones. The geometric and mathematical analysis of the reduced models al-
lows us to detect and quantify relevant features for the temporal computation
such as nearness to threshold and a temporal integration window. Our re-
sults underscore the importance of Type III excitability for precise coincidence
detection.

1. Introduction. The nonlinear dynamics of neuron models and neurons have
intrigued us for decades. The mathematical characterization of firing properties is
highly developed although even for some simple exemplar models we are uncovering
new questions and behaviors (see [16]). Here, we recall Hodgkin’s classification
in 1948 of repetitive firing behaviors (3 classes) based on accumulated empirical
evidence for steady inputs to various axon types [15]. We will focus on some features
of Class 3 - systems that do not fire repetitively and contrast their potential for
exquisite temporal precision with that of systems that can fire repetitively.

In 1979, Rinzel and Ermentrout provided the mathematical framework that re-
lates to two of the three classes [16, 30]. They defined Types I and II, in analogy
to Hodgkin’s Classes I and II, in terms of different bifurcations from stable steady
state to periodic behavior as the stimulus parameter was varied. For Type I, the
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transition involves the appearance of a stable limit cycle from a saddle-node on an
invariant circle. For Type II, the steady state loses stability and repetitive firing
emerges from a Hopf bifurcation. The mathematical classifications are local, based
on the onset of repetitive activity, and were developed for point neuron models. The
Hodgkin-Huxley (HH) model is Type II (see, eg, [16, 28]) while the Wang-Buzsaki
model [40], often used for cortical neurons, is Type I. Rinzel and Ermentrout [30]
demonstrated with a two-variable HH-like model, adapted from Morris and Lecar’s
formulation for barnacle muscle electrical activity, that the model can be tuned
with different parameter settings to be Type I or Type II. Some cortical neurons
are reported by Tateno et al [39] to fall into the classification scheme of Types I
and II.

Although many neurons and neuron models that have stable resting states will
fire repetitively for adequate steady input, some neurons and models do not fire
repetitively for any steady or slowly varying inputs. They fire only one or a few
spikes at the onset of a steady stimulus. This behavior is compatible with Hodgkin’s
Class III and has been referred to as Type III excitability [5, 16, 24]. Such “phasic”
firing (vs “tonic” or repetitive firing) underlies the functional description of these
units as differentiators or slope-detectors. They can encode the occurence and
time of rapid change in the stimulus. Some examples include: auditory brain stem
neurons that are involved with precise timing computations [4, 33], some spinal cord
neurons [23, 24], and the squid giant axon [5].

Yes, healthy squid giant axon is typically phasic. It fires one spike, maybe a few
spikes, at the onset of a current step applied to an excised axon [5]. When intact,
the axon delivers a brief response that triggers the squid’s escape behavior, sudden
contraction of the mantle muscle (see the video “The squid and its giant nerve fiber”
filmed in 1970 at Plymouth Marine Laboratory (England), www.science.smith.edu
/departments/NeuroSci/courses/bio330/squid.html) - with no apparent need
for repetitive firing. Thus, the standard HH model, which is Type II [28], is at odds
with such experimental observations. On the other hand, the squid axon when
bathed in lowered calcium seawater can fire repetitively and has been useful as a
model for Type II behavior [14].

What underlies Type III excitability? The slope sensitivity relies, speaking gen-
erally and qualitatively, on a dynamic subthreshold negative feedback mechanism.
In order for a phasic neuron to fire, the input and the rise in voltage must be fast
enough so that little negative feedback is recruited. For slow inputs the negative
feedback keeps pace with the voltage and prevents the neuron from reaching spike
threshold. Hence the time scale (fast enough but not too fast) and voltage sen-
sitivity (recruitable in the subthreshold regime) of such negative feedback are key
biophysical factors.

Among top contenders for the “definitive Type III neuron” for temporal precision
are the brain stem neurons (in the medial superior olive, MSO) that compute the
interaural time difference for sound localization. MSO neurons are highly specialized
for this computation. They are endowed with fast membrane time constants and
synapses with fast dynamics and they perform coincidence detection (for inputs
from the two ears) to a resolution of tens of microseconds [1, 13]. While cortical
neurons may have integration and excitatory synaptic time scales of tens and a few
milliseconds, respectively, the corresponding time scales for MSO neurons are sub-
milliseconds. But this speed alone is not enough to explain the temporal precision
of sound localization. MSO neurons exhibit one or more dynamic subthreshold
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negative feedback mechanisms [3, 19, 25, 37, 38]. The negative feedback’s time
scale is comparable to the neuronal time constant, enabling the feedback to compete
temporally with the voltage rise and to preclude spiking if the rise is just a little
bit too slow. A leading biophysical contributor to the negative feedback and phasic
firing property of some auditory brain stem phasic-firing neurons, including in MSO,
is a potassium current that activates with voltage below the threshold for spike
generation [19, 25, 37]; a widely used model is due to Rothman and Manis, based
on their voltage-clamp data [32]. We will refer to this model as RM03. Interestingly,
the modeling and experimental work of Clay to align the HH-model with the phasic
firing property of squid axons fingers the axon’s potassium current which if shifted
somewhat to activate at lower voltages than originally formulated can convert the
HH model from Type II to Type III [5]. Shifted potassium activation was also used
in [24] to create a subthreshold negative feedback.

In this paper we will highlight some distinctive features of phasic firing in terms
of dynamical systems theory. While using the RM03 model for illustration we
will introduce idealized models that have similar features, thereby demonstrating
generality. As a function of a steady input’s amplitude a Type III neuron model
(in the purest sense), such as the RM03 model, shows no bifurcation to repetitive
activity no matter how large is the amplitude. The RM03 phasic model exhibits
highly precise phase locking and coincidence-detecting properties as compared to
a tonic version of RM03. Here, we pose the coincidence-detection problem as an
idealization of the computation done by MSO neurons. There are two inputs – each
is a half-wave rectified sine-wave, say frequency 100 Hz or so, as if one stimulus is
coming from a pure tone input to each ear and representing the mean excitatory
drive from several nerve fibers that carry spikes activated by the cochlear nerve. We
ask how the firing depends on the phase difference between the two stimuli, ISPD
(Interstimuli Phase Difference). For a noise-free input this leads to the question
of phase-locking posed for a time-shifted but otherwise identical stimulus pair. For
small ISPD the model will fire a single spike per cycle but for ISPD, say +/- 0.5 there
is no firing. When we add noise to represent the small jitter in spike arrival times
we plot firing probability vs ISPD to obtain the model’s tuning curve for ISPD.
The tonic model has poor selectivity compared to the phasic model. The Type III
models, as slope detectors, show a strong preference for firing at the sharply rising
phases of a periodic signal while the tonic model fires in a broad temporal window
near the signal’s peak amplitude. To gain insight into the temporal window for firing
we developed a reduced two-variable version of the eight-variable RM03 model; this
model retains many of the biophysical features of RM03 and semi-quantitatively
agrees with RM03. By using phase plane analysis we characterize the window of
opportunity for firing as the time-varying signal modulates the nullclines and the
effective firing threshold separatrix (even though the resting state is stable for each
value of the stimulus). Finally we study an idealized integrate-and-fire model with a
threshold that depends on time and voltage, rising with voltage in the subthreshold
regime.

2. Results.

2.1. Rothman and Manis model. Rothman andManis [32] developed a Hodgkin-
Huxley-like neuron model that has been widely used for modeling the phasic firing
of cells in the auditory brainstem (see Table I, Type II in [32]). It consists of a
sodium current INa, a high-threshold (IKHT) and a low-threshold (IKLT) potassium
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currents, a hyperpolarization-activated cation current Ih and a leak current Ilk. The
current balance equation is:

Cm

dV

dt
= −INa − IKHT − IKLT − Ih − Ilk + I(t), (1)

where Cm is the membrane capacitance, V is the membrane voltage and I(t) is the
input current. Each ionic current Ii is governed by an activation and/or inactivation
variable, and equation (1) can be written as

Cm

dV

dt
=2[−ḡNam

3h(V − ENa)− ḡKHT(0.85n
2 + 0.15p)(V − EK)

− ḡKLTw
4z(V − EK)− ḡhr(V − Eh)− ḡlk(V − Elk)] + I(t),

(2)

where ḡi and Ei are respectively the maximal conductances and reversal potentials
for the ionic current i = Na, KHT, KLT, h, lk. We use the same parameter values as
in [32], except that maximal conductances and channel gating rates are multiplied
by a factor of 2 and 3, respectively, as in [11], to mimic the brain slices during
whole cell recordings at temperature 32◦C. Membrane capacitance is Cm = 12 pF;
maximal channel conductances are ḡNa = 1000 nS, ḡKHT = 150 nS, ḡKLT = 200 nS,
ḡh = 20 nS and ḡlk = 2 nS and reversal potentials are ENa = 55 mV, EK = −70 mV,
Ēh = −43 mV and Elk = −65 mV.

The dynamics for activation and inactivation variables is described by the fol-
lowing differential equation:

dx

dt
= 3

x∞(V )− x

τx(V )
(3)

where τx is the time constant of the variable x = m,h, n, p, w, z, r and x∞(V ) is the
steady-state value of x at a fixed voltage V . The expressions for x∞(V ) and τx(V )
are obtained experimentally from voltage-clamp responses and are given in [32].

Of particular interest for our problem is the low-threshold potassium current
IKLT which is primarily responsible for the Type III behavior of the neuron. The
IKLT current is partially activated at the resting state (see Fig. 9 in Appendix
A). When the cell is depolarized the steady state w∞ of the activation variable
w also rises (see Fig. 9) and the activation variable approaches this value with a
time constant τw that at rest is comparable to the membrane time constant. If the
membrane potential changes slowly IKLT has enough time to activate adequately
and prevent the generation of a spike. On the contrary, if V changes fast the system
can reach the spike threshold before IKLT current has time to activate. During the
spike, the system can recruit enough IKLT to prevent any further spiking.

In order to emphasize the distinctive features of phasic firing and Type III ex-
citability, we manipulated the model so that it fires tonically for a steady input,
converting it to Type II excitability. We disabled the subthreshold dynamic nega-
tive feedback by freezing the conductance (activation and inactivation variables w
and z) of IKLT to its value at the resting state as in [7]. This manipulation converts
the model from phasic to tonic, keeping the same membrane time constant and
input resistance. Moreover, the maximal sodium conductance ḡNa is increased from
1000 nS to 1500 nS, in order to increase the size of the spikes (amplitude of the
limit cycle) and the range of inputs that generate repetitive firing (range of I for
which a stable limit cycle exists) as in [12].
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Figure 1. Dynamic response properties of the RM03 model. (A)
Bifurcation diagrams of the phasic (left) and tonic (right) RM03
models for a steady current I. Solid lines represent stability and
dashed lines unstability. Black lines represent fixed points and
red lines the maximum and minimum values of periodic orbits.
The inset shows the voltage responses to a 40 ms-duration step
current of different amplitudes (400 pA, 1200 pA, 1800pA for the
phasic model and 200pA and 400pA for the tonic model). (B)
and (C) Responses of the phasic (left) and tonic (right) models
to a half-wave rectified sinusoid input. (B) Time course of the
membrane potential over three periods in response to a half-wave
rectified sinusoid input of frequencies 20 Hz (blue trace) and 100
Hz (red trace) and amplitudes 1200 pA (phasic model) and 400
pA (tonic model) (C) Frequency-response maps of the models for
a half-wave rectified sinusoid input with varying frequency (x-axis)
and amplitude (y-axis). Colors indicate number of spikes per cycle.

2.1.1. Phasic vs tonic behavior. In Fig. 1 we show the responses of the phasic (left
column) and tonic (right column) models to a step current (inset Fig. 1A) and a
half-wave rectified sinusoidal input (B and C).

In response to a step of current (constant for ton < t < toff and zero otherwise),
the phasic RM03 model fires only once (if at all) at the onset of the stimulus and
not thereafter (inset Fig. 1A left). For RM03, the steady state is stable for any
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value of a steady current I (Fig. 1A left). The onset spike is due to transient
dynamics before the system reaches the steady state. This is the so-called Type III
excitability.

In contrast, tonic neurons show repetitive firing when the amplitude of the stim-
ulus is above a certain threshold (inset Fig. 1A right). Indeed, when the cell is
depolarized enough the resting state destabilizes and stable oscillations emerge (see
bifurcation diagram in Fig. 1A right). Since in our model this transition occurs
through a Hopf bifurcation, the system is Type II. Repetitive firing is possible for
moderate values of I, but for I too large the limit cycle disappears through a sub-
critical Hopf bifurcation and the highly-depolarized state becomes stable. This is
known as nerve block.

2.1.2. Slope detectors vs amplitude detectors. For time-varying inputs, tonic and
phasic models respond differently. The contour plots in Fig. 1C show the number
of spikes per cycle in response to a single half-wave rectified sinusoidal input I(t)
with amplitude A and frequency ω,

I(t) = A[sin(2πωt)]+, (4)

where [·]+ = max(·, 0). Since hair cells tend to respond to unidirectional fluctua-
tions, this input idealizes the mean excitatory drive to MSO neurons when a pure
tone is presented to one ear [1]. This description is valid for low frequencies (less
than 1-2 kHz).

For the tonic model the minimal amplitude A for firing is relatively constant
for low frequencies (Fig. 1C right) – around 360 pA, where the Hopf bifurcation
occurs (see bifurcation diagram Fig. 1A right). In contrast, for the phasic model
the minimal amplitude for firing is strongly frequency dependent, rising abruptly
as frequency decreases below 100 Hz (Fig. 1C left). There is no firing for low
frequencies. Indeed, phasic neurons respond to such inputs only if the amplitude
and frequency are high enough (but not too high), that is, when input rises faster
than a certain threshold. For this reason phasic neurons are often called slope
detectors.

Again phasicness is observed in the spiking ratio (spikes per cycle). For low-
frequency inputs, the tonic model fires more than 1 spike per cycle whereas the
phasic model fires only once if at all, even when the amplitude is increased. Fig.
1B shows voltage time courses, responses for two representative frequencies, slow
and moderate.

2.1.3. InterStimulus Phase Difference (ISPD) tuning curves. Next we compare the
ability of tonic and phasic neurons to detect coincident inputs. To do so, we consider
two inputs, each is a half-wave rectified sinusoid representing the mean excitatory
drive originated by a pure tone input at each ear, and we compute the firing rate
probability as a function of the phase difference ∆P between them. We call this
function the InterStimulus Phase Difference (ISPD) tuning curve. The injected
current, allowing for noise to represent the small jitter in input arrival times, takes
the form

I(t) = A([sin(2πωt)]+ + [sin(2πωt+ 2π∆P )]
+) + ση(t), (5)

where η(t) is a white noise process with zero mean and unit variance < η(t)η(t′) >=
δ(t− t′).

Notice that the input shape ranges from a half-wave rectified sinusoid with double
amplitude when both inputs arrive together (∆P = 0) to a double bump with no
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Figure 2. Coincidence detection tuning properties of the RM03
model. (A) Time course of the input signal over one period for
different phase shifts ∆P . (B) Interstimuli Phase Difference tuning
curves for phasic (left) and tonic (right) models. Plots show the
spiking ratio (spikes/cycle) in response to an input current consist-
ing of two half-wave rectified sinusoids with varying phase shift ∆P

for the deterministic case (black curve) and for different levels of
noise (σ = 24 pA, 48 pA, 72 pA, 96 pA corresponding to red, green,
blue and yellow curves respectively). The frequencies for a single
half-wave rectified sinusoid are 100 Hz (top) and 200 Hz (bottom)
and the amplitudes are indicated in each panel. The circled region
in the 200 Hz tonic panel draws attention to a devil’s staircase for
the noise-free tonic model.

pause when they arrive out of phase (∆P = 0.5) (Fig. 2A). For our simulations we
chose a frequency and amplitude for which a single input to the noise-free model
does not cause firing but with both inputs present and in-phase there is one firing
per cycle.

The shape of the ISPD is determined by slope sensitivity in the case of the
phasic model and by amplitude sensitivity for the tonic model. Indeed, Fig. 2B
shows that for the noise-free phasic model there is a sudden drop from 1 to 0 which
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occurs around ∆P = 0.1 for frequency 100 Hz and ∆P = 0.2 for frequency 200 Hz.
These ∆P values correspond to a time difference ∆T between the two inputs of the
order of 1 ms. This critical ∆T decreases moderately over a certain range as the
frequency increases (results not shown).

For the tonic model this drop occurs around ∆P = 0.25 for f = 100 Hz and
A = 200 pA and around ∆P = 1/3 for f = 200 Hz and A = 300 pA. This
corresponds to a signal whose maximal amplitude is around A = 300 pA. Hence, it
is the stimulus amplitude that determines the drop of the ISPD tuning curve.

To illustrate the phasic model’s superior sensitivity for detecting small time dif-
ferences, we focus on the ISPD for a 200 Hz input (Fig. 2). In the deterministic
phasic model the drop in the firing rate (spikes/cycle) from 1 to 0 occurs in less than
50 µs, whereas for the tonic model the same drop occurs when the time difference is
of the order of 500 µs. Notice that the ISPD tuning curve for the tonic model with
a 200 Hz input shows a devil’s staircase over the range where the drop occurs – the
tonic model phase locks with the periodic input with skipping cycles at different
ratios and the simplest rational numbers have the largest steps (see circled region
in Fig. 2). With noisy input, the phasic model still outperforms the tonic model.
For example, for σ = 48 pA, the phasic model’s firing rate drops more than 50 %
(from 0.75 to 0.33 spikes per cycle) in 150 µs, whereas in the tonic model the same
drop occurs in 500 µs.

The ISPD tuning curves show that in the presence of noise the tonic model
has relatively poor selectivity at larger ISPDs. For the phasic model the firing
probability is low in the tuning curve’s tails. However for the tonic model the tails
are high and flat for values of ∆P which are over 1/3. This is understandable, since
for ∆P ∈ [1/3, 0.5] the maximal amplitude of I(t) is constant at the value A, the
maximal amplitude of a single input. Hence, the probability of firing is the same
for all ISPDs over 1/3.

In contrast, the phasic model is more reliable; firing probability decreases as
∆P increases beyond 1/3, even though the rising slope for I(t) remains constant.
An important feature of the input signal plays a role here: the pause duration (the
fraction of the period for which the input signal is zero). Indeed, the pause decreases
linearly from 1/2 when ∆P = 0 to 0 when ∆P = 0.5. During this pause, the IKLT

current that has been recruited during the depolarization is restored to its resting
state value. The shorter the pause the less IKLT current is removed and therefore
the harder it is for the model to elicit a spike. Hence, the firing probability decreases
over ∆P .

This shows that the phasic model is very sensitive to inputs arriving together
whereas the tonic model is far less selective about how these inputs are distributed
along a cycle

2.1.4. Phase locking properties. Neuron models with Type III excitability like RM03
can phase lock with high precision. We characterize the responsiveness by comput-
ing the firing phase and the ability of phasic neurons to phase lock with periodic
inputs. To do so, we computed the firing phase and inter-spike interval (ISI) his-
tograms for different ISPD for tonic and phasic models (see Fig. 3 for a 100 Hz
input).

The firing phase histograms (usually known as period histograms in the experi-
mental literature) show the firing rate probability as a function of the input phase.
ISI histograms show the probability of a spike in a given interval of size ∆t. To
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Figure 3. Precision of phase-locking in the RM03 model for stim-
ulus pair with phase difference ∆P . Phase histograms and inter-
spike interval (ISI) histograms for phasic (left) and tonic (right)
models in response to two half-wave rectified sinusoids at different
phase shifts ∆P with noise σ = 96pA. The frequency of a single
half-wave rectified sinusoid is 100 Hz and the amplitude is 600 pA
(phasic) and 200 pA (tonic). The curves in the phase histogram
plots represent the time course of the input signal over one period.
Phase histograms are normalized and the scale of the vertical axis
is the same for all panels of each model. The scale of the vertical
axis of the ISI histograms is different in each panel due to the large
variation across panels. The numbers in the upper right corner of
the phase histogram panels indicate firing rate (spikes/cycle) (FR)
and vector strength (VS).

compute them we integrated the system for 20,000 cycles and we recorded the phase
of the input signal at the spike times and the time between spikes, respectively.

Both the tonic and the phasic models show phase-locking with the input. How-
ever, discharges are restricted to a narrower range of phases in the phasic model. In
order to measure how well the spike times are phase-locked with the periodic stim-
uli we compute the vector strength (VS), sometimes called “synchronization index”
[13]. To compute the VS one associates to each spike a vector on the unit circle
with a phase angle and computes the mean vector. The VS is given by the length of
the mean vector. Notice that if the phase histogram is a delta-like distribution then
VS=1 (perfect locking), if it is a uniform distribution VS=0 (totally asynchronous).

The phasic model locks with a higher vector strength than does the tonic model
(Fig. 3). The temporal window for firing is smaller in the phasic case. It is
confined to the rising phase of the depolarizing input before IKLT can fully activate
and prevent any further depolarization. In contrast, in the tonic case there is no
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subthreshold current opposing the depolarization and therefore the stronger the
depolarizing current the easier it is to trigger a spike. Hence, there exists a wide
temporal window for firing around the maximum of the depolarizing input.

The tightness of phase-locking for the phasic model can be also observed in the
ISI histograms (Fig. 3). Indeed, the ISIs are more tightly grouped around multiples
of the period in the phasic case whereas in the tonic case there is more dispersion
around them. Thus, even when some cycles are skipped the phasic model still fires
with precision at preferred phase.

2.2. V-U model. To highlight the primary biophysical mechanisms for phasic fir-
ing properties and to facilitate our analysis, we reduced the 8-variable RM03 model
to 2 variables by identifying and approximating some nonessential features for the
model’s excitability and spike generation mechanism. We identified three time
scales: extremely fast, intermediate and slow. The activation gating variable m
for INa activates extremely fast (time scale � 1 ms), so as a first approximation
we set m = m∞(V ). The inactivation gating variable z of IKLT and the activa-
tion gating variable r of Ih, change relatively quite slow (time scales are around
100 ms or more). Since we are not interested in the influence of the continuous
stimuli and z and r barely change for short-time stimuli, we freeze them at their
resting states. The time scales of the membrane potential V , inactivation gating
variable h of INa and activation gating variable w of IKLT are intermediate and
comparable (time scales are around one to a few ms). A significant feature is the
near linear relationship between w and h during a spike as seen in the projection of
the trajectories on the w − h plane (See Fig. 9 in Appendix B). This enables us to
approximate w and h in terms of one variable U : h = (a/b)U and w = a(1 − U).
See Appendix B for more details on this reduction. A similar strategy was used
by Rinzel in [29] to reduce the Hodgkin-Huxley model from four to two variables,
based on FitzHugh’s observation of a near linear relationship between two HH gat-
ing variables [9]. There are another two variables, the activation variables n and p
of IKHT, whose time scales are also intermediate. Since IKHT is only recruited at
high voltage (V > −40 mV), the main effects of IKHT are decreasing the peak and
the width of the spikes, noticeable primarily for short inter-spike intervals (a few
msec). The negligible influence of n and p can be seen by freezing n and p in the
RM03 model. In this condition, the phase locking boundaries corresponding to the
half-wave rectified sinusoid stimuli are barely changed compared with that shown
in Fig. 1C (results not shown). Thus, we neglect the small contribution of n and p
and we freeze them at their resting states.

Our reduced model (V −U model) is given by the following system of differential
equations:

Cm

dV

dt
=2[−gNam∞(V )

3
(a

b
U
)

(V − ENa)− gKLTa
4(1 − U)

4
z0(V − EK)

− gKHT (0.85n0
2 + 0.15p0)(V − EK)− glk(V − Elk)− ghr0(V − Eh)]

+ I(t)

dU

dt
=3

U∞(V )− U

τU (V )
(6)
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The steady-state function U∞ is given by

U∞(V ) =
b[h∞(V ) + b(a− w∞(V ))]

a(1 + b2)
,

where a = 0.9, b = (a− w0)/h0 and τU (V ) = min(τw(V ), τh(V )).
Values for the gating variables, fixed at rest, are w0 = 0.511, h0 = 0.445, r0 =

0.147, z0 = 0.662, n0 = 0.0077, and p0 = 0.0011.

2.2.1. Phasic vs Tonic behavior for the V-U model. The firing behaviors of the V −U
model agree with those of the RM03 model in response to a step current. The V −U
model shows an onset response – only one spike, at the beginning of an adequate
depolarizing current step (Fig. 4A inset). Fig. 4A shows the bifurcation diagram of
the V −U model with a depolarizing current I as a parameter. The steady response
is stationary; the steady state exists and is stable in the entire range of depolarizing

current I. When we freeze the conductance gKLT ( gKLT=gKLTa
4(1− U)

4
z0) of

IKLT at its resting level, the V −U model becomes tonic (Fig. 4A). The bifurcation
diagram for the tonic V − U model (Fig. 4A) shows the range of I for which
the stable limit cycle exists. Notice that the V-U model with gKLT frozen shows
a smaller limit-cycle range of I compared to the RM03 model (Fig. 1A). It is
because the steady state inactivation function h∞ in the V-U model decreases to 0
at a lower voltage value than that of the RM03 model as V increases. Thus, the
sodium current which triggers spikes in the V-U model goes to 0 faster than that
of the RM03 model during depolarization. We further tested this interpretation by
steepening h∞ in the RM03 model, and finding a smaller I range for the stable
limit cycle (not shown). Nevertheless, the V − U model matches RM03 quite well.

2.2.2. Slope detectors vs amplitude detectors. Let us consider the effects of the dy-
namic change in I. The phasic V-U model, as does the RM03 model, exhibits strong
sensitivity to the increasing slope of current inputs rather than to the amplitude.
Fig. 4B shows the responses of the phasic V-U model to a half-wave rectified sinu-
soidal stimulus, equation (4), with different frequencies. With the same amplitude,
the phasic V-U model does not respond to slow frequencies of the input (blue, Fig.
4B), but it fires a single spike at its rising phase for high frequencies in some range
(red, Fig 4B). See also Fig. 5A.

In contrast, the tonic V-U model shows more sensitivity to the amplitude of the
stimulus rather than to the rising speed. The minimal amplitude of the tonic V-U
model for spike generation remains almost the same when frequency varies, whereas
for the phasic model the minimal amplitude varies a lot according to the frequency
value (Fig. 5A left). Moreover, when the input amplitude is within the limit-cycle
range of I, the tonic model may fire multiple spikes for low frequency sinusoidal
inputs (Fig. 4B). The spikes occur near the peak of the sinusoidal stimulus. These
two phenomena are also observed in the RM03 model (Fig. 1).

2.2.3. Phase plane analysis. Since our reduced model has only two variables we
can gain further insight into the phasic properties by means of phase-plane analysis
(Fig. 4C). The V-nullcline and U-nullcline are the curves along which dV/dt = 0
and dU/dt = 0, respectively. The V -nullcline for the V − U model has a cubic-
like shape (black, Fig. 4C), similar to many neuronal models [16, 20, 29]. The
U -nullcline is decreasing sigmoid-like (green, Fig. 4C). Notice that the upper knee
of the V -nullcline in Fig. 4C (tonic case for I=0pA) is clipped. For both the phasic
and tonic models these two nullclines intersect on the left branch of the V -nullcline
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Figure 4. Dynamic response properties and phase plane analy-
sis of the V-U reduction of RM03 model. (A) Bifurcation dia-
grams of the phasic V-U model (left) and the tonic V-U model
with gKLT frozen (right). Stable steady state (black solid) destabi-
lizes at I=287pA when gKLT is frozen. Subcritical Hopf bifurcation
leads to periodic orbits that stabilize for large amplitude and cor-
respond to repetitive firing for I in the range of 287 to 396pA (red
bold line). (B) Responses of the phasic V-U model (left) and the
tonic V-U model (right) to the half-wave rectified sinusoidal inputs.
The frequencies of the half-wave rectified sinusoidal inputs are 100
Hz (red), 50 Hz (blue) in the left panel and 10Hz (blue), 100Hz
(red) in the right panel. (C) phase-plane portraits corresponding
to the same half-wave rectified sinusoidal stimuli as in panel B.

when there is no input, I = 0 pA. This intersection corresponds to the model’s
stable resting state.

For both the tonic model and the phasic model increasing I as a parameter
changes the cubic V -nullcline, shifting it downwards, most notably for the region
around the left knee (Fig. 4C). The U -nullcline does not change with I. Eventually,
for very large I, the V -nullcline becomes monotonic (not shown). However, there
are differences in the phase plane portraits for the two models as I is increased.
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First, the intersection of the phasic model remains on the left branch of the V -
nullcline until it becomes monotonic, whereas for the tonic model, as I increases, the
intersection shifts from the left branch to the middle branch. Since the intersection
is stable if it is on the left branch of the V -nullcline, the steady state of the phasic
V − U model never destabilizes with increasing I. On the contrary, for the tonic
model the steady state destabilizes after it migrates onto the middle branch through
a subcritical Hopf bifurcation (Fig. 4A and C, right); the emergent unstable periodic
orbit connects to a stable limit cycle. This scenario corresponds to the transition
of the tonic V −U system from a stable resting state to repetitive firing (Fig. 4A).
For large I, the stable limit cycle is lost; the V -nullcline becomes monotonic and
the steady state restabilizes, corresponding to nerve block.

Consider now the evolution of the phase plane as I varies according to the half-
wave rectified sinusoidal input (equation (4)) in the tonic case (Fig. 4C). The steady
state moves from the left branch to the middle branch during the rising phase of
the sinusoid. Therefore the model can fire repetitively during a cycle if the stimulus
remains long enough around its peak, in the range that corresponds to having a
middle-branch intersection.

There is also a dynamic effect, primarily during the rising phase of I(t), depending
on how fast the V -nullcline moves compared to the moving phase point (V, U). If
the V -nullcline moves down fast enough to sweep downward through the moving
phase point we see the conditions conducive for generating a spike. Thus there is a
critical minimum rate that defines such a “dynamic criterion”. For the tonic model,
it can play an additional contributing role and induce a spike even before the steady
state moves onto the middle branch. For the phasic model, since the moving steady
state never destabilizes, the dynamic effect is the only mechanism for generating a
spike with a rising stimulus.

We can compare this dynamic effect for the two models more precisely as follows.
Consider first how the V -nullcline changes as I varies. Suppose we fix V to some
value and ask how the corresponding value of U on the V -nullcline changes with
I(t).

For a fixed value of V and t, the value for U on the V -nullcline satisfies the
implicit equation

Iion(V, U)− I(t) = 0,

where

Iion(V, U) = 2[gNam∞(V )
3
(a

b
U
)

(V − ENa) + gKLTa
4(1− U)

4
z0(V − EK)

+ glk(V − Elk) + gKHT (0.85n0
2 + 0.15p0)(V − EK) + ghr0(V − Eh)].

(7)

Since the function Iion(V, U) has terms in U for IKLT and INa for the phasic
model and INa for the tonic model, we have that

∂Iion
∂U

(V, U) = 2
(

gNam∞(V )
3
(a

b

)

(V − ENa)− 4a4gKLT (1− U)
3
z0(V − EK)

)

,

(8)
for the phasic model and only the first term in the expression above for the tonic
model.

Notice that both terms on the right-hand side of equation (8) are negative for
any value of V and t in the domain of study and therefore the above derivative is
always nonzero. Then, by the implicit function theorem there exists a function U
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defined on this domain such that

I(t) = Iion(V,U(V, t)).

Taking derivatives with respect to time t in the equation above we have that

dI

dt
=

∂Iion
∂U

(V,U(V, t))
∂U

∂t
(V, t)

and since the term (8) does not vanish we can write

∂U

∂t
(V, t) =

(

∂Iion
∂U

(V,U(V, t))

)

−1
dI

dt
. (9)

Since the term in the denominator of equation (9) is negative, one can read
from equation (9) that U on the V -nullcline decreases (∂U/∂t < 0) as I increases
(dI/dt > 0) and vice versa. Moreover, the decreasing speed of U depends on how
fast I increases.

Of course, the formula for the V -nullcline sensitivity to I is consistent with the
visual effects seen in Fig. 4C. First, let us look at the term in the denominator of
equation (9) given explicitly in equation (8). Notice that the larger the denominator
in (9), the smaller the sensitivity of the V -nullcline to the input changes. For V
greater than about -40 mV, INa is fully activated (m∞(V ) is near one) and the first
term in equation (8) is large and dominates the expression for the denominator of
(9). Hence the U value on the V -nullcline changes little with I in this V -range . In
contrast, for the V -range that surrounds the left knee (V < -40 mV) the first term
in equation (8) is very small. Thus, for the tonic case (second term in equation (8)
is zero) the V -nullcline is very sensitive to I around the left knee. For the phasic
case this sensitivity is reduced by the contribution of the second term, due to the
V -dependent gating of IKLT. We see this difference in sensitivity (greater in the
tonic case) in the phase plane plots. In the phasic case (Fig. 4C) the left knee drops
by about 0.4 units in U as I increases by a large amount (1200 pA) while in the
tonic case (Fig. 4 C) the drop is much larger for a smaller increase in I.

Let us now look at equation (9) from the viewpoint of the dynamic criterion for
spike generation. In the phase plane we need ∂U/∂t around the left knee to be large
enough. If the ∂Iion/∂U is more negative (the phasic case) then dI/dt must be more
positive to satisfy the criterion. This says that for the phasic model we need dI/dt
larger than that for the tonic model (assuming similar threshold speed for ∂U/∂t).
We confirm with the formula that the phasic model is more sensitive to the input’s
rising speed than is the tonic model. Furthermore, the temporal window for spike
generation is much smaller in the phasic case. As the stimulus slows down around
its peak, the steady state is stable but the tonic model still has an opportunity to
spike since the steady state can be on the middle branch and unstable.

These dynamical differences of the V -nullcline between the phasic and the tonic
model are consistent with our biophysical intuition. In the phasic case, during a
depolarizing stimulus, gKLT can be recruited so that it compensates the depolarizing
input current. The increased membrane conductance shunts the input current and
the change in the V -nullcline is diminished compared to the tonic model.

2.2.4. ISPD tuning curve. The V-U reduction has similar phase-locking and ISPD-
tuning properties as the full RM03 model. The phase-locking response diagram
(Fig. 5A) extends over the same range of stimulus parameter values as in Fig. 1
and shows near-quantitative reproducibility. The ISPD tuning curves (Fig. 5B)
show striking similarity and sharp temporal precision to those for the RM03 model
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Figure 5. Phase-locking and coincidence detecton for the V-U
model. (A) Frequency-response maps of the phasic (left) and tonic
(right) V-U models, coresponding to dynamic and frozen gKLT ,
respectively. Colors represent spiking ratios (number of spikes per
cycle) to half-wave rectified sinusoidal current inputs, equation (4),
with varying frequency (x-axis) and amplitude (y-axis). Compare
with Fig. 1 for the full RM03 model. (B) ISPD tuning curves
for the phasic (left) and tonic (right) V-U model for 100Hz input.
Different curves correspond to different noise levels σ. For the
phasic model the sinusoidal amplitude is A=600pA and the noise
level σ=0pA, 24 pA, 48 pA, 72 pA, 96 pA and for the tonic model
A=300pA and σ=0pA, 12 pA, 24 pA, 36 pA, 48 pA, respectively.

for the same parameter values. The noise-free phasic model’s tuning curve extends
over +/- 0.1 ISPD. For the tonic model it is much wider (Fig. 5B).

Additive noise leads to firing probability outside the deterministic window for
firing as for the RM03 model (compare Fig. 5B with Fig. 2B). The V-U model
fires more than does RM03 in the tails of the ISPD-tuning curve for the same noise
level. This is because in the V-U model, we set m = m∞, making the model more
responsive to depolarizing inputs. The V-U model captures the sharp decrease in
firing rate near the boundary of the ISPD deterministic response window. For these
comparisons we restricted the range of noise amplitude for the tonic model.

We can further quantify the dynamics of coincidence detection for the V-U model
by examining in more detail the dynamical changes in the phase plane portrait
during one cycle of the sinusoidal stimulus pair. Here, we add to our phase plane
analysis for the phasic model (Fig. 4C) an effective or quasi-threshold separatrix,
QTS (dashed green curves in Fig 6A), a concept introduced by FitzHugh [9] and
used recently by Prescott [24]. The QTS (the trajectory that crosses the V -nullcline
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Figure 6. Dynamical analysis of the distance to threshold separa-
trix for the phasic V-U model. (A) Phase-plane analysis for a paired
half-wave rectified sinusoidal input, equation (5), when ∆P = 0.
The V -nullclines correspond to snapshots for I = 0, 600, 1200pA.
The dashed trajectory lying alongside the middle branch of the
V -nullcline is the quasi-threshold separatrix, QTS. (B) Horizontal
distance from the (V, U) phase point to the QTS over one period
of the input for ∆P = 0 (red), 0.35 (blue), 0.5 (black). The colored
dots denote the same system states as those on the trajectory of
(A) for ∆P = 0. (C) Contour plot for the distance to the QTS at
different phases during one cycle of the sinusoidal stimulus pair as
∆P varies. Colors correspond to the distance to threshold.

at the right knee) segregates state points for which the response trajectory returns
to the steady state directly without a spike from those which lead to a spike. The
QTS is computed by integrating backwards the trajectory starting at the lower
turning point (right knee) of the V -nullcline. Although the V − U system does
not have a strong time-scale separation, we have chosen this starting point in the
middle branch so that if the system is turned into a slow-fast system by slowing
down the variable U , the QTS coincides with the slow repelling manifold (the so-
called excitation threshold boundary for a system with relaxation dynamics). In a
slow-fast system the excitability threshold hugs the middle branch of the V -nullcline
and turns leftward becoming horizontal above the left knee. Our computed QTS
hugs the middle branch for a while (there is a strong time-scale separation in this
region) but then overshoots the left knee to head north-northwest for modest Iapp
(in this region the two time-scales are comparable).

We use the horizontal distance of the (V, U) state to the QTS at each time step
as a measure of the ease to fire a spike. The smaller the distance is, the easier it
is for noise to trigger a spike. Here, in Fig. 6A, ∆P = 0 and Imax = 1200 pA for
the combined sinusoidal input (equation (5)). When the stimulus begins, I = 0pA
and the resting state is on the left side of the QTS. As I(t) rises, the V -nullcline
drifts downwards and simultaneously the upper part of the QTS curves left and
downwards, like an inverted U-shape. The fate of the trajectory from the resting
state depends on how fast the stimulus increases, as we described earlier for Fig.
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4C. For the case illustrated here both the V -nullcline and the QTS drop fast enough
during the rising phase of I(t) relative to the trajectory of (V, U) (which depends
on integrating the stimulus) so that the QTS sweeps downward across the (V, U)
point during the rising phase of the current input. Correspondingly, the distance
to the QTS (red, Fig. 6B) decreases to 0 within a short time (red, Fig. 6C) during
the rising phase of the sinusoidal stimulus. The spike upstroke occurs just after the
(V, U) point is outside the moving steady state’s domain of attraction. After the
spike, during the refractory period, the distance to threshold jumps to a very high
value and decreases gradually to a level around 10 mV at the cycle’s end. Thus, it
becomes much more difficult for the noise to trigger another spike after the first one.
For the paired sinusoidal stimulus, equation (5) with large ∆P , say phase shifted
by 0.35 or 0.5, the trajectory remains in the steady state’s domain of attraction
to the left of and below the QTS. The distance to threshold first decreases as I
increases and arrives at its minimum value before the current reaches Imax. Then
it increases again (blue and black, Fig. 6C). A contour plot (Fig. 6C) shows the
distance throughout the stimulus cycle for all ∆P . It can be seen that the minimum
distances are reached during the rising phase for the phasic V-U model. However,
for the tonic case, the minimal distance to threshold occurs around the maximum
value of I(t) (not shown). Thus the phases for which firing occurs for the phasic
model are quite concentrated in the rising phase of the stimulus (see the firing phase
histograms in Appendix C Fig. 10). In contrast, the possible firing phases under
noise for the tonic model are distributed broadly around the peak of the stimulus
(Appendix C Fig. 10). The V-U model captures well these and the other features of
the histograms that were found for the RM03 model (compare Appendix C Fig. 10
with Fig. 3). The distance to threshold is near minimum (contour plot, Fig. 6C),
consistent with the interval for preferred firing phases; compare, say for ∆P =0.25
and 0.35 the blue region and the two blue regions for ∆P = 0.5 in Fig. 6C with the
corresponding panels in Appendix C Fig. 10, left.

2.3. V − θ model. We develop an idealized model for Type III excitability in the
form of a Leaky Integrate-and-Fire (LIF) model with a dynamic threshold θ. We
replace the conductance mechanism of RM03 for a subthreshold negative feedback
by a dynamic threshold θ that can rise with the subthreshold voltage V . Our model
is a modification of the V − θ model introduced in [8] to illustrate the phenomenon
of Post-inhibitory Facilitation (PIF). Another version of this model, consisting of
an exponential integrate-and-fire model with a non-linear equation for the dynamic
threshold, was recently proposed in [22]. The main feature of these models is that,
as opposed to many other models with dynamic threshold [18, 17], the threshold θ
can rise before the system reaches the spiking threshold.

The equations for the dimensionless system have the following form:

dV

dt
= −V + Vr + I(t)

dθ

dt
= −

θ − f(V )

τθ

(10)

where f(V ) = a + exp(b(V − c)) is the steady state value of the threshold θ at a
voltage V ; τθ is the time constant for the threshold (which will be chosen only a
bit slower than the membrane time constant, i.e. τθ > 1); Vr is the voltage at the
resting state and I(t) is the injected current.
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Figure 7. Dynamics of threshold and distance to threshold for the
V −θ model. (A) Time courses of the membrane voltage (solid lines)
and spike threshold (dashed lines) over three periods in response
to an input consisting of a single half-wave rectified sinusoid of
A = 0.3 and ω = 0.05 (green) and ω = 0.02 (red). In the firing
case we have added vertical lines to emphasize the spike times. (B)
Orbits of the firing and non-firing cases in A plotted on the V − θ
phase-plane. Nullclines for the minimum and maximum values of
the input are shown. A spike occurs when the orbit crosses the line
V = θ. (C) Distance to threshold as a function of the input phase
for an input of the form (5) with ω = 0.05 and A = 0.2 and for
different phase shifts ∆P . (D) Distance to threshold as a function
of the input phase (x-axis) and phase shift ∆P (y-axis) for an input
of the form (5) with ω = 0.05 and A = 0.2.

As is standard for LIF models we specify post-spike resetting conditions: if
V (t−) = θ(t−), then V (t+) = Vreset and θ(t+) = θ(t+) + ∆θ, and we record one
spike event.

In [8] the function f(V ), which determines the steady state value for θ at a
holding voltage V , was a linear function in V . Here, we have chosen a function f so
that the curve of distance-to-threshold versus voltage has a non-monotonic shape
(see the θ-nullcline in Fig. 7B). Indeed, the distance is reduced when the cell is
moderately depolarized (I small) and increased when the cell is further depolarized
(I large). This leads to a non-monotonic firing rate probability function, which is a
special signature of phasic models [12]. Moreover our system shows phasic behavior
for the whole range of I.

The parameters of the system are Vr = 0.1, Vreset = 0, ∆θ = 0.3, a = 0.08,
b = 4.9, c = 0.53 and τθ = 2.



TYPE III EXCITABILITY, SLOPE SENSITIVITY & COINCIDENCE DETECTION 2747

������

�������

������

�������

������
������

�������

������

	




��
��

	

������

	

���� ����

�������������������������������������� ��������������������������������������
�

���

�

�
�
��
�
�
��
�
�
��

�
�
��
�
�
��
�
�
��

���

�

�

Figure 8. Phase-locking and coincidence detection for the V − θ
model. (A) Frequency-response diagrams of the V −θmodels phasic
(left) and tonic (right) for a half-wave rectified sinusoidal input with
varying frequency (x-axis) and amplitude (y-axis). Colors indicate
number of spikes per cycle. (B) ISPD tuning curves for phasic
(left) and tonic (right) V − θ models. Plots show the spiking ratio
(spikes/cycle) in response to an input current consisting of two
half-wave rectified sinusoids with varying phase shift ∆P for the
deterministic case (black curve) and for different levels of noise (σ =
0.01,0.015,0.02,0.025 corresponding to red, green, blue and yellow
curves respectively). The frequencies for a single half-wave rectified
sinusoid are 0.05 (phasic) and 0.2 (tonic) and the amplitudes are
0.2 (phasic) and 0.1 (tonic).

If θ is frozen at its value at the resting state the model is a standard LIF, and
the system shows tonic behavior (pseudo Type I) when the input is raised above
the threshold.

2.3.1. The idealized V − θ model shows Type III excitability. Notice that for all
values of I the system has a unique stable fixed point that is subthreshold. It
corresponds to the intersection of the θ-nullcline (f function) with the V -nullcline
(vertical lines V = I + V0), i.e. (I + V0, f(I + V0)) (Fig. 7B). The fixed point is a
stable node with eigenvalues λ1 = −1 and λ2 = −1/τθ and associated eigenvectors
v1 = (1, f ′(I + Vr)/τθ) and v2 = (0, 1). When the system is depolarized, the
trajectory will move towards the holding state (fixed point). Since we have chosen
τθ > 1, the trajectory on the phase plane will move towards the V -nullcline first
and ultimately become tangent to it.

Because of the choice of the function f , if I increases slowly, the voltage V
increases at a slow rate allowing the threshold to rise and the trajectory never
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crosses the line V = θ (Fig. 7B and Fig. 7A., red curves). However, fast changes
in I cause the (V , θ) state point to cross the line V = θ before the threshold has
had time to rise enough (Fig. 7B and Fig. 7A, green curves).

After one spike has occurred the system is reset to the Vreset line and the system’s
trajectory will approach the fixed point, which is on the left hand side of the firing
line V = θ. In the biophysical models, RM03 and V-U, a spike event recruits more
IKLT, raising even more the threshold for eliciting a spike. We implemented this
idea by raising the threshold by a magnitude ∆θ after a spike has occurred. The
value of ∆θ and τθ determine the number of times the trajectory hits the firing
line before it reaches the fixed point. For our simulations we have chosen values for
which the system triggers only one spike during this transient phase.

2.3.2. ISPD tuning curves and phase locking. The tonic (standard LIF model) and
phasic models (V −θ model) reproduce qualitatively the same properties as the two
biophysical models discussed in the previous sections.

In Fig. 8A we show the frequency response of the system when I(t) is a half-wave
rectified sinusoid (equation (4)). As for the tonic RM03 our tonic model shows a
critical amplitude of the input that causes firing and this remains constant for low
frequencies. Notice that since the threshold is fixed at θ = 0.2 it is very easy to
see from equations (10) that the critical amplitude to cross the threshold is 0.1. In
contrast, for the phasic model the frequency response shows a clear dependence on
the frequency. As in RM03, the system does not respond for very low frequencies
(for the amplitudes tested); firing occurs only when the combination of amplitude
and frequency of input produces a fast enough rise (steep slope).

We also computed the ISPD tuning curves (both deterministic and with added
white noise) for the tonic and phasic V − θ models (see Fig. 8). We chose an
amplitude and frequency using the same criterion as we did when computing the
RM03 ISPD tuning curves. When noise is added, the ISPD tuning curves show
a characteristic signature of the type of model: for tonic ISPDs the firing rate is
substantial and stays constant for values of ∆P higher than 1/3, whereas for phasic
ISPDs the firing rate is kept low and decreases in the tails.

The firing phase and interspike interval histograms reproduce qualitatively the
distributions and features obtained for RM03. The phasic model shows higher
vector strength (better phase locking) than the tonic model; the response in the
phasic model occurs during the rising phase of the input whereas in the tonic model
it takes place around the peak of the input; the tonic model shows more dispersion
in the ISI histograms than the phasic model.

The V − θ model has a definite threshold that allows us to compute explicitly
the distance to threshold for different inputs. In Fig. 7C we show the distance to
threshold as a function of the phase for three different values of ∆P (compare with
Fig. 6B). Notice that the reduced V − θ model captures the qualitative features
obtained for the V-U reduction of the RM03 model (see Fig. 6B), such that the
distance is shorter in the rising phase of the input and that this distance increases
as the depolarizing input is maintained. Notice also that during the pause phase
(stimulus is off) this distance is shortened: the longer is the pause the shorter is the
distance to threshold at the onset of the input. The same features can be observed
in Fig. 7D, which is analogous to Fig. 6C.

3. Discussion. Some neurons and neuron models do not fire repetitively for steady
or slow inputs. They fire in response to fast enough rising inputs only, say at the
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onset of a steady input. This property of phasic firing is called Type III excitability
[16, 24]. Correspondingly, the resting state remains stable for any value of a steady
input that is physiologically plausible. The underlying mechanism is a subthreshold
negative feedback, voltage-gated and recruited dynamically, that can hinder spike
generation for slow inputs. Hence, for Type III excitability firing occurs only when
the voltage can outrace the negative feedback before this feedback can fully activate.
Such neurons and neuron models can act as slope detectors. They are well-suited
for temporal processing like phase-locking and coincidence detection and with ex-
traordinary temporal precision if the feedback can be recruited on a time scale that
is comparable to the membrane time constant.

We have considered a model (RM03) for neurons in the auditory brainstem that
shows Type III excitability [32]. The underlying mechanism is a low-threshold acti-
vated potassium current IKLT that at the resting state has a time scale of activation
that is comparable to the membrane time constant. When the IKLT current’s con-
ductance is frozen at its resting value the dynamics of the subthreshold negative
feedback are disabled. The modified model behaves tonically, able to fire repeti-
tively, over a certain range of input current values I. We have compared the ability
of the original model (phasic) and the modified one (tonic) to phase lock and to
perform coincidence detection. Our results show that phasic neurons have better
temporal precision, including when white noise is added to the input.

We have provided insight into the coincidence detection performance of RM03
and Type III systems more generally by developing and analyzing two different
reduced models that reproduce qualitatively the dynamics of the exemplar model,
RM03, in both phasic and tonic regimes. Our results underscore the importance of
Type III excitability for precise coincidence detection.

3.1. Two-variable models. Each of our reduced models has just two variables.
This allowed us to use phase plane analysis and to provide a geometrical interpre-
tation for various features, such as: stability of the steady state and sensitivity
of nullclines to changes in I, nearness to threshold, and the temporal integration
window. For our reduced models we were able to detect and quantify the size of
a temporal window for firing as the input signal changes in time. We found that
the phasic models show higher selectivity to an input’s rising slope than do the
tonic models. Thus, in our phasic models the size of the temporal window for firing
shrinks when the signal’s slope is reduced, whereas for the tonic models firing can
still occur even if the input slows to a crawl. Eventually, the input amplitude will
enter into the tonic model’s regime for repetitive firing.

3.1.1. V-U model, a reduction of the RM03 model. We applied time scale separation
and approximation arguments to directly reduce the RM03 model to two variables
and thereby retain biophysical parameters in the reduced model. The phasic ver-
sion incorporates dynamic negative feedback through the variable U in two gating
processes: activation of IKLT and inactivation of INa.

The phase plane portraits of our V-U model have the characteristic shape of
systems for which the negative feedback is dominated by inactivation of an inward
current (the vertically flipped V-nullcline). We chose this representation because
when we convert the V-U model to tonic mode, the dynamic negative feedback is
due only to inactivation of INa. Hence, the nullclines look similar for both models
although they differ quantitatively and have different sensitivities to I. The phase
plane portraits resemble those of models for the low-threshold spike in thalamic
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neurons, mediated by an inactivating or transient inward (calcium) current (see,
e.g., [31]). Our analysis of the V-nullcline’s left knee and its strong sensitivity to
I would also apply to those models, with weak or no voltage-dependent potassium
currents.

We could have recast the formulation of the phasic model with w being pro-
portional to U and obtained the more familiar appearance of nullclines where the
negative feedback is increasing during a spike, as in the Morris-Lecar model [30].
In either case, the V-U model provides a simple enough system to study and still
be able to relate with some biophysical plausibility to the functional significance of
Type III excitability and to the neuronal computation of coincidence detection.

Our reduction and analysis benefited from key observations of FitzHugh [9, 10]
of the dynamics of excitability in the HH model and in his BVP model (now called
the FitzHugh-Nagumo model). He noted the near linear relationship of h and n in
the HH model. He introduced the notion of the quasi-threshold separatrix. This
notion has also been used effectively by Prescott et al [24] in their treatment of
Type III excitability for two-variable models.

3.1.2. V − θ model, an idealization of the RM03 model. The main feature of our
V − θ model is a dynamic threshold that can vary with voltage in the subthreshold
regime. This idea was previously implemented in [8] to illustrate and to explain
Post-Inhibitory Facilitation (PIF) in the RM03 model. The PIF effect occurs when
brief inhibition (being delivered within a proper time window before excitation)
facilitates the generation of a spike. The conductance mechanism responsible for the
PIF effect was implemented in the LIF framework by using a dynamic threshold that
decreased when the system was hyperpolarized. The dynamics for the threshold θ
was designed so that the system could reproduce the mentioned effect over a limited
range of I’s, for which the system showed phasic behavior.

In this paper we modified the dynamics of θ so that the V −θ model shows phasic
behavior over the whole range of applied currents I (the resting point remains stable)
with slope sensitivity (the system elicits a spike only if the input is fast enough).

The dynamic threshold for the LIF models has been widely used to implement
superthreshold negative feedback (such as spike frequency adaptation) [17, 18]. In
contrast to our V − θ model, the dynamic effects on the threshold are due to the
spiking and not to subthreshold fluctuations of the voltage V . Other LIF mod-
els implement subthreshold negative feedback (such as subthreshold adapation) by
adding a second equation which describes adaptation but keeping a fixed threshold;
see [27] and also the adaptive exponential integrate-and-fire model (aEIF) [2] (for
a certain range of the parameters).

3.2. Biophysical mechanisms for a dynamic subthreshold negative feed-

back. There are several possible cellular mechanisms that prevent the destabiliza-
tion of the resting state and the generation of multiple spikes, producing Type III
excitability.

In this paper we have discussed a subtractive mechanism (a low-threshold K+

current) as responsible for preventing repetitive firing. When the cell depolarizes
slowly, the K+ current (that activates for subthreshold values of the voltage) has
enough time to activate and oppose the voltage rise, keeping the membrane voltage
subthreshold. In contrast, when the depolarization is fast enough due to a fast-
rising input current, the K+ current does not have time to activate and the system
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can elicit a spike. During the spike, the K+ current activates fast preventing the
generation of a subsequent spike.

Although Type III excitability is often associated with a subtractive mechanism
(outward K+ currents, [5, 24]) this is not the only possible biophysical mechanism
to generate a subthreshold negative feedback. A divisive mechanism, such as a
fast-activating, but transient, inward (sodium or calcium) current with suitably
recruitable inactivation, can also generate Type III excitability. The conceptual
framework is the same. If the cell depolarizes slowly, the inactivation process devel-
ops before the inward current can activate and the cell will not fire a spike. If the
depolarization is fast enough before inactivation of the inward current can occur,
a spike (and only one spike) is produced. Indeed our V-U model can show Type
III excitability with the IKLT conductance frozen and sodium inactivation gating
somewhat re-tuned [21]. In some auditory neurons both subtractive and divisive
mechanisms [34, 38] contribute to phasic firing; it appears that inactivation of INa

is V-gated at unusually lower V values. The possibility of both mechanisms be-
ing available raises interesting questions about how the system might use them to
advantage.

An important aspect, whether the mechanism is subtractive or divisive, is that
time constant of the associated gating variable be neither too fast or too slow in
order to achieve excitability and temporally precise coincidence detection. Consider
the case of IKLT. Indeed, if τw (the time constant for the activation of IKLT) is too
small, IKLT would prevent the generation of a spike even for faster input currents
and the system will no longer be excitable. On the contrary, if τw is too large,
the critical input slope for generating a spike would decrease, therefore reducing
the ability of these cells to detect coincident inputs. Hence, when τw is increased
the frequency window (say, for the phase-locking 1:1 region in Fig. 1C) broadens,
especially on the low frequency side. The ISPD tuning curves also broaden, reducing
the coincidence detection selectivity of the cell.

3.3. Type III excitability and neuronal computation. Type III excitability
explains the extremely precise temporal computations of the MSO neurons in the
auditory brain stem. MSO neurons receive inputs originating in both ears and are
capable of detecting time differences in the arrival of those inputs on the order of
tens of microseconds. This is a surprising property taking into account that their
spike and synaptic response widths and membrane time constants are ten times
larger.

We have shown that Type III excitability, phasic firing, (a characteristic signature
of MSO neurons) requires the input to be fast enough to overcome the subthreshold
negative feedback and generate a spike. Hence, these neurons are very responsive
to bilateral inputs, each subthreshold, that arrive nearly synchronously (short rise
time) while they do not show any response when arriving with a small time shift
(longer rise time). The key point is that the MSO neurons are responding primarily
to the steepness of the rising input, and not to the duration or amplitude of the
input (if not fast enough). This is how they can achieve a time resolution faster
than the membrane constant. The tuning curves for coincidence detection of the
RM03 model, for our idealized paired inputs, show a dramatic drop in the firing rate
over a change in ISTD of 10-100 µs. This temporal resolution may be even sharper
for inputs that mimic more realistically what is carried by the auditory nerve for a
pure tone stimulus; the spike probability waveform per cycle on the auditory nerve
has a much faster rising phase than falling phase. At least two factors contribute
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to the drop in firing probability as ∆P increases in the tails of the ISPD-tuning
curves for phasic models. The rising slope of the input decreases and there may be
considerable negative feedback generated even by subthreshold voltage responses at
moderate input rates (like our 100 Hz examples).

Our illustrations of temporally precise coincidence detection have been for mod-
erate frequencies (order, 100 Hz). For low frequencies the noisefree phasic models
do not spike although with some probability they do spike in the presence of noise.
This suggests a stochastic resonance basis; however, the form is not classical. The
phasic models do not fire because of noise around the peak of (an otherwise sub-
threshold) sinusoidal input but rather on the rising slope. This slope-based sto-
chastic resonance is still mediated by the Type III excitability of RM03; the tonic
version shows classical, amplitude-based stochastic resonance [12]. This behavior
has implications for localization of slowly modulated sounds whose carrier frequen-
cies exceed the ability of MSO neurons to phase-lock [11]. We did not address the
dependence of coincidence detection for increasing amplitude and frequency, where
precise temporal processing may be compromised; some effects have been studied
in vitro [6, 26]. These increases can promote firing in the anti-phase troughs of the
tuning curves, corresponding to an increased number of “false positive” responses
in a sound localization task.

Many other neuron types exhibit Type III excitability (see Discussion in [24]),
for example, some neurons in the spinal cord. Some stretch receptors adapt rapidly
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(phasic) and some tonically, presumably for signalling stimulus onset (and perhaps
offset) and for stimulus intensity [35].

The impressive temporal processing capability of phasic auditory brain stem
neurons is compelling, especially because we know that they play a primary role
in computing interaural time difference for sound localization. While we have used
phase plane methods and notions of phase-locking from dynamical systems the-
ory, other approaches to study the responsiveness of phasic models and neurons to
fluctuating inputs have included reverse correlation methods [7, 36]. The further
mathematical characterization of Type III excitability and additional implications
for neuronal computation lie ahead.

Appendix A. Numerical methods. The noise-free RM03 dynamical equations
(2-3) were integrated using an implicit 4th order Runge-Kutta method with a toler-
ance of 10−7. The V −θ (10) and the V −U (6) dynamical equations were integrated
using a forward Euler method with a time step of 0.005. Stochastic differential equa-
tions were integrated using a forward Euler method with a time step of 0.005 ms,
along with a random generator that generated long non-repetitive series. In order
to obtain a large dataset to analyze the stochastic response, we ran the simulations
up to the order of 104 cycles of the signal. For the RM03 and V-U models spike
times were recorded when the trajectory crossed the section V = −15 upwards.
The bifurcation diagrams were computed using the Auto feature in XPPAUT. We
used Matlab and Python to analyze and plot the data.
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Appendix B. RM03 model. The voltage-dependent steady-state functions of
the gating variables in the RM03 model are shown in Fig. 9A. For a given voltage
value V , the gating variables approach their steady state values with the time con-
stants (also voltage-dependent) that are shown in Fig. 9B and C. The time constants
are chosen to mimic the brain slices during whole cell recordings at temperature
32◦C.

We notice that in the RM03 model, the activation gating variable w of IKLT and
the inactivation gating variable h of INa have similar time constant functions. They
co-vary linearly during a spike (Fig. 9D). A decent fit for the relationship between w
and h is provided by the line L (dashed, Fig. 9D): w+b·h = a, where a = 0.9 and the
slope b = (a−w0)/h0, w0, h0 are the resting values of w and h; L passes through the
points:(h0, w0) and (0, a). Motion along L is described by a single recovery variable
U which is defined precisely by the linear combination:U = b[h+b(a−w)]/a(1+b2).
This representation was used by Rinzel in [29] for the HH reduction.

Phasic Tonic

Firing phase Firing phaseInterspike interval Interspike interval

Figure 11. Phase histograms and inster-spike interval (ISI) his-
tograms for the V − θ phasic and tonic models in response to two
half-wave rectified sinusoids at different phase shifts ∆P with noise
σ = 0.02. A single input is a half-wave rectified sinusoid of f=0.05
and A=0.2 (phasic) and f=0.2 and A=0.1 (tonic). The curves in
the phase histogram plots represent the time course of the input
signal over one period. Phase histograms are normalized and the
scale of the vertical axis is the same for all panels of each model.
The scale of the vertical axis of the ISI histograms is different in
each panel due to the large variation across panels. The numbers
in the upper right corner of the phase histogram panels indicate
firing rate (spikes/cycle) (FR) and vector strength (VS).
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Appendix C. Histograms of the V−U model and the V −θ model. The firing
phase histograms and ISI histograms of the V −U model and the V-θ model capture
the characteristic features of the RM03 model in response to an input consisting of
two half-wave rectified sinusoidal inputs with phase difference ∆P (equation (5)).
See Fig. 3, 10 and 11 for RM03, V − U and V − θ models respectively. The firing
phase histograms show that for a phasic model spikes are concentrated in the rising
phase of the stimulus whereas for a tonic model they are more dispersed around
the peak. The vector strength for both models decreases as ∆P increases, but is
higher in the phasic case. The ISI histograms decrease in an exponential way and
the exponential decay decreases with ∆P . Notice that the phasic ISI histograms
for the V −U model have a faster decay than the ones for RM03 as ∆P approaches
0.5. This is because the firing rate for the V-U model is much higher than that for
the RM03 model for the same values of noise. We can observe this by looking at
Fig. 5B and Fig. 2B. With the same noise amplitude σ = 96pA the ISPD tuning
curve for the V −U model is much higher than that of the RM03 model. When we
set σ = 72pA in the V − U model, we obtain similar histograms and firing rates as
those in the RM03 model for σ = 96pA (results not shown).
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