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Abstract. This work arises from the purpose of applying new tools in dynamical systems to time problems in
biological systems. The main aim of this paper is to develop a numerical method to perform the
effective computation of the phase advancement when we stimulate an oscillator which has not yet
reached the asymptotic state (a limit cycle). That is, we want to extend the computation of the phase
resetting curves (PRCs) (the classical tool to compute the phase advancement) to a neighborhood of
the limit cycle, obtaining what we call the phase resetting surfaces (PRSs). To achieve this goal we
first perform a careful study of the theoretical grounds (the parameterization method for invariant
manifolds and another approach using Lie symmetries), which allows us to describe the isochronous
sections of the limit cycle and, from them, to obtain the PRSs. In order to make this theoretical
framework applicable, we use the numerical algorithms of the parameterization method and other
semianalytical tools to extend invariant manifolds; as a result, we design a numerical scheme to
compute both the isochrons and the PRSs of a given oscillator. Finally, to illustrate this algorithm,
we apply it to some well-known biological models and we include a discussion on different biological
and numerical aspects suggested by these examples.
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1. Introduction. The behavior of coupled oscillators in biology and, more intensively,
in neuroscience has been the subject of a great deal of recent interest, and there is a wide
literature on this topic (see [17] for a survey), mainly because many oscillators can be described
by their phase variables. Moreover, under generic conditions, the phase of the oscillation can
also be defined outside the hyperbolic limit cycle via asymptotic phase. Thus, the stable
manifold of a point x0 on a limit cycle is the union of points having equal phases, and it is
often referred to as the isochron of x0.

To study synchronization, a useful measurable property of a neural oscillator is its phase
resetting curve (PRC). The PRC is found by perturbing the oscillation with a brief stimulus
at different times on its cycle and measuring the resulting phase-shift from the unperturbed
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‡Centre de Recerca Matemàtica, Apartat 50, E-08193, Bellaterra (Barcelona), Catalonia (gemma.huguet@upc.

edu). The work of this author was supported by the Spanish fellowship AP2003-3411 and the NSF grant DMS
0354567.

1005

http://www.siam.org/journals/siads/8-3/73766.html
mailto:antoni.guillamon@upc.edu
mailto:gemma.huguet@upc.edu
mailto:gemma.huguet@upc.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1006 A. GUILLAMON AND G. HUGUET

system. It is a very useful tool to explain how the coupling between neurons can affect the
phase and lead them to synchronized or nonsynchronized activity.

PRCs constitute a powerful resource in time-control problems in biological processes. For
instance, in the study of circadian rhythms, PRCs are indicators for the experimentalists to
know the peaks of the phase advancement and for the practitioners to administrate drugs
(see, for instance, [4], [6], or [23] for different contexts), that is, to know the optimal phase
advancement.

Different methods of computing the PRCs are known; see [17, Ch. 10] for a survey. One of
the most effective is the so-called adjoint method ; see [9] (see also [2] for a review). Recently,
Govaerts and Sautois (see [11]) have developed a new algorithm to solve the adjoint method
problem accompanied with the implementation of continuation methods to study PRCs along
families of vector fields with a persistent limit cycle.

Typically, solutions to the models of interest tend asymptotically to a limit cycle. However,
one may be interested in computing the phase advancement in the transient state, when the
dynamics has not relaxed back to the limit cycle. This occurs when the period of stimulation
is too short and is favored by factors like a slow attraction to the limit cycle, a large stimulus
amplitude, other external stimuli, random fluctuations, and bursting-like stimuli. Thus, the
study of the phase advancement under a certain stimulus in a neighborhood of the limit cycle,
not only on the limit cycle, is also interesting.

In this paper, we present a numerical method to extend the computation of the PRCs to a
neighborhood of the limit cycle, thus obtaining what we call phase resetting surfaces (PRSs).
Therefore, we can evaluate the phase advancement even when the stimulus is applied when
the state variables are out of the limit cycle. The results are achieved by means of two steps:
studying the theoretical basis describing the isochrons and PRSs (section 3) and developing
a numerical procedure that makes this theoretical framework applicable (section 4).

The mathematical formalism is based on the so-called parameterization method, which is
a method to parameterize invariant manifolds around an invariant object (see, for instance,
[3]); in particular, it provides a parameterization of the isochrons of a limit cycle γ of a given
vector field X. Another approach to obtaining the isochrons is to use that they are the orbits
of a vector field Y satisfying a Lie symmetry; that is, [Y,X] = μY (see [25]). In Theorem 3.1,
we show the equivalence between these two approaches and, in Proposition 3.6, we use the
latter to define the PRSs consistently.

Computational aspects play a major role since the examples of interest are far from being
explicitly solvable. The numerical scheme relies on the implementation of the parameterization
method (much easier to implement than the computation of Lie symmetries), which provides
a local approximation of the isochrons and PRSs (see Steps 1–4 in section 4). After that, we
globalize them to a bigger domain by adapting refined methods to globalize invariant manifolds
(see [27]) and using the theoretical results of Proposition 3.6 (see Step 5 in section 4).

In the examples, we also include a discussion on the relationship between the excitability
types and the types of the corresponding PRCs. This issue was introduced by Ermentrout
in [8]; models with strictly positive or mainly positive PRCs are usually called “Type I PRC”
or “Class I,” whereas models whose PRCs change sign and present a negative regime (delay
in the phase) are known as “Type II PRC” or “Class II.” The PRC types have effects
on the synchronization of an oscillator with a periodic pulse train. For instance, Type I



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTATION AND GEOMETRY OF PRCs AND PRSs 1007

models, that is, those with PRCs mostly positive, easily synchronize with fast inputs, but
they cannot synchronize with slower inputs. This is because they can advance the phase to
catch up with faster inputs, but they cannot delay the phase. This is not the case for Type II
models because they can advance or delay the phase. For the specific conductance-based
model (5.5), by considering two different parameter values, we can observe the evolution
from one type to another, in particular, how the negative parts of the PRC for a Type II
PRC oscillator (Iapp = 165) shrink as some bifurcation parameter evolves until it almost
vanishes near a Type I excitability value (Iapp = 10, close to a frequency zero limit cycle
bifurcation), corresponding also to a Type I PRC value. However, we are more concerned
with the observation and the biological consequences of the PRSs rather than carrying out a
systematic computation of PRCs with respect to some parameter.

In the examples we also show (see Figures 3–7) that, depending on the geometry of the
isochrons, the shape of the PRS may be different from the shape of the PRC. This fact
may induce misestimations of the phase advancement when one takes into account only the
information provided by the PRCs.

The paper is organized as follows: in section 2 we give the necessary background (on
isochronous sections, Lie symmetries, the parameterization method, and PRCs) to tackle the
rest of the paper. In section 3, we give the theoretical grounds of the paper, on one hand
relating the Lie symmetries with the parameterization method and on the other proving that
the solution that we obtain is also a solution of the classical adjoint equation used to compute
PRCs on the limit cycle. To facilitate a reading oriented to the more practical aspects, the
proofs of these results are given in the appendices. In section 4, we divide the implementation
into five steps; we expand the details of each step in several subsections. We end the paper
with some examples in section 5 and a final discussion in section 6.

2. Background and statement of the problem. In this section we go through the back-
ground on the main tools that will be related later in section 3. In general, these tools are
defined for vector fields in R

d, although for the purposes of this paper we will restrict our
attention to d = 2 from section 3 on.

2.1. Isochronous sections of a limit cycle. Let us consider an autonomous system of
ODEs

(2.1) ẋ = X(x), x ∈ U ⊆ R
d, d ≥ 2,

having a periodic orbit γ of period T , parameterized by θ = t/T as

γ : T := R/Z → R
d,(2.2)

θ �→ γ(θ)

in order to have period 1, that is, γ(θ) = γ(θ + 1).
For the numerical purposes of this paper we will assume that X is an analytic vector field.

Nevertheless, in some cases the theoretical background that we are quoting in this section is
still valid for lower regularity vector fields.

Definition 2.1. We say that a point q ∈ Ω ⊂ R
d, where Ω is an open domain containing

the limit cycle γ, is in asymptotic phase with a point p ∈ γ if
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lim
t→+∞ |φt(q) − φt(p)| = 0 or

lim
t→−∞ |φt(q) − φt(p)| = 0,

where φt is the flow associated to the vector field X.
The set of points having the same asymptotic phase is called the isochron.
Definition 2.2. We will say that a limit cycle γ is isochronous if there exists an open neigh-

borhood Ω containing γ such that every point in Ω is in phase with a point on γ.
Remark 2.3. Notice that the isochrons are mapped to isochrons by the flow φt of the vector

field X. Hence, they are φT -invariant; that is, φT (q) belongs to the isochron of q.
This extends the notion of phase of oscillation to a neighborhood in the basin of attraction

of the limit cycle. Hence, in a neighborhood Ω of the limit cycle γ there exists a unique scalar
function

ϑ : Ω ⊂ R
d → T = [0, 1),(2.3)
x �→ ϑ(x)

such that
lim

t→+∞(−∞)
|φt(x) − γ(ϑ(x) + t/T )| = 0.

The value ϑ(x) is the asymptotic phase of x, and the isochrons are the level sets of ϑ, since
the phase is constant on each isochron.

2.2. Isochrons, stable manifolds, and Lie symmetries. From a seminal paper by Winfree
[28] and the theoretical answers given by Guckenheimer in a subsequent paper [13], it is known
that phase sets or isochrons and stable manifolds (see [16]) of hyperbolic limit cycles have a
common link: if the limit cycle is stable, then the isochrons are the leaves of the stable
manifold; that is, W s(γ(θ)) for θ ∈ T. Notice that the case of a hyperbolic unstable limit
cycle is equivalent to the stable case just reversing the time.

New papers recovering the problem of the existence of isochrons for a generic nonhyperbolic
limit cycle in the plane have appeared recently [5], [25]. From Chicone and Liu’s work, [5],
we know that a limit cycle γ of a C2 planar vector field is isochronous if and only if it is
either a hyperbolic or a nonhyperbolic limit cycle satisfying P (σ) = σ + c σm + o(σm), with
c �= 0 and m ≥ 2, and τ ′(p) = · · · = τ (m−1)(p) = 0, where p ∈ γ, τ is the time of the first
return to a Poincaré section Σ at p (parameterized by σ), and P is the corresponding Poincaré
map. Moreover, in [25], Sabatini proves that a limit cycle γ of a C2 planar vector field X is
isochronous if and only if the vector field X is an infinitesimal generator of another C2 planar
vector field Y transversal to X, that is, if

(2.4) [Y,X] = μY

for some C2 function μ : R
2 −→ R, where [ , ] stands for the Lie bracket of the two vector

fields (see [21]). Moreover, it is stated that, in this case, the orbits of Y crossing the limit
cycle γ are its isochrons because, by Lie symmetry, the flow of X sends orbits of Y to orbits
of Y .
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Finally, Freire, Gasull, and Guillamon [10] give a closed formula for the characteristic
exponent of a limit cycle γ of a planar C1 vector field X in terms of μ in (2.4). More precisely,
they prove that the characteristic exponent of γ is given by

(2.5) λ =
∫ T

0
μ(γ(t/T ))dt.

Although the result of Sabatini is a nice geometrical characterization of isochronous limit
cycles, the difficulty arises when trying to find μ and Y . In this paper, we link this result
with the parameterization method developed in [3] to compute a parameterization of the two-
dimensional stable manifold containing γ, and we implement it numerically to obtain local
expansions of μ and Y .

2.3. The parameterization method for flows. In this subsection we describe the param-
eterization method introduced by Cabré, Fontich, and de la Llave [3]. The main idea of this
method is to compute the invariant manifolds of a dynamical system by looking for a pa-
rameterization of them in such a way that the dynamics on this manifold expressed in the
coordinates of such parameterization writes as simply as possible.

We will first present the method in its most general form, and then we will consider the
particular case of the stable invariant manifold of a periodic orbit of a planar system.

Given a vector field X in U ⊂ R
d, the parameterization method consists of looking simul-

taneously for an embedding K : U ⊂ R
n → R

d and a vector field X in U ⊂ R
n, n ≤ d and U

open, such that

(2.6) DKX = X ◦K,

which tells us that the n-dimensional manifold parameterized by K and defined by

M := Range(K) = {K(u) ∈ R
d | u ∈ U ⊂ R

n}

is invariant under the flow of X. Moreover, the vector field X describes the dynamics of the
vector field X on the invariant manifold M in the variable u ∈ R

n, parameterizing M.
When d = n, we will say that the vector field X is conjugate to X , i.e., X = K−1 ◦X ◦K.
The unknowns in the functional equation given in (2.6) are K and X , and therefore it

cannot be solved uniquely, since it is underdetermined. In order to overcome this situation,
the parameterization method fixes X (the dynamics) and looks for a K (a parameterization)
satisfying the invariance equation (2.6). The way to choose X is so that the dynamics on M
is as simple as possible, which relates to the theory of normal forms.

We restrict ourselves now to the case of a planar system (2.1) with d = 2, which has
a hyperbolic stable periodic orbit γ (the unstable case is equivalent to just reversing the
time) parameterized by the phase θ as in (2.2). Thus, we are interested in looking for a
parameterization K of the two-dimensional stable manifold M of the periodic orbit γ. Since
n = d = 2, our problem is equivalent to looking for a change of variables K that conjugates
the vector field X to a vector field X with a simpler expression of the dynamics. In this
context, it is natural to parameterize it in terms of the phase variable θ on the limit cycle and
another variable σ which moves along a transversal direction to the limit cycle, and to impose
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that the motion generated by the vector field X on U ⊂ R
2 expressed in the variables (θ, σ)

is given by

(2.7)
{

θ̇ = 1/T,
σ̇ = λσ/T,

where T is the period of the limit cycle γ and λ is the characteristic exponent of γ; since it is
hyperbolic stable, we have that λ < 0. From (2.7), it is straightforward to see that the orbit
of any point q = K(θ0, σ) approaches the orbit of the point p = K(θ0, 0) = γ(θ0) on the limit
cycle, and therefore q belongs to the isochron of p. Thus, the variable σ parameterizes every
isochron.

The expression of the vector field X in the variables (θ, σ) can be considered as the normal
form for a planar vector field around a hyperbolic limit cycle, reminiscent of the action-angle
variables for conservative systems.

Once we have fixed the dynamics in (2.7), which is given by the vector field,

X =
1
T
∂θ +

λσ

T
∂σ,

the problem consists of looking for a map K

K : N ⊂ T × R → R
2,(2.8)

(θ, σ) �→ K(θ, σ),

where N is an open set such that T×{0} ⊂ N , and K satisfies the invariance equation (2.6),
which in this case has the form

(2.9)
(

1
T
∂θ +

λσ

T
∂σ

)
K(θ, σ) = X(K(θ, σ)).

The existence of such a map K is ensured, in the hyperbolic case (λ < 0), by the stable
manifold theorem (see [16]). In Theorem 5.4 in [3], the authors present a proof of a more
general result, which includes our particular case of the stable manifold of a periodic orbit of
a planar system. It essentially consists of first looking for a solution of the invariance equation
(2.9) in terms of formal power series and then showing that this power series indeed converges
and defines an analytic function. In section 4.1.1 we review the basic steps of the proof
which provide a procedure that leads to practical numerical algorithms. These algorithms
are the ones that we use to compute K locally in a neighborhood of the limit cycle. Similar
implementations of this method have been performed in [15] for the computation of stable
and unstable manifolds of invariant tori in quasi-periodic maps.

A more marginal but interesting case is when γ is a parabolic isochronous limit cycle;
that is, λ = 0 but has a system of isochrons around it (necessary and sufficient conditions
are given in [5]). In this case, one cannot conjugate the dynamics to the linearization around
the limit cycle as in the hyperbolic case, because the linear part does not contain information
on the stability of the limit cycle, that is, on the dynamics of the variable σ. Thus, we need
to consider higher order terms in the dynamical equation for σ, but we can still impose the
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dynamics for θ to be linear. Therefore, one can find a map K that conjugates the dynamics
of a vector field to

(2.10)
{

θ̇ = 1/T,
σ̇ = F (θ, σ),

where F is a nonvanishing function satisfying F (θ, 0) = 0. As in the hyperbolic case, one
could express F (θ, σ) in a simplified way, but this is outside the scope of this paper.

2.4. Phase response curves and surfaces. As mentioned in the introduction, PRCs are a
key tool to study phase advancement in oscillators. Here we introduce the basic background.

Let us consider an oscillator of the form (2.1) with a stable limit cycle γ of period T (let
us say, for instance, a periodically spiking neuron) which is stimulated at a phase θ = ts/T
with an arbitrary perturbation.

The effect of the perturbation is to produce a phase shift that can be an advance or a
delay depending on the time of the stimulus ts relative to the phase of the oscillation θ, leading
to a change of the period. The representation of this phase shift is usually called the phase
response curve or phase resetting curve (PRC). They are typically defined as

(2.11) Δϑ = (T − Tnew)/T,

where Tnew is the period for the perturbed limit cycle.
In this paper we will focus on the particular case of infinitesimally small perturbations in

duration and amplitude. In this case, the perturbation consists of a pulse that instantaneously
displaces the trajectory away from the limit cycle in a certain direction by a certain amplitude.
Mathematically, we consider

(2.12) ẋ = X(x) + εδ(t − ts),

where ε = (ε1, . . . , εd) ∈ R
d and δ(t) is the Dirac delta function.

When |ε| � 1, it is common in the theory of weakly coupled neural oscillators [9] to
construct the so-called infinitesimal PRC. Using the scalar function ϑ given in (2.3) that
associates to every point in a neighborhood of the limit cycle a phase in [0, 1), it is easy to see
that the PRC for an instantaneous perturbation as in (2.12) is mathematically equivalent to

Δϑ(x) = 〈ε,∇ϑ(x)〉 =
〈
ε,

(
∂ϑ

∂x1
(x), . . . ,

∂ϑ

∂xd
(x)
)〉

for x ∈ γ, where 〈·, ·〉 denotes the dot product. See [17, Ch. 10] for the details and historical
references.

Note that the pulse in (2.12) can be in any direction in R
d. Usually, one studies the

PRCs only for the directions given by a vector basis of R
d. For instance, for the planar case

(d = 2), we will consider the PRCs corresponding to the directions (1, 0) and (0, 1), which will
be referred to as PRC1 and PRC2, respectively. For models in neuroscience, one is usually
interested only in the PRC for perturbations in the direction of the voltage, that is, ∂ϑ(x)/∂V
for x ∈ γ. When ε is small, abusing language, we will refer to Δϑ and ∇ϑ indistinctly as
PRCs.
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Although in the literature the phase shift is computed only on the limit cycle, that is, for
x ∈ γ, the isochrons allow us to naturally extend it to a neighborhood of the limit cycle and
introduce a new concept that we call the phase resetting surface (PRS). In general, PRSs
are not considered in the literature because the methods to obtain the PRCs are not easily
extendable.

The PRS tabulates the change in the phase produced by a perturbation as a function of
the phase θ and the “distance” σ to the limit cycle, computed on the isochron at which it
is received. Notice that the PRC is just the section σ = 0 of the PRS. Hence, PRSs are a
generalization of the PRCs for σ �= 0. This tool can be very useful if we want to stimulate
the oscillator repeatedly, without needing to wait for the oscillator to relax back to the limit
cycle attractor. This required time to relax is especially inconvenient when the attraction to
the limit cycle is too slow or the amplitude of the stimulus is too large.

The classical method for computing PRCs was introduced by Ermentrout and Kopell
in [9] and is commonly known as the adjoint method. In section 3.2 we describe a new
alternative method that allows us to compute not only the PRC but also the PRS, using
the Lie symmetries’ formalism and the numerical scheme provided by the parameterization
method.

3. Theoretical results. In this section we focus on the case of planar vector fields, and we
present the theoretical results that link the concepts presented in section 2, which will allow
us to construct a numerical method to simultaneously compute isochrons, PRCs, and PRSs.

3.1. The relation between Lie symmetries and the parameterization method. In this
section we establish a relation between the existence of a Lie symmetry (2.4) of the planar
vector field X having an isochronous limit cycle and the existence of a map K that conjugates
the dynamics of the vector field X to one with the phase variable θ moving at a constant
velocity 1/T (as in (2.7) and (2.10)).

We first state this relation in Theorem 3.1 for the case of a planar vector field having an
isochronous limit cycle (without considering whether it is hyperbolic or not), and in Corol-
lary 3.5 we give a more precise result for the hyperbolic case. In section 3.2 we will use this
relation to obtain an expression to compute the PRC and the PRS.

Theorem 3.1. Let X be a planar analytic vector field with a limit cycle γ of period T
parameterized by θ according to (2.2). Then, the following statements are equivalent:

1. The limit cycle γ is isochronous and the isochrons are smooth curves.
2. There exist a transversal vector field Y and a scalar function μ, such that in a neigh-

borhood Ω of the periodic orbit γ

[Y,X] = μY.

3. There exist a smooth function F : T × R → R such that F (θ, 0) = 0 for all θ ∈ T and
a smooth function K : N ⊂ T × R → R

2, where N is an open set containing T × {0},
such that

(3.1)
(

1
T
∂θ + F (θ, σ)∂σ

)
K(θ, σ) = X(K(θ, σ))
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in N ; i.e., the vector field X is conjugated to

(3.2) X =
(

1
T
∂θ + F (θ, σ)∂σ

)

in N .
Moreover, Y ◦K = ∂σK and μ ◦K = ∂σF , or, equivalently,

(3.3) K(θ, σ) = ψσ(γ(θ)),

where ψσ is the flow of the vector field Y and

F (θ, σ) =
∫ σ

0
μ(K(θ, τ))dτ.

Proof. See Appendix A.
Before stating a more precise result for the case of hyperbolic limit cycles (which are

always isochronous) we would like to make several comments on this theorem.
Remark 3.2. Notice that nothing precise is said about the regularity of the different objects

in Theorem 3.1 in terms of the regularity of the vector field X. Although in the case of γ
being a hyperbolic limit cycle the analyticity of X implies the analyticity of these objects, this
is not generally true in the nonhyperbolic case. Then, for the purposes of this paper it will be
enough to know that they are regular enough to be defined.

Remark 3.3. The main idea of Theorem 3.1 is that when we have an isochronous limit
cycle γ of a planar vector field X, we can parameterize a neighborhood of the limit cycle in
the variables θ, which is the phase of the periodic orbit, and σ, which is the integration time
along the orbits of the vector field Y (isochrons of X) satisfying (2.4). Moreover, it provides
an expression (3.2) for the vector field X expressed in the variables (θ, σ).

Remark 3.4. Notice that the dynamics for σ depends on the scalar function μ (related to
F ), whereas the vector field Y (related to the change of coordinates K) contains information
about the geometry of the isochrons.

In section 3.2, we will see that we can obtain the phase advancement on a point in a
neighborhood of a limit cycle if we know the vector field Y on this point. In general, given
a vector field X, it is difficult to find a pair (Y, μ) satisfying (2.4), except for some academic
examples such as those explained in Examples 5.1 and 5.2. However, computing the change
of coordinates K is more feasible, at least in a neighborhood of the limit cycle (as we will
see in section 4.1). From it, one can easily obtain the above-mentioned pair (Y, μ) since
Y (K(θ, σ)) = ∂σK(θ, σ); that is, the motion generated by the vector field Y expressed in the
variables (θ, σ) is given by

θ̇ = 0,(3.4)
σ̇ = 1,

and μ(K(θ, σ)) = ∂σF (θ, σ). Of course, the inverse of the map K allows us to recuperate the
expression of Y and μ in the original variables.

Notice that the vector field Y and the scalar function μ (resp., the map K and the function
F ) are not unique. Hence, it is natural to choose them so that the expression of F (or μ)
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is as simple as possible. We have already seen in section 2.3 where we have reviewed the
parameterization method (see also Theorem 5.4 in [3]) that if the limit cycle γ is hyperbolic,
one can always find an analytical function K so that the function F in (3.1) is F (θ, σ) = λσ/T
(and therefore μ(K(θ, σ)) = λ/T ). Hence, the next corollary follows from Theorem 3.1.

Corollary 3.5. Let X be a planar analytic vector field with a hyperbolic limit cycle γ of
period T and characteristic exponent λ, parameterized by θ according to (2.2). Then, the
following statements hold and are equivalent:

1. The limit cycle γ is isochronous and the isochrons are analytic curves.
2. There exists an analytical vector field Y such that in a neighborhood Ω of the limit

cycle, γ is transversal to X and satisfies

[Y,X] =
λ

T
Y.

3. There exists an analytical map K : N ⊂ T × R → R
2, where N is an open set

containing T × {0}, such that

(3.5)
(

1
T
∂θ +

λ

T
σ∂σ

)
K(θ, σ) = X(K(θ, σ))

in N ; i.e., the vector field X is conjugated to

(3.6) X =
(

1
T
∂θ +

λ

T
σ∂σ

)

in N .
Moreover, Y ◦K = ∂σK, or, equivalently,

(3.7) K(θ, σ) = ψσ(γ(θ)),

where ψσ is the flow of the vector field Y .
Proof. The proof follows straightforwardly from Theorem 5.4 in [3] and Theorem 3.1.
Thanks to this reduction, when computing isochrons around a hyperbolic limit cycle we

will always use (3.5).

3.2. Computation of isochrons, PRCs, and PRSs. The parameterization K and the
vector field Y jointly with the characteristic exponent λ allow us to compute the isochrons,
the PRCs, and the PRSs.

3.2.1. Computing the isochrons. We already mentioned that the orbit of the points given
by K(θ0, σ) for any σ ∈ Iθ0 := {σ ∈ R | (θ0, σ) ∈ N} approach (exponentially fast in the
hyperbolic case) the orbit of the point K(θ0, 0) = γ(θ0). Therefore, a parameterization of the
isochron of the point γ(θ0) is given by the map

K(θ0, ·) : Iθ0 ⊂ R −→ R
2,

σ �−→ K(θ0, σ).
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3.2.2. Computing the PRC and the PRS. We already mentioned in section 2.4 that,
from the mathematical point of view, the change of phase due to a pulse stimulation at a
point p = K(θ, σ) in a neighborhood Ω of the limit cycle γ is given by

∇ϑ(p) =
(
∂ϑ

∂x
(p),

∂ϑ

∂y
(p)
)
.

In order to compute ∇ϑ(p) we consider the following argument: on the one hand, the
isochrons are given by the level sets of the function ϑ : R

2 → R, introduced in (2.3), which
associates a phase to each point in a neighborhood of the limit cycle. On the other hand,
they are the orbits of any vector field Y satisfying (2.4). Hence, it is clear that ∇ϑ(p) has the
same direction as Y ⊥(p), which corresponds to the vector orthogonal to Y on p, where

Y (p) = Y (K(θ, σ)) = ∂σK(θ, σ).

For ∇ϑ(p) to be well defined, we need only to add some normalization. Notice that, for
an orbit φt(p), p ∈ Ω, where φt is the flow of the vector field X, we have

dϑ

dt
(φt(p)) = 1/T,

and using that

dϑ

dt
(φt(p)) =

〈
∇ϑ(φt(p)),

d

dt
φt(p)

〉
= 〈∇ϑ(φt(p)),X(φt(p))〉,

we have that for any p ∈ Ω, the PRS is given by

(3.8) ∇ϑ(p) =
Y ⊥(p)

T 〈Y ⊥(p),X(p)〉 ,

where 〈 , 〉 denotes the dot product.
The PRC is just the PRS restricted to the points on the limit cycle, that is, σ = 0. Then,

for p = K(θ, 0) ∈ γ,

∇ϑ(K(θ, 0)) =
Y ⊥(K(θ, 0))

T 〈Y ⊥(K(θ, 0)),X(K(θ, 0))〉 ,

where K(θ, 0) = K0(θ) = γ(θ) and Y (K(θ, 0)) is given by Y (K(θ, 0)) = ∂σK(θ, 0) =: K1(θ).
Therefore,

(3.9) ∇ϑ(γ(θ)) =
K⊥

1 (θ)
T 〈K⊥

1 (θ),X(γ(θ))〉 .

3.3. The relation with the adjoint method. As we already mentioned in the introduction,
the most common method in neuroscience to compute phase resetting curves is the adjoint
method (see [9], [17]). It essentially computes the gradient of the asymptotic phase along the
limit cycle γ, that is, ∇ϑ(γ(t/T )), by looking for a T -periodic solution of the equation

(3.10)
dQ

dt
= −DXT (γ(t/T ))Q,
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where DXT (γ(t/T )) is the transpose of the real matrix DX(γ(t/T )), with the condition

〈Q(t),X(γ(t/T ))〉 =
1
T
,

which in particular must hold for t = 0.
This procedure has been automated in the program XPPAUT ; see [7].
However, when one wants to extend the adjoint problem to a neighborhood of the limit

cycle, one cannot impose periodicity conditions. Thus, the problem lacks conditions to be
solved uniquely, unless one knows a way to obtain initial conditions. In the context of this
paper, though (see section 3.2), the knowledge of a vector field Y satisfying a Lie symmetry
(2.4) provides an expression for ∇ϑ at any point in a neighborhood of the limit cycle, and
therefore an initial condition for the adjoint problem to be solved uniquely.

In the following proposition, we take advantage of this fact and we extend the adjoint
method to a neighborhood of the limit cycle. Indeed, we show that one can compute the
phase advancement ∇ϑ along the orbits of the vector field X by solving a differential equation
(the so-called adjoint equation) with the initial condition provided by (3.8).

Proposition 3.6. Let γ be an isochronous T -periodic orbit of a planar analytic vector field
X parameterized by θ according to (2.2). Assume that there exists a transversal vector field
Y satisfying (2.4) in a neighborhood Ω. Then, the function ∇ϑ along the orbits of the vector
field X satisfies the adjoint equation

(3.11)
dQ

dt
= −DXT (φt(p))Q,

where φt is the flow of the vector field X, with the initial condition

(3.12) Q(0) =
Y ⊥(p)

T 〈Y ⊥(p),X(p)〉 .

Proof. See Appendix B.
Remark 3.7. It is clear that the classical adjoint method considers p ∈ γ, with φt(p) =

γ(t/T ) and γ(0) = p.
Remark 3.8. We will see in section 4, which is devoted to the numerical implementation,

that we will obtain a local approximation of the PRS semianalytically in a local domain
Ωloc ⊃ γ by computing the parameterization K and using formula (3.8). Proposition 3.6
will be especially useful for the numerical computation to extend the PRS in a bigger domain
Ω ⊃ Ωloc since we will globalize the local approximation by just integrating the adjoint equation
(3.11) backward (resp., forward) when the limit cycle is attracting (resp., repelling).

4. Methodology and numerical algorithm. In this section we will put together the theo-
retical results obtained in section 3 to design a numerical method, which constitutes the main
goal of this paper, that computes at the same time the isochrons and the PRSs of an analytic
given planar vector field X having a hyperbolic limit cycle.

Without loss of generality we will assume that γ is stable. We are going to divide the
method into several steps. In order to perform each of them, we will use some standard
methods/algorithms that we sketch now and that we explain in detail in this section. Precise
references are given for each case.
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Step 1. Solve the invariance equation (3.5) formally for K. In order to perform this step
we follow the algorithm presented in the proof of Theorem 5.4 in [3]. We will look for a formal
solution K of the invariance equation (3.5) expressed as a power series in σ,

K(θ, σ) =
∞∑

n=0

Kn(θ)σn,

and matching similar coefficients in σn on both sides of (3.5), we will reduce the problem to
solving (4.3) for K0 (the limit cycle) and T , (4.4) for K1 and λ, and (4.5) for Kn with n ≥ 2,
which will be introduced later in section 4.1.1.

For the numerical implementation we will truncate the power series at order L. This
provides an approximate solution K̃ of the invariance equation (3.5).

We refer the reader to section 4.1.1 for a complete description of the algorithm and to
sections 4.1.2 and 4.1.3 for the details of the numerical implementation.

Step 2. Determine the domain of accuracy Ωloc of the approximate solution K̃ for a given
tolerance. Given a fixed tolerance E we compute

(4.1) Ωloc(E) := {(θ, σ) ∈ T × R | ‖DK̃(θ, σ)X (θ, σ) −X(K̃(θ, σ))‖ < E},

where ‖ · ‖ is a norm in R
2 and X is given in (3.6), where λ and T are computed in Step 1.

The dependence on E of this domain will be suppressed to simplify notation. In section 4.2,
we show that Ωloc can be obtained by computing a nonvanishing function σ0 : T �→ R

+, such
that

(θ, σ) ∈ Ωloc ⇔ |σ| < σ0(θ).

We remark that Ωloc contains the limit cycle γ.
Step 3. Compute the isochrons in Ωloc by restricting K̃ to a fixed θ. This step is straight-

forward. Observe that the isochron for γ(θ0) is obtained from K̃ fixing θ = θ0 and for
|σ| < σ0(θ0). We compute the isochron on suitable points determined by the globalizing
method in Step 5 (see section 4.3).

Step 4. Compute the PRS in Ωloc from (3.8). This step is straightforward, using Y (K(θ, σ))
= ∂σK(θ, σ) in (3.8). Since it will be globalized together with the isochrons, it will be com-
puted on the same points in Ωloc as those required to globalize the isochrons (see section 4.3).

Step 5. Globalize the isochrons and the PRS to a domain Ω ⊃ Ωloc by integrating (2.1)
and (3.11). Since the isochrons are invariant for the time-T map of the flow of the vector
field X, one can take several points on the isochron provided by the local approximation in
Step 3 and iterate these points backward for the time-T map of the flow X. This procedure
extends the isochron to a bigger domain Ω. At the same time, one can compute the PRS for
the same points on the local approximation of the isochron according to Step 4 and integrate
(3.11) backward together with the vector field for time T . This extends the PRS to the points
on the global isochron. One can repeat this procedure for several isochrons and obtain the
isochrons and PRS for a mesh of points in a bigger domain Ω. We refer to this procedure as
the globalization of isochrons and PRSs.

In this paper we have chosen a more refined method to perform this globalization, which
follows the numerical method proposed in [27]. Using the idea in [27], we select a nonuniform
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mesh of points on the isochron so that the globalization procedure provides points less sparse
on the isochron. Moreover, if the limit cycle is strongly stable (that is, |λ| is big), it may
happen that, when integrating backward the vector field X up to time T , the orbits escape
very fast far from the limit cycle. For this reason, we will use instead that the isochrons are
carried into isochrons by the vector field X, and therefore, in order to globalize the isochron
of a point γ(θ0) we will use the backward iterates of the time-TΔθ map of the flow X taking
Δθ = 1/n for some n ∈ N, for several points on the local approximation of the isochron of the
point γ(θ0 +kΔθ) for different k ∈ N. In section 4.3 we describe in detail the method we have
used in this paper to globalize the isochrons and the PRS, which combines these two ideas.

In the following sections, we discuss in more detail the procedure of performing Steps 1,
2, and 5, including some numerical details about the implementation we have carried out.
This procedure is based on combining different methods and algorithms already present in
the literature, either borrowing them directly or adapting them to our problem. We specify
this in each case.

4.1. Solving the invariance equation (Step 1).

4.1.1. A formal solution for the invariance equation. In this section, we review the basic
steps of the algorithm presented in the proof of Theorem 5.4 in [3] to solve the invariance
equation (3.5) and prove the existence of a solution K. We refer the reader to [3] for more
details and a rigorous proof of the results.

In order to solve the invariance equation (3.5), we will first look for a K as a power series

(4.2) K(θ, σ) =
∞∑

n=0

Kn(θ)σn,

where the components of Kn are periodic functions of period 1, and then we will match the
coefficients in σn on both sides of (2.9).

For n = 0, one obtains

(4.3)
1
T

d

dθ
K0(θ) = X(K0(θ)),

which admits the solution K0(θ) = γ(θ), where γ is a parameterization of the limit cycle given
in (2.2) and T is the period of γ.

Remark 4.1. Notice that if K0(θ) is a solution, then K0(θ + ω) is also a solution for any
ω ∈ [0, 1). Therefore, there is some ambiguity in parameterizing the phase of an oscillation
that can be avoided by fixing the initial point corresponding to the zero phase. It can be fixed
anywhere on the limit cycle. In the context of tonic spiking in neuroscience, for instance, it
is common to fix θ = 0 at the peak of the spike.

For n = 1, we obtain

(4.4)
1
T

d

dθ
K1(θ) +

λ

T
K1(θ) = DX(K0(θ))K1(θ),

which tells us that K1(θ) is an eigenfunction with eigenvalue −λ of the operator L defined by

L :=
d

dθ
− T (DX ◦K0)(θ).
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Using Proposition 5.2 in [3], we know that K1(θ) is a solution of (4.4) with eigenvalue −λ
if and only if K1(0) is an eigenvector of the monodromy matrix Φ1 with eigenvalue eλ. The
monodromy matrix can be computed by solving the first variational equation

d

dθ
Φθ = TDX(K0(θ))Φθ,

with Φ0 = Id, and taking the value Φ1. Of course, now the problem reduces to computing the
eigenvalues and eigenvectors of a real matrix.

Recall that for planar vector fields, the other eigenvector is given by the vector field
X(K0(0)) = X(K0(1)) with associated eigenvalue 1.

Finally, it is easy to see that K1(θ) = e−λθΦθK1(0) is a solution of (4.4).
Remark 4.2. For the numerical computations when the eigenvalue eλ is very small, we will

use that λ =
∫ T
0 div(X(γ(t/T )))dt.

Remark 4.3. Notice that if K1(θ) is a solution of (4.4), then bK1(θ) for any b ∈ R is also a
solution. Even though all the choices of K1(θ) are mathematically equivalent, the choice affects
the numerical properties of the algorithm. See Remark 4.5 for a more detailed discussion.

For n ≥ 2, we have

(4.5)
1
T

d

dθ
Kn +

nλ

T
Kn = (DX ◦K0)Kn +Rn,

where Rn is an explicit polynomial in K0, . . . ,Kn−1 whose coefficients are derivatives of X
evaluated at K0. These coefficients will be computed numerically using the methods of auto-
matic differentiation (see, for instance, [12] and [18]).

By Proposition 5.2 in [3], (4.5) for n ≥ 2 can be solved provided that enλ is not an
eigenvalue of the monodromy matrix Φ1 associated to γ. Notice that this assumption is
satisfied for planar vector fields, provided that the limit cycle is hyperbolic, that is, λ �= 0.

Once K0(θ) and K1(θ) are fixed (see Remarks 4.1 and 4.3), the solution Kn(θ) for n ≥ 2
of (4.5) is uniquely determined. Taking into account that Kn are periodic solutions in θ, as
is usual in numerical implementations, we will discretize (4.5) using Fourier series and reduce
the problem to solving a linear system in the Fourier space; see sections 4.1.2 and 4.1.3 for
more details.

Finally, by Theorem 5.4 in [3] we know that, provided that λ satisfies the mentioned
conditions, the series constructed here converges to a true analytic solution of the problem.

For practical numerical implementations, it is clear that one can compute only a finite
number of terms in the Taylor expansion. Therefore, we will compute only an approximation
up to a certain order L of the real function K. Of course, the accuracy of these approximations
depends on the number of terms computed in the Taylor expansion as well as the size of the
neighborhood of the limit cycle where we evaluate the function. See section 4.2 for a discussion
of this aspect.

4.1.2. Fourier–Taylor series. We have seen in the previous section that in order to solve
(3.5) it will be convenient to consider Fourier–Taylor expansions of the unknown K, which
provides the conjugacy. Considering series expansions of the unknowns and computing the
coefficients numerically are a classical methodology in celestial mechanics to compute invariant
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manifolds and normal forms. Before discussing how to numerically solve the equations, we
review here some basic algorithms to manipulate these series numerically, and we discuss how
to store them. We also provide references for the reader interested in further details.

As we already mentioned in section 4.1.1, we first seek K as a power series in σ,

K(θ, σ) =
∞∑

n=0

Kn(θ)σn,

where Kn(θ) are 1-periodic functions in θ. Thus, using Fourier formalism, the Kn(θ) can be
written as

Kn(θ) =
∑
k∈Z

cnke
2πikθ.

Since Kn are real functions, we need only to store half of the coefficients or, equivalently,
store the cosine and sine Fourier series:

Kn(θ) = an
0 +

∑
k>0

an
k cos(2πkθ) + bnk sin(2πkθ),

where an
0 = Re(cn0 ), an

k = 2Re(cnk), and bnk = −2 Im(cnk ) for k > 0.
Remark 4.4. One of our goals is to apply this method to classical systems in neuroscience.

The main practical shortcoming in these cases is that the Fourier series are not adaptable to
the usual presence of spikes (slow-fast systems), where the Fourier coefficients decrease very
slowly and not uniformly. Although these systems can be analytic, from this numerical point
of view they behave as if they are not. In these cases, other methods of discretization which
are more adaptive like splines or wavelets could give some improvements.

We have seen that the discretization of the invariance equation (3.5) using Taylor ex-
pansions reduces the problem to solving the set of equations (4.3)–(4.5), which involves the
numerical evaluation of derivatives of X at K0(θ); in particular, to compute the term Rn(θ)
in (4.5), we need to evaluate the derivatives up to order n. In this context, automatic dif-
ferentiation is a very suitable tool to perform these computations. It consists of a set of
techniques to compute the derivatives of arbitrary order of a function evaluated at a fixed
value, accurate to working precision, avoiding in this way the numerical problems inherent
in symbolic and numerical differentiation. They are based on writing the function as a se-
quence of algebraic operations (sum, product, . . .) and elementary transcendental functions
(exp, sin, cos, log, power, . . .), and then applying systematically the chain rule to these oper-
ations (see [12], [14], [18], and also the Web page of the automatic differentiation community
http://www.autodiff.org/). Since the vector field X is analytic, it can be expressed as a se-
quence of elementary operations and transcendental functions, and automatic differentiation
allows us to evaluate the function Rn in (4.5) for n ≥ 2.

We have also seen that in the whole process we deal with periodic functions, which we
can store keeping either N +1 Fourier coefficients or the values of the function on a grid of N
equidistant points in real space. Depending on the operator acting on them, we will choose
the method that is more efficient in terms of the number of operations. Thus, the equations
presented in the previous section involve some operators that will be diagonal in Fourier space
(for instance, derivatives) and some that will be diagonal in real space (for instance, products

http://www.autodiff.org/
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and composition with transcendental functions). In order to pass from a grid representation to
Fourier series and vice versa we use the fast Fourier transform (FFT) (see, for instance, [1] for
a classical reference). In this work we have used the fftw3 library (see http://www.fftw.org/).

4.1.3. Numerical computation of Kn and estimation of the error. In this section we
discuss different methods to numerically solve (4.3), (4.4), and (4.5) for n ≥ 2 and determine
its accuracy.

Observe that (4.3) and (4.4) are special because they involve four unknowns (K0(θ), T,
K1(θ), λ). These two equations will be solved simultaneously using additional information.
Instead, (4.5) can be treated the same way for any n ≥ 2.

In order to solve (4.3) and (4.4) we will integrate the system of ODEs. The integration
method used is a Taylor method (we have used the routines provided by Jorba and Zou; see
[18] and http://www.maia.ub.es/∼angel/soft.html). We used adaptive step size, degree, and a
tolerance (absolute and relative) of 10−16.

Recall that for n = 0 we need to look for a periodic solution. In order to compute it,
we consider a Poincaré section and reduce the problem to finding a zero of the Poincaré map
that can be achieved using a Newton method. Note that for the Newton method we will
need to integrate the variational equations together with the vector field. The solution for the
variational equations will be used to solve (4.4) according to the method explained in section
4.1.1.

Once we obtain the limit cycles K0(θ) and K1(θ) we store them for equidistant values of θ;
that is, θi = i/N for i = 0, . . . , N − 1. Notice that this is equivalent to storing the coefficients
of the Fourier series up to degree N by means of the FFT algorithm.

For n ≥ 2 the most straightforward method is to discretize (4.5) using a basis of N + 1
Fourier coefficients and then apply a linear solver. However, once we have obtained K0 and
K1, we can perform a change of coordinates given by (x, y) = g(θ, σ) = K0(θ) + σK1(θ). If
we apply the method again to the system obtained after this change, then it turns out that
(4.5) becomes diagonal in Fourier series. Once we obtain the solution as a Fourier series we
can go back to real space using the FFT. Again, as in the previous cases we store Kn for
equidistant values of θ. An alternative method consists of applying a quasi-Newton method
to the invariance equation (see, for instance, [15]). By now, the results shown in section 5
have been obtained using the straightforward method.

In order to decide up to which order N we compute the Fourier series, we require that
the residuals are of a size of order smaller than a certain tolerance Etail that we set at 10−12.
That is, we truncate the Fourier series up to some order N in such a way that the norm of
the last 10% of Fourier coefficients is smaller that the considered order; in symbols

(4.6) |Ktail
n | =

N/2∑
k=	0.9N/2


|an
k | + |bnk | < Etail.

To check the accuracy of the solutions Kn obtained, we substitute them in the correspond-
ing equation ((4.3) if n = 0, (4.4) if n = 1, and (4.5) if n ≥ 2) for discrete values of θ, that is,
θi = i/N for i = 0, . . . , N−1. For each value θi, this substitution provides an evaluation of the
error En(θi). Finally, we compute the discrete �1 norm of {En(θi)}N−1

i=0 to get the accuracy;

http://www.fftw.org/
http://www.maia.ub.es/~angel/soft.html
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that is,

(4.7) ‖En‖ =
1
N

N−1∑
i=0

|En(θi)|.

Notice that the computation of En(θi) again involves an FFT.

4.2. Domain of accuracy of the local approximation (Step 2). Up to this point we
assume that we have solved approximately using Fourier series up to degree N (4.3) for n = 0,
(4.4) for n = 1, and (4.5) for n = 2, . . . , L, for a fixed value of L, according to the procedure
described in the previous sections. Thus, we have an approximate solution of the invariance
equation (3.5), which is given by

(4.8) K̃(θ, σ) =
L∑

n=0

K̃n(θ)σn,

where

K̃n(θ) = an
0 +

N/2∑
k=1

an
k cos(2πkθ) + bnk sin(2πkθ)

is an approximate solution of (4.3) for n = 0, (4.4) for n = 1, and (4.5) for n = 2, . . . , L.
Now, we need to determine the domain Ωloc where the solution K̃ is accurate; that is,

the function K̃ satisfies the invariance equation (3.5) up to a certain tolerance E that we
established as being between 10−8 and 10−12 (see definition in (4.1)).

In order to do that, we fix a value of θ, say, θ = θ∗, and we compute σ0(θ∗) satisfying that
for all σ ∈ R such that |σ| < σ0(θ∗) one has

(4.9)

∥∥∥∥∥ 1
T

L∑
n=0

K ′
n(θ∗)σn +

λ

T

L∑
n=0

nKn(θ∗)σn −X

(
L∑

n=0

Kn(θ∗)σn

)∥∥∥∥∥ < E,

where

K ′
n(θ∗) = 2π

N/2∑
k=1

kbnk cos(2πkθ∗) − kan
k sin(2πkθ∗)

and ‖ · ‖ is a norm in R
2.

Remark 4.5. Recall that if K(θ, σ) is a solution of the invariance equation (2.9), so is
K(θ + ω, bσ) for any ω ∈ [0, 1) and b ∈ R. As we already mentioned in Remark 4.1, the
choice of ω is related to the zero phase for the limit cycle. So, following the usual criterion in
neuroscience, we will fix the zero phase for the oscillator at the maximum value of a specific
variable, in neuroscience the voltage (spike). The choice of b is related to the domain of
convergence. Hence, if we choose a large b, the domain where we can evaluate the series will
be small. Although mathematically we can choose any value of b, for the numerical stability it
will be convenient to choose a value of b such that the coefficients Kn can be kept at order 1,
so that one can avoid the round-off errors. Notice that if we consider bK1, then the new Kn

is bnKn for n ≥ 2.
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However, in some cases, the Kn are not uniform in θ, and in these cases one cannot find a
global b. The immediate consequence of this fact is that for some values of θ, the Kn become
smaller than the machine precision, and one cannot trust them. For these values, increasing
the order L of the Taylor polynomial has no effect on increasing the domain where the local
approximation is reliable. This phenomenon can be seen in Example 5.5 close to a saddle node
of invariant circles (SNIC) bifurcation. See also the section devoted to numerical drawbacks
for slow-fast systems in the discussion.

4.3. Globalization method (Step 5). In this section we will describe a method to globalize
the isochrons and the PRSs obtained in the domain Ωloc. Recall that this means extending
the isochrons and the PRSs to a bigger domain Ω ⊃ Ωloc, which reaches far away from the
limit cycle. The method we propose will be adapted from the one introduced in [27], which
incorporates several tricks to improve the standard way to extend local approximations of
invariant manifolds.

We will discuss first how to globalize the isochrons, and finally we will see that we can
globalize the PRS for the same points obtained on the globalized isochron.

Recall from section 4.2 that, numerically, given an error bound (10−8–10−12), for each
θ ∈ T, we can compute the isochron only up to a point p parameterized by (θ, σ) with
|σ| < σ0(θ). This is the local approximation for the isochron.

Recall also that the isochrons are invariant under the time-T map of the flow φt of the
vector field X, and they lie on the stable manifold. Therefore, a straightforward method to
globalize the isochron corresponding to the point γ(θ0) on the limit cycle involves taking n
points on the local isochron, which are parameterized by (θ0, σ) with |σ| ∈ (σ0(θ0)eλ, σ0(θ0)),
and then performing iterates of the inverse time-T map φ−T for these points. This would be
the standard way.

However, in many cases (included models in neuroscience in which we are especially inter-
ested) the standard method has the disadvantage that we get too many points close to γ(θ0)
and just a few far from it. Moreover, some of them may escape very fast far from the limit
cycle.

This last shortcoming can be avoided using that isochrons, even if they are not invariant
under the flow of X, are preserved by the flow; that is, isochrons are carried onto isochrons.
Hence, we can consider inverse time-TΔθ maps φ−TΔθ taking Δθ = 1/n, n ∈ N, as well
as n local isochrons corresponding to γ(θ0 + kΔθ) for k = 0, . . . , n − 1. Then, to globalize
the isochron corresponding to γ(θ0), we obtain several points {pi}i=0,...,m on this isochron
from points {qi}i=0,...,m on the other isochrons in the following way: consider a point qi =
K(θ0 + kiΔθ, σi) for some ki ∈ N, 0 ≤ ki ≤ n − 1, and σi ∈ R, |σi| ≤ σ0(θ0 + kiΔθ), and
compute pi as

(4.10) pi = φ−kiTΔθ(qi)

for i = 0, . . . ,m. See Figure 1 for an schematic illustration of this idea.
The method in [27] (see also [19] for another alternative) provides a systematic way to

determine which σi and ki for i = 0, . . . ,m one has to choose so that the points {p0, . . . , pm}
obtained on the global isochron are well distributed everywhere on the isochron, overcoming
the problem of sparseness far from the limit cycle.
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p0

p1

p2

p3

p4

q0
q1

q2

q3

q4
γ(θ0)γ(θ0 + Δθ)

γ(θ0 + 2Δθ)

Figure 1. Schematic representation for the globalization procedure with “intermediate” isochrons. See also
(4.10).

Next, we explain in detail the globalization method, which uses the techniques introduced
in [27] adapted to the case in which one considers “intermediate” isochrons to globalize them.

We want to extend the local isochron corresponding to a phase θ0. We are going to
approximate the isochron by a sequence of points {p0, . . . , pm} on it, for which we will assume
that they are at a distance smaller than some tolerance Δs, that is,

‖pm − pm−1‖ < Δs,

where ‖ · ‖ is the standard Euclidean norm in R
2, and the angle between three consecutive

points is bigger than a certain tolerance Δα,

(pm−1 − pm−2) · (pm − pm−1) ≥ cos(Δα)‖pm−1 − pm−2‖‖pm − pm−1‖.

Assume that we have computed a sequence of points up to pm satisfying the previous
conditions and we have a current value of σm and Δσm such that σm = σm−1 + Δσm and a
certain iterate k such that

φ−kTΔθ(K(θ0 + kΔθ, σm)) = pm.

We want to predict the new σm+1 and therefore Δσm+1 such that

φ−kTΔθ(K(θ0 + kΔθ, σm + Δσm+1)) = pm+1,

satisfying that it is at a distance smaller than Δs from pm.
Then, we consider

Δσm+1 = min
(

Δs
Δsm

,
Δα

Δαm
, 1.5

)
Δσm0.8,
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where Δsm is the distance between pm−1 and pm and Δαm the angle between v̄ = pm−1−pm−2

and w̄ = pm − pm−1. The factor 0.8 can be seen as a security factor.
If σm+1 = σm + Δσm+1 falls into the allowed range for σ, that is, |σm+1| < σ0(θk), where

θk = θ0 + kΔθ, which means that we are in the range where the local approximation of the
isochron for θk is accurate, we apply the map φ−kTΔθ and we obtain pm+1. In this case we
define km+1 = k according to (4.10).

Otherwise, we keep dividing both σm+1 and Δσm+1 by eλΔθ, l times, until |σm+1| <
σ0(θk+l). We say then that km+1 = k + l and we compute pm+1 from (4.10). Typically l = 1,
but it can be greater. We replace k by k + l.

If despite our choice of Δσm the obtained point pm+1 fails to satisfy one of the conditions,
we can either consider a smaller Δσm+1 (taking into account that the Δσ’s cannot be smaller
than a certain value Δmin) or keep the computed point and use an interpolation method for
this part.

Remark 4.6. Of course the map φ−TΔθ has to be computed by integrating the vector field
X backward for time t = TΔθ.

Finally, we globalize the PRS in parallel with the isochrons: we approximate them locally
according to (3.8) and we globalize them integrating the system (3.11) backward together with
the vector field. That is, for each pm obtained from qm = K(θ0 + kmΔθ, σm) ∈ Ωloc according
to (4.10), we compute ∇ϑ(pm) using Proposition 3.6 in the following way:

∇ϑ(pm) = Ψ−kmTΔθ(∇ϑ(qm)),

where Ψt is the flow of (3.11) and ∇ϑ(qm) is obtained from (3.8).

4.4. Software. The algorithms have been implemented in C language and have been run
under the Linux environment. They have been applied to compute isochronous sections and
PRCs of limit cycles for planar vector fields which appear in models of neuroscience and
neurobiology.

The program performs the following steps: (1) computation of the limit cycle and its pe-
riod, the monodromy matrix, and the characteristic exponent; (2) computation of the Fourier–
Taylor expansions of the isochrons; (3) computation of the domain of accuracy and the local
approximation for the isochrons and the PRS; (4) globalization of the isochrons and the PRS.
The figures are obtained using gnuplot.

Although we already mentioned it in this section, we recall here that we have used a Taylor
method to integrate the system of equations and in particular the routines provided by Jorba
and Zou in http://www.maia.ub.es/∼angel/soft.html. And we have used the fftw3 library to
perform the FFT transform.

5. Examples. In this section, we apply our method to representative examples, ranging
from the most simple instances of Hopf and SNIC (saddle-node on an invariant curve) bifur-
cations and the classical van der Pol oscillator to more sophisticated neuronal models. Apart
from obtaining isochrons, PRCs, and PRSs, through these examples we want to illustrate dif-
ferent facts: (a) what are the clues to explain the transition from “Type I” PRCs to “Type II”
PRCs; (b) the numerical problems that arise when dealing with slow-fast systems; and, (c) up
to which degree PRSs show disagreement with PRCs in the same phase and how this can affect
high frequency stimulation. We end the paper with a discussion on these facts in section 6.

http://www.maia.ub.es/~angel/soft.html
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We start with a direct application to the simplest vector fields that exhibit either a Hopf
or a SNIC bifurcation, for which we can compute their limit cycle and the corresponding
normalizing vector field analytically and we can also get an analytic expression for the PRC.

Example 5.1. We consider a simple example of a supercritical Hopf bifurcation

(5.1)
{
ẋ = βx− y − x(x2 + y2),
ẏ = x+ βy − y(x2 + y2)

for (x, y) ∈ R
2 and β being a real parameter, which writes, in polar coordinates (r, φ) ∈

R
+ × [0, 2π), as {

ṙ = r(β − r2),
φ̇ = 1.

For β = 0, there is a supercritical Hopf bifurcation giving rise, for β > 0, to a stable limit
cycle γ of radius

√
β and period T = 2π. We parameterize γ by the phase θ = φ/(2π) ∈ T in

the following way:
γ(θ) = (

√
β cos(2πθ),

√
β sin(2πθ)).

It is not difficult to see that the vector field Y (x, y) = (x, y) and the function μ(x, y) =
−2(x2 + y2) satisfy the condition (2.4).

Hence, taking into account that Y ⊥ = (−y, x) and 〈Y ⊥,X〉 = x2 + y2, by (3.8) the phase
shift for a point p = (x, y) ∈ Ω is given by

∇ϑ(p) =
1
2π

(
− y

x2 + y2
,

x

x2 + y2

)
.

Then, using the parameterization of the limit cycle, the PRC is just

∇ϑ(γ(θ)) =
1

2πβ
(−
√
β sin(2πθ),

√
β cos(2πθ)).

That is, PRC1(θ) = − sin(2πθ)/(2π
√
β), and PRC2(θ) = cos(2πθ)/(2π

√
β).

Example 5.2. The easiest way to obtain a saddle node on an invariant cycle bifurcation is
through

(5.2)
{

ṙ = r(β − r2),
φ̇ = m− sin(φ),

where (r, φ) ∈ R
+ × [0, 2π), and β and m are real parameters, which, in cartesian coordinates

(x, y) ∈ R
2, writes as ⎧⎪⎪⎨

⎪⎪⎩
ẋ = βx−my − x(x2 + y2) +

y2√
x2 + y2

,

ẏ = mx+ βy − y(x2 + y2) − xy√
x2 + y2

.

We assume that β > 0 and m > 1. Therefore, there exists a unique and stable circular
limit cycle γ of radius

√
β and period T = 2π/

√
m2 − 1 that we parameterize by the phase θ

satisfying θ̇ = 1/T , θ ∈ [0, 1) in the following way:

γ(θ) = (
√
β cos(Ω(θ)),

√
β sin(Ω(θ))),
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where Ω is the phase transformation between θ and φ, given by the solution of the Cauchy
problem

1
T

dΩ
dθ

= m− sin(Ω(θ)); Ω(0) = 0.

The explicit solution can be obtained analytically:

(5.3) Ω(θ) = 2 arctan
(

m sin(πθ)√
m2 − 1 cos(πθ) + sin(πθ)

)
.

Again, as in Example 5.1, the vector field Y (x, y) = (x, y) and the function μ(x, y) =
−2(x2 + y2) satisfy condition (2.4).

Hence, taking into account that Y ⊥ = (−y, x) and

〈Y ⊥,X〉 = m(x2 + y2) − y
√
x2 + y2,

by (3.8) the PRS for p = (x, y) ∈ Ω is given by

∇ϑ(p) =
√
m2 − 1
2π

(
− y

m(x2 + y2) − y
√
x2 + y2

,
x

m(x2 + y2) − y
√
x2 + y2

)
,

and by the parameterization γ of the limit cycle

∇ϑ(γ(θ)) =

√
m2 − 1

2πβ(m− sin(Ω(θ)))
(−
√
β sin(Ω(θ)),

√
β cos(Ω(θ))).

That is,

PRC1(θ) = −
√
m2 − 1 sin(Ω(θ))

2π
√
β (m− sin(Ω(θ)))

(see Figure 2), and PRC2(θ) =
√

m2−1 cos(Ω(θ))

2π
√

β (m−sin(Ω(θ)))
.

θ
0.2 0.4 0.6 0.8 1.0

K0.7

K0.6

K0.5

K0.4

K0.3

K0.2

K0.1

0

Figure 2. PRC1 for system (5.2) with m = 1.1, β = 1. Observe the slightly positive bump when θ ∈ (0.9, 1)
approximately.
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5.1. Numerical examples. We present here an application of the method described in
section 4 to a set of examples we found relevant either to illustrate the properties or because
they are representative of classical models:

1. The Van der Pol oscillator:

(5.4)
{
ẋ = −y + x− x3,
ẏ = x.

2. A reduced Hodgkin–Huxley–like system, with sodium and potassium currents, and
only one gating variable:

(5.5)

{
V̇ = − 1

Cm
(gNam∞(V )(V − VNa) + gKn(V − VK) + gL(V − VL) − Iapp),

ṅ = n∞(V ) − n,

where V represents the membrane potential, n is a gating variable, the open-state
probability functions are

m∞(V ) =
1

1 + exp(−(V − Vmax,m)/km)
, n∞(V ) =

1
1 + exp(−(V − Vmax,n)/kn)

,

and the parameters are Cm = 1, gNa = 20, VNa = 60, gK = 10, VK = −90, gL = 8,
vL = −80, Vmax,m = −20, km = 15, Vmax,n = −25, kn = 5.

3. The Selkov model (see [26]), initially a model for self-oscillations in glycolysis, which
has also been extensively used in models for circadian rhythms (see, for instance, [6]
and [23]). It is given by

(5.6)
{
ẋ = 1 − x y,
ẏ = a y (x− (1 + b)/(1 + b y)),

where the parameters are a, b ∈ R.
4. The Morris–Lecar model (see [20]), initially conceived as a model for a barnacle giant

muscle fiber, but well studied in the neuroscience literature (after [24]) as a paradigm
for the different bifurcations that give rise to limit cycles. The model is given by

(5.7)

⎧⎨
⎩

V̇ = 1
C (I − gL(V − VL) − gKω(V − VK) − gCam∞(V )(V − VCa)) ,

ẇ = φ
w∞(V ) −w

τw(V )
,

where

m∞(V ) =
1
2
(1 + tanh((V − V1)/V2)),

w∞(V ) =
1
2
(1 + tanh((V − V3)/V4)), and

τw(V ) = (cosh((V − V3)/(2V4)))
−1 ,

and the parameters are VL = −60, VK = −84, VCa = 120, V1 = −1.2, V2 = 18, V3 = 2,
V4 = 30, gL = 2, gK = 8.0, gCa = 4.4, C = 20, and φ = 0.04. These values correspond
to the first case studied by Rinzel and Ermentrout in [24].

All these examples share common characteristics with slight differences that will be re-
marked on at the end of this section. Let us start, then, with the common features.
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5.1.1. Common features: Methods, parameter values, and figure labeling. In all the
cases, we are interested in studying the dynamics close to a hyperbolic stable limit cycle γ
of period T that surrounds a critical point p∗. The zero phase point on γ is the point which
has a maximum value of the first component (x or V depending on the example). As in
previous sections, we call λ the characteristic exponent of γ (so, the characteristic multiplier
is eλ). The computation of the periodic orbits has been performed using a Newton method
with a tolerance of 10−15. In the neighborhood of γ, we have performed a Taylor expansion
as in (4.8) up to order L and we have considered N + 1 Fourier coefficients for the Kn. With
them we obtain residuals for the Kn as defined in (4.6), which are of order Etail. The local
approximation that we get for the isochrons defined in (4.9) is computed with an error smaller
than Eloc, while the globalization of the manifold has been performed following section 4.3 and
using a Taylor method with a tolerance of order 10−16. In the globalization (see definitions
after (4.10)), we require a distance of order Δs = 10−2 between two consecutive points on the
isochron, and we fix Δmin = 10−8 and Δα = 0.3.

Values for each example of all the parameters defined in the last paragraph are given in
Table 1. All the results will be given with four significant digits, although all the computations
have been performed with double precision.

Table 1
Parameter values for the different models: T = period of the orbit γ; λ = characteristic exponent associated

to γ; L = order of the Taylor expansion; N + 1 = number of Fourier coefficients; Etail = residuals for the Kn;
Eloc = maximum error when computing local approximation of isochrons.

Model Figure T ≈ λ ≈ L = N = Etail ∈ Eloc =

1 3 6.663 −7.059 15 28 = 256 (10−20, 10−15) 10−12

2, Iapp = 10 4 7.074 −27.66 5 211 = 2048 (10−17, 10−12) 10−8

2, Iapp = 165 5 1.630 −3.384 10 29 = 512 (10−19, 10−14) 10−10

3 6 6.344 −4.909 15 29 = 512 (10−16, 10−14) 10−11

4 7 99.27 −9.122 5 210 = 1024 (10−20, 10−13) 10−8

For each model, we present a figure (Figures 3 to 7) with different panels. In order to
compact notation, we label each panel with a different symbol: Kn, Iso, PRC, PRS, and PRθ.

In panels Kn, the computed Kn for some values of n are shown. The fact that the orbits do
not approach γ uniformly in θ has the effect that for certain values of θ, as n goes to infinity,
the value of Kn is not uniform in θ; see the slow-fast item in section 6 for a discussion on this
question.

In panels Iso we plot the isochrons corresponding to the phases j/Nθ for j = 0, . . . , Nθ−1,
with Nθ = 16, typically. We show the local approximation (black) computed semianalytically
using the parameterization method and the globalized isochron (red) using the dynamics given
by the vector field. We restrict the computation to a rectangular domain R in the variables
(x, y) containing the limit cycle.

In panels PRC we plot the PRC1 (red) and the PRC2 (blue) for an infinitesimally small
perturbation in the directions (1, 0) and (0, 1), respectively, with a certain amplitude specified
in each figure caption, jointly with the x (or V ) component (dashed line) of the oscillator
(scaled for a better reference). Notice that the PRC1, corresponding to the horizontal pulses,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1030 A. GUILLAMON AND G. HUGUET

is just the section with σ = 0 of the PRSs that are given in panels PRS.
In panels PRS, we plot the PRS1 in the variables θ and σ, but only for positive values

of σ, avoiding negative values for the sake of clarity. The positive values of σ correspond to
the points (x, y) in the external part of the limit cycle (depending on the orientation of the
limit cycle, the sign of σ defined by the parameterization method out of the limit cycle can
be also negative; in these figures we change σ �→ −σ for the sake of homogeneity). Indeed,
in these panels we plot the phase shift for the points (x, y) in the outer neighborhood of the
limit cycle displayed in panels Iso. Since we restrict our attention to the rectangular domain
R in the variables (x, y) (because they are the “real” phase space variables), when plotting
the PRS in the variables (θ, σ), we come across a nonregular domain. Additionally, sometimes
the discretization of local isochrons (Δs) used to globalize other isochrons undergoes the limit
Δmin and can no longer extend the isochron. This is why some isochrons do not reach the
border of the rectangular domain R.

Like the isochrons, the PRS1s are computed locally using semianalytical methods and
extended by integrating the system (3.11); see section 4.3.

Although the PRSs contain the maximum information about phase advancement, some-
times they are not easy to visualize. Accordingly, we have decided to show sections of the
PRSs with fixed phases (that is, θ = θ∗ and parameterized by σ). Using this view, we can
easily illustrate the differences in phase advancement between different points on the same
isochron. These panels are labeled as PRθ.

Before the discussion, we go through the noncommon features of each example. In the
following list M stands for Model.

M2. For the Hodgkin–Huxley–like model (5.5), we have studied the system in two regimes:
Iapp = 10 (close to a SNIC bifurcation which occurs at Iapp ≈ 4.513) and Iapp = 165 (close
to a Hopf bifurcation which occurs at Iapp ≈ 213.8). Bifurcation values are obtained through
XPPAUT ; see [7].

For the case Iapp = 10, which is the case close to SNIC, the system presents a slow-fast
dynamics that will accentuate some of the problems that we already mentioned in the previous
example. In this case, we computed the Taylor expansion up to order L = 5, because, as we
can appreciate in Figure 4, for some values of θ, as n increases the Kn tend to zero much
faster. Moreover, since the functions Kn present very sharp spikes we need to consider up to
210 = 1024 or 211 = 2048 Fourier modes to get good approximations, that is, with residuals
smaller than a certain error. This implies solving linear systems with large matrices that are
not very stable.

Notice that this limit cycle is “strongly” hyperbolic and the backward integration can be
somehow very unstable.

The system presents a fixed point at (−26.83, 0.4093), which is computed using a Newton
method with a tolerance of 10−13.

One can appreciate in Figure 4 that the isochrons computed semianalytically (the green
ones, which are hardly noticeable) are shorter than in the Hopf case (Figure 5). In this case,
in order to have a long enough local approximation for the isochrons, we reduced the accuracy
of the computation down to 10−8.

For the case Iapp = 165, which is close to the Hopf bifurcation, in Figure 5 one can observe
that the slow-fast phenomenon that we mentioned above is softened. The system presents a
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hyperbolic fixed point at (−21.00, 0.6899), which has been computed numerically with an error
smaller than 10−13.

M3. The Selkov model (5.6) presents an Andronov–Hopf bifurcation for a = (1 + b)/b.
We have considered here the case a = 3, b = 1. The unstable fixed point, which can be easily
computed analytically, is located at (1, 1).

In this example, we have decided to make the starting points on the isochron closer to
one another, because points diverge very fast far from the limit cycle; consequently, we allow
Δmin = 10−12.

M4. For the Morris–Lecar model (5.7), we have considered the case Iapp = 91, which
presents issues similar to the two-dimensional Hodgkin–Huxley model close to a SNIC con-
sidered above.

The system has a fixed point at (−26.26, 0.1320), which is computed using a Newton
method with a tolerance of 10−13.

It is to be noticed that (5.7) presents a subcritical Hopf bifurcation at Iapp ≈ 93.86; the
unstable limit cycle goes “back” in the parameter space up to Iapp ≈ 88.29, where it coalesces
with a stable limit cycle in a bifurcation of a semistable limit cycle that disappears for lower
Iapp’s. The stable limit cycle, which comes from another bifurcation for some Iapp � 93.86, is
the one that we study. It can be checked that the period of this stable orbit is notably above
of that of the unstable orbit, born at the subcritical Hopf bifurcation; thus, one may expect
an accentuated slow-fast dynamics, more similar to a limit cycle close to a SNIC bifurcation
than to a Hopf bifurcation.

Some of the shortcomings of the Hodgkin–Huxley model close to a SNIC are also repro-
duced here: it is necessary to solve linear systems with large matrices that are not very stable;
the limit cycle is “strongly” hyperbolic and the backward integration can be somehow very
unstable; and, finally, to have a long enough local approximation for the isochrons, we need
to reduce the accuracy of the computation.

Another specific observation is that the isochrons spiral around the unstable limit cycle in
the interior of the stable one. This is not surprising since the two limit cycles have different
periods, and so they cannot share the system of isochrons. The next short example analytically
illustrates this fact.

Example 5.3. Consider the C1 system in polar coordinates

X :=
{
ṙ = r a(r),
θ̇ = b(r).

Suppose that a(rj) = 0, a′(rj) �= 0, and b(rj) �= 0 for j = 1, 2, with r1 �= r2, both positive.
It is straightforward to see that {r = r1} and {r = r2} are hyperbolic limit cycles of X

with alternate stability. From [10], we can deduce that, for each limit cycle, the vector field

Yj :=
{
ṙ = r,

θ̇ = (b(r) − b(rj))/(a(r))

satisfies [Yj,X] = μYj , with μ(r) = r a′(r).
Now let us take Y1, for instance. It is clear that, in general, θ̇ is not defined on r = r2

since a(r2) = 0. However, if b(r2) = b(r1) (both limit cycles have the same period!), then θ̇



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1032 A. GUILLAMON AND G. HUGUET

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

K
n

θ

Kn
K1
K5

K10
K15

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

y

x

Iso
global isochron

local isochron
limit cycle

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Δθ

θ

PRC
V

PRC1
PRC2

-0.2
-0.15
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

PRS1(θ,σ)

PRS

θ

σ

PRS1(θ,σ)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

P
R

S

σ

PR θ
θ=0.625
θ=0.672
θ=0.781

Figure 3. The van der Pol oscillator. In the panel PRC, we show PRC1 and PRC2 with amplitude 1 and
x scaled by a factor 0.1. See section 5.1.1 for a general explanation about the contents of each panel. In panel
PRθ, notice the diversity of phase advancements that can be obtained in the same isochron (three isochrons are
shown: θ = 0.625, 0.672, 0.781).

may be extended on r = r2, and thus {r = r2} may be contained in the domain Ω, where the
isochrons of {r = r1} are defined. This is the case, for instance, when the system is rigid
(θ̇ = constant), for which the isochrons are straight lines from the origin.

In the case that b(r2) �= b(r1) (different periods like the numerical example illustrated in
Figure 7), θ̇ in Y1 is not bounded close to {r = r2}, and, then, the isochrons of {r = r1}
spiral around.
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Figure 4. Two-dimensional Hodgkin–Huxley close to a SNIC bifurcation. In the panel PRC, we show PRC1

and PRC2 with amplitude 10 and 0.1, respectively, and V scaled by a factor 0.01. See section 5.1.1 for a
general explanation about the contents of each panel. In panel Iso, notice the heterogeneity in the distances
between isochrons with equidistant phases, thus reflecting the slow-fast nature of the system.

6. Discussion. Generally, we want to emphasize the different approaches used in this
paper. The main goal is to compute a biologically interesting object, the PRSs, but it involves
the computation of isochrons in a rigorous way. To achieve this intermediate purpose, we have
related different ways of understanding the dynamics in a neighborhood of an isochronous
limit cycle: the geometrical approach given by the Lie symmetries and analytical methods
to compute invariant manifolds. Both have been useful either to express or to compute the
PRSs.
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Figure 5. Two-dimensional Hodgkin–Huxley close to a Hopf bifurcation. In the panel PRC, we show PRC1

and PRC2 with amplitude 2 and 0.02, respectively, and V scaled by a factor 0.01. See section 5.1.1 for a
general explanation about the contents of each panel.

We have also paid careful attention to the numerical aspects involved in the method, which
are not trivial, and showed relationships among the geometry of the orbits, the dynamics of
the vector field, and the numerical schemes. Concerning the practical part of the effective
computation, the above examples have shed light upon different biological and numerical
issues that we would like to discuss next.

From “Type 1” to “Type 2” PRCs. As we mentioned in the introduction, from [8], PRCs
are classified as models with strictly positive or mainly positive PRCs (“Type 1” or “Class 1”)
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Figure 6. Selkov model with a = 3 and b = 1, not far from a Hopf bifurcation. See section 5.1.1 for a
general explanation about the contents of each panel.

and models whose PRCs change sign (“Type 2” or “Class 2”). The rule of thumb proposed
by Ermentrout is that Type 1 PRCs correspond to models in which oscillations appear via
saddle-node on invariant circle bifurcations, whereas Type 2 PRCs correspond to supercritical
Andronov–Hopf bifurcations.

Our examples confirm this rough classification, and we have used them to give an idea of
how the transition between the two PRC types takes place. Another study, using only PRCs
and continuation methods, has recently appeared in [11].

Analytically, we have seen, for instance (see Example 5.1), that PRC1(θ) =
− sin(2πθ)/(2π

√
β) close to a Hopf bifurcation and (see Example 5.2) PRC1(θ) =



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1036 A. GUILLAMON AND G. HUGUET

-5

 0

 5

 10

 15

 20

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

K
n

θ

Kn
K1
K3
K5

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-100 -50  0  50  100

w

V

Iso
global isochron

local isochron
limit cycle

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Δθ

θ

PRC
V

PRC1
PRC2

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 5

 10
 15

 20
 25

 30
 35

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

PRS1(θ,σ)

PRS

θ

σ

PRS1(θ,σ)

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  5  10  15  20  25

P
R

S

σ

PR θ
θ=0.156
θ=0.516
θ=0.781

Figure 7. Morris–Lecar model. In the panel PRC, we show PRC1 and PRC2 with amplitude 1 and 0.01,
respectively, and V scaled by a factor 0.001. See section 5.1.1 for a general explanation about the contents of
each panel. In panel Iso, notice how isochrons spiral around the unstable limit cycle; see also the paragraph
before Example 5.3, on page 1031.

−√
m2 − 1 sin(Ω(θ))/(2π

√
β(m − sin(Ω(θ))), where Ω is given in (5.3), for a system that

presents a SNIC bifurcation at m = 1 (see also Figure 2).
These examples clearly show that the fact that systems with oscillations coming from

a saddle-node bifurcation are of “Type 1,” that is, the PRC is mainly positive (or mainly
negative), is produced by the slow-fast dynamics; moreover, the time it spends on a negative
(resp., positive) regime is very short compared to the time it spends out of it. This fact can
also be observed when comparing (5.5) with Iapp = 10 (see Figure 4) or (5.5) with Iapp = 165
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(see Figure 5). For instance, in Figure 4, panel PRC, we can appreciate a small negative portion
of the PRC1 (close to θ = 0.1), whereas in the same panel of Figure 5, the negative part has
a bigger area. As the value Iapp increases from Iapp = 10, the negative portion of the PRC
is enlarging up to the bifurcation point Iapp ≈ 213.8, where the PRC has practically zero
integral.

Observe also that systems with a marked “Type II” tendency (mainly, (5.4), (5.5) with
Iapp = 165, or (5.6)) reach the extreme values of the PRCs where the isochrons have maximal
curvature nearby the limit cycle (the correspondence is not exact because it also depends on
the stimulus direction). Compare panels PRC with panels Iso in Figures 3, 5, and 6. On the
other hand, the chosen value for the Morris–Lecar system (see Figure 7) shows an intermediate
behavior, perhaps closer to “Type II” than to “Type I” (recall from M4 that it takes place
close to a double limit cycle bifurcation).

Numerical drawbacks for slow-fast systems. From a joint analysis of panels Kn and Iso
in Figures 3 to 7, we can deduce the effect of slow versus fast dynamics.

The fact that we impose the same dynamics (2.7) in the variables (θ, σ) in the whole
neighborhood of the limit cycle has a dramatic effect when the system presents two different
dynamics (slow and fast).

On the one hand, the slow-fast dynamics causes the presence of spikes in the functions
Kn, and when trying to approximate this type of function using Fourier series one faces the
problem that the series converge slowly and not uniformly, and therefore one needs to keep a
large number of harmonics in order to approximate Kn. This phenomenon is clearly observed
in system (5.5) close to the SNIC bifurcation (see also the panel Kn in Figure 4).

Moreover, the presence of two types of dynamics can be thought of as if the periodic orbit
possesses different rates of contraction (in different places) which are remarkably different.
When imposing a uniform λ in a neighborhood of the limit cycle γ, the change of coordinates
K that conjugates the dynamics to (3.6) is not uniform in θ ∈ T. That is, for some values of
θ ∈ T, the functions Kn take values with orders of magnitude above the rest of the cycle; in
other terms, maxθ |Kn(θ)|

minθ |Kn(θ)| � 1. The numerical problem is that, in this case, it is impossible to
choose a uniform b (see Remark 4.5) such that the Kn can consistently have order 1 for all
the values of θ. Thus, for these values of θ, increasing the degree L of the Taylor polynomial
does not have any effect on the growth of the domain where the isochron can be computed
semianalytically. This situation turns out to be a serious issue for the cases when the systems
present an accentuated slow-fast dynamics (see panel Kn in Figure 4).

Role of PRSs under high frequency stimulations. As explained in section 1, the phase
advancement computed on the limit cycle (PRC) can differ from that computed out of the
limit cycle (PRS). This difference will be important under different circumstances like a
short period of stimulation, a slow attraction to the limit cycle, a large stimulus amplitude,
environmental random fluctuations, and bursting-like stimuli. We now fix our attention to
panels PRS and PRθ in all the figures. Our purpose is to highlight the differences in the phase
advancement for points in a neighborhood of γ which share the same phase θ.

As with the maximum and minimum values of the PRCs, we pay attention to the zones
close to the limit cycle where the curvature of the isochrons is extreme. This phenomenon
can be timidly observed in Figure 4, panel PRθ, where the section θ = 0.75 of the PRS is
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shown to be decreasing. More exaggerated variations can be obtained for θ = 0.15625 in
Figure 5, panel PRθ, or in Figure 3. In the latter case, we show a zoo of possible sections
(θ ∈ {0.672, 0.625, 0.781}).

Changes of the phase advancement with respect to σ given a fixed θ, as the above examples
show, combined with high frequency stimuli, rule out the possibility of controlling the whole
phase advancement of an experiment using only the PRCs. Thus, the PRSs become extremely
useful. In our examples, these differences are more noticeable close to Type II oscillators
(Hopf) because of the stronger curvature of the isochrons.

Our results agree with the fact that perturbations applied to Type II oscillators produce
significant normal displacements from the limit cycle rather than those applied to Type I. This
fact has also been studied in [22] by Oprisan and Canavier, in the sense that the difference
in angular velocity at displaced points compared to the angular velocity on the limit cycle
is then more important. As pointed out in [22], this might affect the study of biological
circuits comprising Type II neural oscillators, which appear frequently in identified central
pattern-generating circuits.

Isochrons in higher dimensions. Although in this paper we apply the method only to
compute isochrons and PRSs to planar differential systems, it can be applied to higher dimen-
sions provided that the limit cycle is isochronous (for instance, if it is hyperbolic and stable).
The formulation in terms of Lie symmetries, the parameterization method, and their mutual
relationship will still be valid to describe the isochronous sections in higher dimensions.

On one hand, it is not difficult to see that a limit cycle γ of a vector field X ∈ R
n, n ≥ 2,

is isochronous if there exist n − 1 nontrivial vector fields Y1, . . . , Yn−1 in involution (see [21])
satisfying the Lie symmetry equation (2.4).

On the other hand, for stable isochronous limit cycles, the parameterization method would
allow us to compute the isochrons which correspond, in this case, to (n − 1)-dimensional
hypersurfaces transversal to γ.

Appendix A. Proof of Theorem 3.1. In order to prove Theorem 3.1, we will see that
(1) ⇔ (2) and (2) ⇔ (3). Notice first that (1) ⇔ (2) was already proved in Theorem 4 in [25].
Let us prove (2) ⇔ (3), and we will see that (2) ⇒ (3).

Assume there exist a vector field Y and a scalar function μ satisfying the Lie symmetry
(2.4), and consider K(θ, σ) = ψσ(γ(θ)), where ψσ is the flow associated to the vector field Y
and γ(θ) is the parameterization of the periodic orbit of the vector field X.

Then, notice that

∂σ(X(K(θ, σ))) = DX(K(θ, σ))∂σK(θ, σ) = DX(K(θ, σ))Y (K(θ, σ)).

Using the Lie symmetry DXY −DYX = μY , we have that

∂σ(X(K(θ, σ))) = DY (K(θ, σ))X(K(θ, σ)) + μ(K(θ, σ))Y (K(θ, σ)).

Hence, X(K(θ, ·)) is a solution of the linear equation

(A.1)
d

dσ
Q = (DY ◦K)(θ, σ)Q+ (μY ◦K)(θ, σ)
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with the initial condition

(A.2) Q(0) = X(K(θ, 0)) = X(γ(θ)).

Let Ψσ be the fundamental solution of the homogeneous equation

(A.3)
d

dσ
Q = (DY ◦K)(θ, σ)Q;

then, the variation of parameters formula tells us that the solution of (A.1) with initial
condition (A.2) is given by

Qθ(σ) = ΨσX(γ(θ)) + Ψσ

∫ σ

0
Ψ−1

s μ(K(θ, s))Y (K(θ, s))ds.

Notice that Ψ−1
s Y (K(θ, s)) is independent of s, since

∂s(Ψ−1
s Y (K(θ, s))) = −Ψ−1

s DY (K(θ, s))ΨsΨ−1
s Y (K(θ, s))

+ Ψ−1
s DY (K(θ, s))Y (K(θ, s))

= 0

for all s. Then we can take Ψ−1
s Y (K(θ, s)) = Ψ−1

σ Y (K(θ, σ)), and we are left with the
following expression for X ◦K:

X(K(θ, σ)) = ΨσX(γ(θ)) + ΨσΨ−1
σ Y (K(θ, σ))

∫ σ

0
μ(K(θ, s))ds.

Finally, using that the parameterization K was defined by the orbits of the vector field Y
for the points on the limit cycle γ (see (3.3)), we have

∂θK(θ, σ) = ∂θψσ(γ(θ)) = Dψσ(γ(θ))TX(γ(θ)) = TΨσX(γ(θ)),

and the expression for X(K(θ, σ)) reads as

X(K(θ, σ)) =
(

1
T
∂θ +

(∫ σ

0
μ(K(θ, τ))dτ

)
∂σ

)
K(θ, σ).

Therefore, taking

F (θ, σ) =
∫ σ

0
μ(K(θ, τ))dτ,

we obtain the claimed result.
The other implication follows in the following way. Let K be a smooth map satisfying

(3.1). Consider Y the vector field whose orbits for the points on the limit cycle γ(θ) are given
by {K(θ, σ) | σ ∈ R}. Let σ be the integration time along the orbits of the vector field Y .
Then,

(A.4) Y (K(θ, σ)) = ∂σK(θ, σ).
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The fact that the curves {K(θ0, σ) | σ ∈ R} are transversal to the orbits of X implies also
that Y is transversal to X.

We next prove that X is a normalizer of the vector field Y . From (3.1), taking derivatives
with respect to σ, we get(

1
T
∂θ + F (θ, σ)∂σ

)
∂σK + ∂σF∂σK = (DX ◦K)∂σK,

and using (A.4), we get(
1
T
∂θ + F (θ, σ)∂σ

)
(Y ◦K) + ∂σF (Y ◦K) = (DX ◦K)(Y ◦K).

By the chain rule,

(DY ◦K)
(

1
T
∂θ + F (θ, σ)∂σ

)
K + ∂σF (Y ◦K) = (DX ◦K)(Y ◦K),

and again, by the invariance equation (3.1), we obtain

(A.5) (DX ◦K)(Y ◦K) − (DY ◦K)(X ◦K) = ∂σF (Y ◦K),

and taking μ ◦K = ∂σF , we have [Y,X] = μY , as we wanted to prove.

Appendix B. Proof of Proposition 3.6. Let us prove that if one considers the function
∇ϑ along the orbits φt(p) of X, it satisfies the adjoint equation (3.11). Recall that, by (3.8),
we have that

(B.1) ∇ϑ(φt(p)) =
Y ⊥(φt(p))

T 〈Y ⊥(φt(p)),X(φt(p))〉 ,

where Y satisfies (2.4) for some μ. In order to check this statement, we first introduce the
matrix J given by

(B.2) J =
(

0 −1
1 0

)

such that Y ⊥ = JY . Notice that for a 2 × 2 real matrix A we have

(B.3) (JA) − (JA)T = tr(A)J,

where tr(A) denotes the trace of the matrix A.
Now, we consider the derivative of ∇ϑ(φt(p)) with respect to the time. In order to simplify

notation we set x := φt(p) and g(x) := 〈Y ⊥(x),X(x)〉. Using that d
dtY (x) = DY (x)X(x), we

have from (B.1)

d

dt
∇ϑ(x) =

J DY (x)X(x)
T g(x)

− Y ⊥(x) (〈JDY (x)X(x),X(x)〉 + 〈J Y (x),DX(x)X(x)〉)
T g(x)2

.
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Using now the Lie symmetry DX Y −DY X = μY , expression (B.1), and dot product prop-
erties (namely, 〈J Y (x),DX(x)X(x)〉 = 〈DX(x)T J Y (x),X(x)〉), we obtain

d

dt
∇ϑ(x) =

J DX(x)Y (x) − μ(x)J Y (x)
T g(x)

− ∇ϑ(x)
(〈JDX(x)Y (x) − μ(x)J Y (x) +DX(x)T J Y (x),X(x)〉)

g(x)
.

Applying (B.3) and (J DX(x))T = −DX(x)T J and denoting τ(x) := tr(DX)(x), we are led
to

d

dt
∇ϑ(x) =

(−DX(x)T + τ(x) − μ(x))J Y (x)
T g(x)

− ∇ϑ(x) (〈(τ(x) − μ(x))J Y (x),X(x)〉)
g(x)

.

In fact, again since ∇ϑ(x) = (J Y (x))/(T g(x)) and 〈JY,X〉/g(x) = 1, we have

d

dt
∇ϑ(x) = (−DX(x)T + τ(x) − μ(x))∇ϑ(x) −∇ϑ(x) (τ(x) − μ(x)) = −DX(x)T∇ϑ(x),

as we wanted to prove.
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