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Abstract
In this paper we consider the case of a general Cr+2 perturbation, for r large
enough, of an a priori unstable Hamiltonian system of 2 + 1/2 degrees of
freedom, and we provide explicit conditions on it, which turn out to be C2

generic and are verifiable in concrete examples, which guarantee the existence
of Arnold diffusion.

This is a generalization of the result in Delshams et al (2006 Mem. Am.
Math. Soc.) where the case of a perturbation with a finite number of harmonics
in the angular variables was considered.

The method of proof is based on a careful analysis of the geography of
resonances created by a generic perturbation and it contains a deep quantitative
description of the invariant objects generated by the resonances therein. The
scattering map is used as an essential tool to construct transition chains of
objects of different topology. The combination of quantitative expressions for
both the geography of resonances and the scattering map provides, in a natural
way, explicit computable conditions for instability.

Mathematics Subject Classification: 37J40, 37C29, 35B34, 34C29, 37C50

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The goal of this paper is to present a generalization of the geometric mechanism for global
instability (popularly known as Arnold diffusion) in a priori unstable Hamiltonian systems
introduced in [DLS06a]. That paper developed an argument to prove the existence of
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global instability in a priori unstable nearly integrable Hamiltonian systems (the unperturbed
Hamiltonian presents hyperbolicity, so that it cannot be expressed globally in action-angle
variables) and applied it to a model which presented the so-called large gap problem. However,
in that case, the perturbation was assumed to be a trigonometric polynomial in the angular
variables. In this paper we perform an accurate process of truncation of the Fourier series of
the perturbation and we present a deeper study of the geography of resonances. Using this, we
are able to extend and simplify some of the results in [DLS06a] and apply them to an a priori
unstable Hamiltonian system with a generic perturbation.

The phenomenon of global instability in Hamiltonian systems has attracted the attention
of both mathematicians and physicists in the last years due to its remarkable importance for
the applications. It deals, essentially, with the question of what is the effect on the dynamics
when an autonomous mechanical system is submitted to a small periodic perturbation. More
precisely, whether these perturbations accumulate over time giving rise to a long term effect
or whether these effects average out.

The instability problem was formulated first by Arnold in 1964. In his celebrated
paper [Arn64], Arnold constructed an example for which he proved the existence of trajectories
that avoided the obstacles of KAM tori and performed long excursions. The mechanism is
based on the existence of transition chains of transition whiskered tori, that is, sequences of
tori with transitive dynamics given by a quasi-periodic flow, such that the unstable manifold
(whisker) of one of these tori intersects transversally the stable manifold (whisker) of the next
one. By an obstruction argument, there is an orbit that follows this transition chain, giving rise
to an unstable orbit.

The example proposed in [Arn64] turns out to be rather artificial because the perturbation
was chosen in such a way that it preserved exactly the complete foliation of invariant tori
existing in the unperturbed system. However, a generic perturbation of size ε creates gaps at
most of size

√
ε in the foliation of the persisting KAM tori, whereas it moves the whiskers only

by an amount ε. These KAM tori, which are just a continuation of the ones that existed for
the integrable system (ε = 0) are commonly known as primary tori. The gaps in the foliation
of the primary tori are centred around resonances, that is, resonant tori that are destroyed by
the perturbation. This is what is known in the literature as the large gap problem (see, for
instance, [Moe96] for a discussion about the large gap problem and, indeed, of the problem of
diffusion).

In the last ten years there has been a notable progress in the comprehension of the
mechanisms that give rise to the phenomenon of instability and a variety of methods has
been suggested. As an example of this, we will mention that the large gap problem
has been solved simultaneously by a variety of techniques: different geometrical methods
[DLS00, DLS06a, DLS06b] (scattering map) and [Tre04, PT07] (separatrix map); topological
methods [GL06b, GL06a] and variational methods [CY04, CY09]. For more information
regarding the problem of Arnold diffusion in the absence of gaps as well as time estimates, the
reader is referred to [DGLS08].

Of particular interest for this paper are [DLS00, DLS06a, DLS06b]. The strategy in the
mentioned papers is based on incorporating in the transition chain new invariant objects, created
by the resonances, like secondary tori, which are invariant KAM tori contractible to a periodic
orbit, as well as the stable and unstable manifolds of lower dimensional tori. The scattering
map, introduced by the same authors (see [DLS08] for a geometric study), is the essential tool
for the heteroclinic connections between invariant objects of different topology.

In this paper we extend the geometric mechanism introduced in the mentioned papers to a
wider class of model systems for which the perturbation does not need to have a finite number
of harmonics in the angular variables. In particular, the Hamiltonian studied in this paper has
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the following form:

Hε(p, q, I, ϕ, t) = ± ( 1
2p2 + V (q)

)
+ 1

2I 2 + εh(p, q, I, ϕ, t; ε), (1)

where p ∈ (−p0, p0) ⊂ R, I ∈ (I−, I+) ⊂ R and (q, ϕ, t) ∈ T3.
The main result of this paper is theorem 2.1, stated in section 2.2 with the concrete

hypotheses for Hamiltonian (1), from which we can deduce the following short version:

Theorem 1.1. Consider the Hamiltonian (1) and assume that V and h are Cr+2 functions which
are C2 generic, with r > r0, large enough. Then there is ε∗ > 0 such that for 0 < |ε| < ε∗ and
for any interval [I ∗

−, I ∗
+ ] ∈ (I−, I+), there exists a trajectory x̃(t) of the system with Hamiltonian

(1) such that for some T > 0

I (x̃(0)) � I ∗
−; I (x̃(T )) � I ∗

+ .

Remark 1.2. A value of r0 which follows from our argument is r0 = 242 (see remark 2.3).

Our strategy for the proof follows the geometric mechanism proposed in [DLS06a].
Indeed, in order to organize the different invariant objects that we will use to construct a
transition chain, we will first identify the normally hyperbolic invariant manifold (NHIM)
present in the system. This NHIM will have associated stable and unstable invariant manifolds
that, generically, intersect transversally. Therefore, we can associate with this object two types
of dynamics: the inner and the outer. The outer dynamics takes into account the asymptotic
motions to the NHIM and is described by the scattering map. The inner dynamics is the one
restricted to the NHIM and contains Cantor families of primary and secondary KAM tori. Since
generically these families of KAM tori, invariant for the inner dynamics, are not invariant for
the outer dynamics, the combination of both dynamics will allow us to construct a transition
chain.

The results in [DLS06a] can be applied straightforwardly for the persistence of the NHIM
and the transversality of its associated stable and unstable manifolds. The arguments presented
in this paper focus on the inner dynamics and the study of the invariant objects present in the
NHIM.

For Hamiltonian (1), resonances correspond to the places where the frequency I = −l/k

for (k, l) ∈ Z2 is rational and the associated Fourier coefficient hk,l of the perturbation h is
non-zero. On these resonances, the foliation of KAM tori in the NHIM is destroyed and gaps
between the Cantor family of invariant tori in the NHIM of size O(ε1/2|hk0,l0 |1/2) are created,
for (k0, l0) such that l/k = l0/k0 and gcd(k0, l0) = 1 (see equation (88)). For a perturbation
h which is a Cr+2 function and C2 generic, when we restrict it to the NHIM and we write
it in adequate coordinates we are left with a Cr perturbation (see the subsection ‘restriction
to NHIM’ in section 2.3.3), so that |hk,l| ∼ |(k, l)|−r , and therefore the above gaps are of
size O(ε1/2|(k0, l0)|−r/2). Moreover, other invariant objects, like secondary tori and lower
dimensional tori, are created inside the gap. They correspond to invariant objects of different
topology that were not present in the unperturbed system but are generated by the resonances.

In order to study their existence and give an approximate expression for them we will
combine m steps of averaging plus a KAM theorem. Note that in our case, since the perturbation
is generic, we will have an infinite number of resonances. Our approach for this study will
be to consider an adequate truncation up to some order M , depending on ε, of the Fourier
series of the perturbation h in such a way that we deal only with a finite number of harmonics
|(k, l)| � M and therefore of resonances.

Another remarkable difference with respect to the results obtained in [DLS06a] is that in
that case the size of the gaps created in the foliation of invariant tori was uniform, whereas
in our case, since the size is O(ε1/2|(k0, l0)|−r/2), we have a heterogeneous sea of gaps of
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different sizes. Among them, we will distinguish between small gaps and big gaps, which
are strongly related to the mentioned large gap problem. Indeed, big gaps are those of size
bigger than or equal to ε and therefore they are generated by resonances −l0/k0 of order one,
such that |(k0, l0)| < ε−1/r or, equivalently, |(k0, l0)|−r/2 � ε1/2 (see section 3.3.3 for precise
results).

From a more technical point of view (see section 3.2 for details), we would like to remark
that the main difficulties arise from the fact that in order to perform a resonant averaging
procedure, we need to isolate resonances corresponding to |(k, l)| � M , for M depending
on ε. Consequently, the width L of the resonant domain cannot be chosen independently of ε,
as was the case in [DLS06a]. Moreover, along the averaging procedure we need to keep track
of the C� norms of the averaged terms and the remainders, and these blow up as a negative
power of L. Hence, we will see that a good choice for L around a resonance I = −l/k will
be L = Lk ∼ ε1/n/|k| (see hypotheses of theorem 3.11), where n is the required regularity
to apply KAM theorem after the averaging procedure. Note that L is not uniform along the
resonances but depends on the value |k| of the resonance.

Finally, after m steps of averaging, we will show that the remainder tail, that is, the
Fourier coefficients hk,l such that |(k, l)| > M can be neglected. This will be ensured by a
fast enough decreasing rate of the coefficients and therefore a large enough regularity r of the
perturbation. Thus, the required regularity r will be determined according to the number m of
steps of averaging performed, as well as the needed regularity n to apply KAM theorem after
the averaging procedure.

We are using a version of the KAM theorem that requires to have the Hamiltonian system
written in action angle variables. Since near the resonances we approximate the system by the
one which is close to a pendulum, the action variable becomes singular on the separatrix. This
fact, together with the requirement to have the invariant objects close enough (at a distance
smaller than ε), implies that the perturbation of the averaged Hamiltonian has to be extremely
small in the resonant regions. The immediate consequence of this fact is that, in the case
we are studying, one has to perform at least m = 10 steps of averaging (see theorem 3.28).
The needed regularity n to apply KAM theorem after m averaging steps is n = 2m + 6 (see
proposition 3.24). Since the regularity r required to ensure that the remainder tail is smaller
than the averaging remainder turns out to be r > (n − 2)m + 2, see remark 3.20, one has to
impose r > r0 = 242.

We do not claim that this is an optimal result. Actually, another version of the KAM
theorem that allowed us to avoid the change into action-angle variables like [LGJV05, FLS09]
could improve the results in terms of the needed regularity (see also [HLS09] for a numerical
implementation). However, it is worth mentioning that we managed to decrease the required
steps of averaging in the resonant domains with respect to the results in [DLS06a]. Since in
the resonances the behaviour of KAM tori is different depending on how close they are to
the separatrix (tori are flatter as they are further from the separatrix), we consider different
regions where we perform different scalings. This strategy, which was already introduced
in [DLS06a], has been improved in this paper introducing a new sequence of domains in
theorem 3.30. When applied to the case with a finite number of resonances as in [DLS06a],
m = 9 steps of averaging and r � 26 are enough (see remark 3.32). This clearly improves the
needed regularity r which was r � 60 in [DLS06a] because m was chosen as m = 26.

Sections 3.3.3, 3.3.4 and 3.3.5 contain a quantitative description of the geography of
resonances and a detailed study of the invariant objects generated by the resonances. The
effect of the resonances in a system constitutes a fundamental problem not only for diffusion
but also for many other physical applications and it has been an important object of study in
the physical literature, see for instance [Chi79, Ten82]. The study performed in this paper
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contributes to a better understanding of the different types of resonances and the geometric
objects that one can find therein under an arbitrarily small value of the perturbation parameter
ε. Therefore, this study can be very helpful in many physical problems, although in concrete
problems, the size of ε is not necessarily very small, and other diffusion mechanisms can take
place, like Chirikov’s overlapping of resonances [Chi79].

Moreover, we think that this study can be extended to a class of models that presents
multiple resonances, see [DLS07].

We would like to emphasize that in our case, and this is different from the results
in [DLS06a], only the resonances of order 1, that is the ones that appear at the first step
of averaging, create big gaps; whereas in [DLS06a], both resonances of orders 1 and 2 could
generate big gaps. This is because we are dealing with a perturbation that generically will have
all the harmonics different from zero. This means that the effect of the resonances associated
with the biggest Fourier coefficients (low frequencies) will be detected at the first step of
averaging. Since the size of the gap depends on both the order of the resonance and the size of
the Fourier coefficient associated with that resonance, the ones that appear at the second step
of averaging already correspond to small Fourier coefficients and the size of their gap will be
smaller than ε. The immediate consequence of this fact is that in the forthcoming theorem 2.1
we can give all conditions explicitly in terms of the original perturbation h.

The paper is organized in the following way. In section 2 we state theorem 2.1,
which establishes the existence of diffusing orbits for the model considered under precise
conditions. Since the required hypotheses are checked to be C2 generic, theorem 1.1 follows
straightforwardly. The proof of theorem 2.1 is given in section 2, except for two technical
results, theorem 3.1 and proposition 4.1, which are postponed to the following sections.

Thus, in section 3 we prove theorem 3.1, which provides a quantitative existence of
invariant objects for the inner dynamics in the NHIM following the steps indicated in section 2.
In section 4, we use the scattering map to prove proposition 4.1 about the existence of
heteroclinic connections between the invariant objects obtained in the previous section.

We would like to remark that, in contrast to [DLS06a], and thanks to the new results
about the scattering map obtained in [DLS08], we use the Hamiltonian function generating
the deformation of the scattering map instead of the scattering map itself, in order to compute
the images of the leaves of a certain foliation under the scattering map.

Finally, in section 5 we have included for illustration a concrete example, for which we
sketch how the hypotheses of theorem 2.1 can be checked. We plan to come back to this
example in a future paper for a more detailed description of the mechanism. In the appendix,
we have brought some technical results used in the paper.

2. Statement of results

Before stating the main result in this paper we need to introduce some notation.

2.1. Notation and preliminaries

Let r be a positive integer and D ⊂ Rn a compact set with non-empty interior D̊. We will
denote the set of Cr functions from D̊ to Rm and continuous on D by Cr (D, Rm). When m = 1,
we simply write Cr (D) instead of Cr (D, Rm). Given f ∈ Cr (D, Rm), we consider the standard
Cr norm,

|f |Cr (D) =
m∑

i=1

r∑
�=0

∑
|α|=�

sup
x∈D

|Dαfi(x)|
α!

, (2)
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where fi denotes the ith component of the function f , for i = 1, . . . , m. We omit the domain
in the notation when it does not lead to confusion.

We use the standard multi-index notation: if α = (α1, . . . , αn) ∈ Nn and x =
(x1, . . . , xn) ∈ Rn one sets

|α| = α1 + · · · + αn,

α! = α1!α2! · · · αn!,

Dα = ∂ |α|

∂x
α1
1 . . . ∂x

αn
n

.

In the case that the function f depends only on a few of the variables, we will denote it in
the same way, that is |f |Cr = |f |Cr (D), and consider it as a function of more variables defined
in the appropriate domain.

Note that we denote |f |C0 = supx∈D |f (x)|, which is the standard supremum norm, so the
| · |Cr (D) norm can be expressed, equivalently, as

|f |Cr (D) :=
m∑

i=1

r∑
�=0

∑
|α|=�

|Dαfi |C0(D)

α!
.

The space of Cr (D) functions endowed with the Cr norm is a Banach algebra (see [Con90]),
that is it is a Banach space with the property that given any two functions f, g in Cr (D), they
satisfy

|fg|Cr � |f |Cr |g|Cr .

Since we will also deal with Cr functions defined on a compact domain D = I × Tn,
where I ⊂ Rn is a compact set with non-empty interior, we can also consider the following
seminorm, that takes into account the different regularities and the estimates for the derivatives
in each type of variable:

|f |�1,�2 :=
�1∑

m1=0

�2∑
m2=0

∑
α1, α2 ∈ N

n

|α1| = m1, |α2| = m2

1

α1!α2!
sup

(I,ϕ)∈D

∣∣∣∣∂m1+m2f (I, ϕ)

∂Iα1∂ϕα2

∣∣∣∣ , (3)

for 0 � �1 + �2 � r .
Note that |f |C� =∑�

m=0 |f |m,�−m, for 0 � � � r .
We will use the following notation, which is rather usual. Given α = α(ε) and β = β(ε),

we will write α � β and also α = O(β) if there exist ε0 and a constant C independent of ε,
such that |α(ε)| � C|β(ε)|, for |ε| � ε0. When we have α � β and β � α we will write
α ∼ β. However, in some informal discussions we will abuse notation and we will say that α

is of order εp if and only if α ∼ εp.
We will say that a function f = OCr (D)(β) when

|f |Cr (D) � β.

2.2. Set up and main result

We consider a 2π -periodic in time perturbation of a pendulum and a rotor described by the
non-autonomous Hamiltonian (1),

Hε(p, q, I, ϕ, t) = H0(p, q, I ) + εh(p, q, I, ϕ, t; ε)

= P±(p, q) + 1
2I 2 + εh(p, q, I, ϕ, t; ε), (4)
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where

P±(p, q) = ± ( 1
2p2 + V (q)

)
(5)

and V (q) is a 2π -periodic function. We will refer to P±(p, q) as the pendulum.
The term 1

2I 2 describes a rotor and the final term εh is the perturbation term and depends
periodically on time, so that h can be expressed via its Fourier series in the variables (ϕ, t):

h(p, q, I, ϕ, t; ε) =
∑

(k,l)∈Z2

hk,l(p, q, I ; ε)ei(kϕ+lt). (6)

It will be convenient to consider the autonomous system by introducing the extra variables
(A, s):

H̃ε(p, q, I, ϕ, A, s) = A + H0(p, q, I ) + εh(p, q, I, ϕ, s; ε)

= A + P±(p, q) + 1
2I 2 + εh(p, q, I, ϕ, s; ε) (7)

where the pairs (p, q) ∈ R × T, (I, ϕ) ∈ R × T and (A, s) ∈ R × T are symplectically
conjugate.

The extra variable A does not play any dynamical role and it simply makes the system
autonomous. So, we are only interested in studying the dynamics of variables (p, q, I, ϕ, s)

given by the following system of equations:

ṗ = ∓V ′(p) − ε
∂h

∂q
(p, q, I, ϕ, s; ε),

q̇ = ±p + ε
∂h

∂p
(p, q, I, ϕ, s; ε),

İ = −ε
∂h

∂ϕ
(p, q, I, ϕ, s; ε), (8)

ϕ̇ = I + ε
∂h

∂I
(p, q, I, ϕ, s; ε),

ṡ = 1.

The domain of definition we consider is a compact set of type

D := S × [I−, I+] × T2 × [−ε0, ε0],

where S ⊂ R × T is a neighbourhood of the separatrix (P −1
± (0)) of the pendulum.

Then, the main theorem of this paper is

Theorem 2.1. Consider a Hamiltonian of the form (1) where V and h are Cr+2 in D, with
r > r0, sufficiently large. Assume also that

H1 The potential V : T → R has a unique global maximum, say at q = 0, which is
non-degenerate (i.e. V ′′(0) < 0). We denote by (p0(t), q0(t)) an orbit of the pendulum
P±(p, q) in (1), homoclinic to (0, 0).

H2 Consider the Poincaré function, also called Melnikov potential, associated with h (and
with the homoclinic orbit (p0, q0)):

L(I, ϕ, s) = −
∫ +∞

−∞
(h(p0(σ ), q0(σ ), I, ϕ + Iσ, s + σ ; 0)

− h(0, 0, I, ϕ + Iσ, s + σ ; 0)) dσ (9)
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H2′ Given real numbers I− < I+, assume that, for any value of I ∈ (I−, I+), there exists
an open set JI ∈ T2, with the property that when (I, ϕ, s) ∈ H , where

H =
⋃

I∈(I−,I+)

{I } × JI ⊂ (I−, I+) × T2, (10)

the map

τ ∈ R �→ L(I, ϕ − Iτ, s − τ)

has a non-degenerate critical point τ which is locally given by the implicit function
theorem in the form τ = τ ∗(I, ϕ, s), with τ ∗ a smooth function.

H2′′ Introduce the reduced Poincaré function L∗ defined by

L∗(I, ϕ) := L(I, ϕ − Iτ ∗(I, ϕ, 0), −τ ∗(I, ϕ, 0)), (11)

on

H ∗ = {(I, θ̃ ) : θ̃ = ϕ − Is, (I, ϕ, s) ∈ H } =
⋃

I∈(I−,I+)

{I } × J ∗
I , (12)

and assume that there exists an open set J ∗+
I ⊆ J ∗

I (respectively J ∗−
I ⊆ J ∗

I ), such
that for θ̃ = ϕ − Is ∈ J ∗+

I , the function

θ̃ �→ ∂L∗

∂θ̃
(I, θ̃ ) (13)

is non-constant and positive (respectively negative). We denote

H ∗
+ =

⋃
I∈(I−,I+)

{I } × J ∗+
I (14)

(respectively, H ∗
− =⋃I∈(I−,I+){I } × J ∗−

I ).

H3 Fix 1/(r/6 − 1) < ν � 1/16, for any 0 < ε < 1 and for any (k0, l0) ∈ Z2

with gcd(k0, l0) = 1 and |(k0, l0)| < MBG, where |(k0, l0)| = max(|k0|, |l0|) and
MBG = ε−(1+ν)/r , introduce the 2π -periodic function

Uk0,l0(θ) =
∑

t ∈ Z − {0},|t ||(k0, l0)| < M

htk0,t l0(0, 0, −l0/k0; 0)eitθ ,

where θ = k0ϕ + l0s and M = ε−1/(26+δ), for 0 < δ < 1/10, for which we assume

H3′ The function Uk0,l0 has a non-degenerate global maximum.
H3′′ For |(k0, l0)| < C1ε

−1/r , where C1 is given explicitly in (153), we assume that the
2πk0-periodic function f given by

f (θ) =
k0U

′k0,l0(θ) ∂L∗

∂θ̃

(
−l0
k0

, θ
k0

)
+ 2Uk0,l0(θ) ∂2L∗

∂θ̃2

(
−l0
k0

, θ
k0

)
2 ∂2L∗

∂θ̃2

(
−l0
k0

, θ
k0

) (15)

is non-constant for θ/k0 ∈ J ∗
−l0/k0

.
H3′′′ For C1 ε−1/r � |(k0, l0)| � C2ε

−1/r , where C1 and C2 are given explicitly in (153)
and (155) respectively, we assume the non-degeneracy condition stated explicitly in
equation (156).

Then, there exists ε∗ > 0 such that for 0 < |ε| < ε∗ and for any interval [I ∗
−, I ∗

+ ] ∈
(I−, I+), there exists a trajectory x̃(t) of the system (1) such that for some T > 0

I (x̃(0)) � I ∗
−; I (x̃(T )) � I ∗

+ .

(respectively,

I (x̃(0)) � I ∗
+ ; I (x̃(T )) � I ∗

−).
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Remark 2.2. As a matter of fact, the only restriction needed for diffusion in H2′′ is that the
function θ̃ �→ L∗(I, θ̃ ) has to be non-constant. Typically, when it is non-constant there are
some domains H +

∗ and H−
∗ where its derivative is positive and negative, respectively. These

are the sets chosen to have an increasing and decreasing diffusion in I , respectively.

Remark 2.3. r0 depends on the number m of some averaging steps performed in the proof:
r0 = 2(m + 1)2 and m � 10 (see hypotheses of theorem 3.1 in section 3). If we take just
m = 10 then r0 = 242 is enough.

Remark 2.4. The truncation order M in hypotheses H3 depends on the regularity n required
for the application of the KAM theorem along the proof: M = ε−1/(n+δ), for n = 2m + 6 and
0 < δ < 1/m, where m is the number of averaging steps performed in the proof and is such
that m � 10 (see hypotheses of theorems 3.11 and 3.1 and remark 3.20). Hence, we choose
m = 10 and therefore M = ε−1/(26+δ) in hypotheses H3.

Remark 2.5. Note that for every fixed ε we have one condition H3 for every (k0, l0) such that
|(k0, l0)| < MBG, that depends explicitly on (k0, l0). Hence, the number of non-degeneracy
conditions H3 is finite but grows with ε.

Remark 2.6. Note that by the definition of τ ∗(I, ϕ, s), the function

f (I, ϕ, s) = L(I, ϕ − Iτ ∗(I, ϕ, s), s − τ ∗(I, ϕ, s))

satisfies the equation

I∂ϕf (I, ϕ, s) + ∂sf (I, ϕ, s) = 0.

Therefore it is of the form f (I, ϕ, s) = L∗(I, ϕ − Is), so we can alternatively define

L∗(I, ϕ − Is) = L(I, ϕ − Iτ ∗(I, ϕ, s), s − τ ∗(I, ϕ, s)).

Remark 2.7. The main feature of theorem 2.1, as already said in the introduction, is that h is
not required to be a trigonometric polynomial in the variables (ϕ, s), which is a non-generic
assumption, as was the case in [DLS06a].

Before proving theorem 2.1 let us see that theorem 1.1 stated in the introduction is just a
consequence of theorem 2.1. Indeed, for every fixed ε, conditions H1 and H2 are open and
dense, that is they hold for an open and dense set of Hamiltonians in the C2 topology.

For every fixed ε, the number of non-degeneracy conditions H3 is finite but grows
with ε (the number of conditions depends on (k0, l0) ∈ Z2 such that gcd(k0, l0) = 1 and
|(k0, l0)| � ε−1/r ). When ε tends to 0 we have a countable number of conditions in terms of
the functions

Uk0,l0∞ (θ) =
∑

t∈Z−{0}
htk0,t l0(0, 0, −l0/k0; 0)eitθ ,

which are the same as those in hypotheses H3 but without any truncation. This countable
number of conditions involve only derivatives up to order 2 of the Hamiltonian. Hence the
set of Hamiltonians satisfying them is a residual set in the C2 topology, that is a countable
intersection of open and dense sets in the C2 topology.

Therefore the hypotheses of the theorem are C2 generic in the set of Cr+2 Hamiltonians
of the form (1). So, the short version of theorem 2.1 stated in theorem 1.1 in the introduction
follows straightforwardly.
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2.3. Proof of theorem 2.1

The proof of this theorem follows the geometric mechanism stated in [DLS06a] and it is
organized in four parts that we first sketch now:

Part 1. The first part deals with the existence of a NHIM, which, jointly with its associated
stable and unstable manifolds, organizes all the dynamics, and is a consequence of
hypothesis H1. By hypothesis H2′, its associated stable and unstable manifolds will
intersect transversally, so we can associate with this object two types of dynamics: the
inner and the outer.

Part 2. The outer dynamics, which is the one that takes into account the asymptotic motions to
the NHIM, is studied in the second part. We will see that we can associate a scattering
map with the NHIM and give formulae for the Hamiltonian function which determines
the deformation of this scattering map.

Part 3. The third part of the proof consists of studying the inner dynamics, that is the one
restricted to the NHIM. The goal is to show that, by hypotheses H3′, there exists
a discrete foliation of invariant tori, which are closely spaced. Among these tori,
some of them are primary, so they are just a continuation of the ones that existed
for the integrable system (ε = 0), and some of them are secondary, these ones are
contractible to a periodic orbit, so they correspond to motions which were not present
in the unperturbed system but they are created by the resonances. The method of
proof will be a combination of an averaging procedure and a quantitative version of
the KAM theorem, which requires the Hamiltonian to be differentiable enough.

Part 4. The last part of the proof consists of showing that the combination of both types
of dynamics gives rise to a construction of a transition chain, that is a sequence
of transition whiskered tori in which the stable manifold of one torus intersects
transversally the unstable manifold of the next one. To this end, one needs to show
that the discrete foliation of whiskered tori which are invariant under the (inner) flow
is not invariant under the scattering map or outer map. This is ensured by hypotheses
H2′′, H3′′ and H3′′′ in theorem 2.1, which indeed provide the transversality of this
discrete foliation to the scattering map. Finally we prove, using a standard obstruction
property, that there is an orbit that follows this transition chain.

Next we give a proof of theorem 2.1 organized in the four parts that we mentioned.
The first two parts follow readily from [DLS06a] and theorems stated in [DLS06a] apply
straightforwardly because hypotheses H1 and H2′ required for the proof of the mentioned
results are the same as in our case. Moreover, for the second part we use the symplectic
properties developed in [DLS08] to generalize the computation of the scattering map using
its Hamiltonian function. So, for these parts we only refer in sections 2.3.1 and 2.3.2, to the
results in [DLS06a] and [DLS08] that we are using.

However, for the third part, the results obtained in [DLS06a] do not apply directly because
in this paper we are not assuming that the perturbation has a finite number of harmonics.
Therefore, it has been necessary to develop a new methodology in order to prove that when
we have a Cr+2 perturbation h, with r large enough, and hypothesis H3′ is fulfilled, for every ε

we can truncate adequately its Fourier series and deal only with a finite number of harmonics
and therefore a finite number of resonances to get a discrete foliation of tori closely spaced.
Moreover, explicit approximate expressions for these tori are obtained as the level sets of a
certain function. The mentioned results are stated and proved rigorously in section 3, giving
rise to theorem 3.1 and they constitute the essential result of this paper. In section 2.3.3 we
just refer to the results in section 3 needed to prove part 3 of theorem 2.1.
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Once we have fixed in part 3, for every ε, the number of resonances, part 4 follows
readily from the finite hypotheses H2′′, H3′′ and H3′′′ as in [DLS06a]. The main difference
is that, in contrast to [DLS06a] and thanks to the new results about the symplectic properties
of the scattering map obtained in [DLS08], we can use the Hamiltonian function generating
the deformation of the scattering map instead of the scattering map itself, in order to compute
the images of the leaves of a certain foliation under the scattering map. The results with their
proof are stated in section 4. In section 2.3.4 we just refer to the results in section 4 needed to
prove part 4 of theorem 2.1.

2.3.1. First part: existence of a NHIM and its associated stable and unstable manifolds.
The method of proof is based on the existence of an invariant object, a NHIM (see, for
instance, [HPS77, Fen74, Fen77, Fen79, Lla00, Wig90] for the standard theory of NHIMs used
in this paper), which, jointly with its associated stable and unstable manifolds, organizes all
the dynamics around it.

We start by discussing the geometric features of the unperturbed case which will survive
under the perturbation. For the case ε = 0, Hamiltonian (1) is integrable and consists of two
uncoupled systems: a rotor and a pendulum. So, the Cartesian product of invariant objects of
each of these subsystems will give an invariant object of the full system. Then, by hypothesis
H1, if we consider the product of the hyperbolic fixed point (p, q) = (0, 0) of the pendulum
P±(p, q) in (5) with all the other variables, we have that, for the values I−, I+ given in
theorem 2.1, the set


̃ = {x̃ = (p, q, I, ϕ, s) ∈ (R × T)2 × T : p = q = 0, I ∈ [I−, I+]} (16)

is a three-dimensional invariant manifold and normally hyperbolic for the flow of the
Hamiltonian system (8) for ε = 0. The associated stable and unstable invariant manifolds of

̃ are the ones inherited from the separatrices of the pendulum (stable and unstable manifolds
of the hyperbolic fixed point) and they agree

Ws
̃ = Wu
̃ = {(p0(τ ), q0(τ ), I, ϕ, s) : τ ∈ R, I ∈ [I−, I+], (ϕ, s) ∈ T2}, (17)

where (p0(τ ), q0(τ )) is the chosen orbit of the pendulum P±, provided by hypothesis H1,
which is homoclinic to the hyperbolic fixed point (0, 0).

The Hamiltonian system (8) for ε = 0 restricted to the manifold 
̃ is given simply by

İ = 0, ϕ̇ = I, ṡ = 1.

The dynamics on this manifold is very simple: all the solutions lie on a two-dimensional
invariant torus I = constant. Therefore, the NHIM is foliated by a one-parameter family of
two-dimensional invariant tori indexed by I , with associated frequency (I, 1).

For 0 < |ε| 
 1, by the theory of NHIM (see the references above), the manifold 
̃

persists, giving rise to another manifold 
̃ε with associated local stable and unstable manifolds
Ws,loc
̃ε and Wu,loc
̃ε, which can be prolonged to Ws
̃ε and Wu
̃ε, respectively. Both 
̃ε

and its local stable and unstable manifolds, Ws,loc
̃ε and Wu,loc
̃ε, are ε-close in the Cr sense
to the unperturbed ones:


̃ε = 
̃ + OCr (ε); Ws,loc
̃ε = Ws,loc
̃ + OCr (ε); Wu,loc
̃ε = Wu,loc
̃ + OCr (ε). (18)

The result of the persistence of the NHIM 
̃ε and its stable and unstable manifolds is
formulated in theorem 7.1 of [DLS06a], where the perturbation h in (1) was assumed to be
a trigonometric polynomial. However, the only assumption required for the proof was the
fact that the perturbation h and the potential V were Cr+2, so theorem 7.1 can be applied
straightforwardly in our case.



2008 A Delshams and G Huguet

2.3.2. Second part: outer dynamics. The outer dynamics, which is the one that takes into
account the asymptotic motion to the NHIM 
̃ε, is described by the scattering map. It is
possible to construct a scattering map associated with the NHIM 
̃ε, as long as its stable and
unstable manifolds intersect transversally.

In proposition 9.2 in [DLS06a] it is proved that if hypothesis H2′ in theorem 2.1 is satisfied,
then the stable and unstable manifolds Ws
̃ε and Wu
̃ε of the NHIM intersect transversally
along a homoclinic manifold �ε, which is also called a homoclinic channel (see [DLS08] for
more details, in particular for the definition of the wave operators, needed for the construction
of the scattering map). So, we will be able to locally define the scattering map associated with
�ε and compute it in first order using the results in [DLS08]. Again, hypothesis H2′ required
for proposition 9.2 in [DLS08] does not depend on the number of harmonics of the perturbation
h, so the results stated also hold for the case we are considering in this paper.

Therefore, the manifold 
̃ε defined in (16) has a scattering map associated with a
homoclinic manifold �ε, defined in the following way:

Sε : H ⊂ 
̃ε → 
̃ε

x− �→ x+ (19)

such that x+ = S(x−) if and only if there exists z ∈ �ε such that

dist(�t,ε(z), �t,ε(x±)) → 0 for t → ±∞,

where �t,ε is the flow of Hamiltonian (1). Indeed,

|�t,ε(z) − �t,ε(x±)| � const e−µ|t |/2 for t → ±∞,

where µ = √−V ′′(0) > 0 is the characteristic exponent of the saddle point (0, 0) of the
pendulum P±(p, q) in (5).

Heuristically, the scattering map maps points of the manifold 
̃ε to points of the manifold

̃ε, such that the motion of z synchronizes with that of x− (and x+) in the past (and in the
future).

Moreover, in proposition 9.2 in [DLS06a] is given a perturbative formula for the difference
of the actions I of the points x+ = Sε(x−) and x−. Concretely, expressing the points x± in
terms of the parametrization of 
̃ε, given in theorem 7.1 in [DLS06a], we have that

I (x±) = I + OC1(ε), ϕ(x±) = ϕ + OC1(ε), s(x±) = s

and

I (x+) − I (x−) = ε
∂L∗

∂θ̃
(I, θ̃ ) + OC1(ε2), (20)

for θ̃ = ϕ − Is, where L∗ is the reduced Poincaré function defined in hypothesis H2′′.

Remark 2.8. Note that there is a wrong sign in formula (9.9) in [DLS06a].

The method used in [DLS06a], based on the fact that I is a slow variable, allowed only
to compute the leading term of the action component of the scattering map, but not the ϕ

component since it is not a slow variable.
In a more recent paper [DLS08] the authors showed that the scattering map is exact

symplectic and introduced geometric methods that allow us to compute perturbatively an
expression for both fast and slow variables.

Thus, using the method proposed in section 5 in [DLS08], we can give perturbative
formulae for the Hamiltonian Sε generating the deformation of the scattering map Sε.
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It follows straightforwardly from theorem 31 in [DLS08] that the reduced Poincaré
function L∗ introduced in (11) is equal to the Hamiltonian −S0, so that we obtain

Sε(I, ϕ, A, s) = −L∗(I, θ̃ ) + O(ε), (21)

with θ̃ = ϕ − Is.
Hence, the first order perturbative term of the scattering map is given by

Sε(I, ϕ, A, s) = (I, ϕ, A, s) + εJ∇S0(I, ϕ, A, s) + O(ε2), (22)

where J is the canonical matrix of the symplectic form ω = dI ∧ dϕ + dA ∧ ds and
∇ = (∂I , ∂ϕ, ∂A, ∂s). The extra variable A, conjugated to the angle s, was introduced to
make apparent the symplectic character of the scattering map.

Note that equation (20) is just the I component of equation (22).
We would like to remark that Sε = Id + O(ε). In particular, one iteration of Sε can only

jump distances of order ε in the action direction I .

Remark 2.9. For the mechanism of diffusion we are interested in comparing the inner
dynamics in 
̃ε with the outer dynamics provided by the scattering map Sε. Although
the computation up to first order of the scattering map for the I component is enough for
our purposes, it is more natural to study the action of the scattering map in terms of the
Hamiltonian Sε.

2.3.3. Third part: inner dynamics. In this section we study the inner dynamics, that is
the dynamics of the flow of Hamiltonian (1) restricted to the NHIM 
̃ε. The main result is
theorem 3.1, which states that there exists a discrete sequence of invariant tori Ti in the NHIM

̃ε, which are distributed along the actions in the interval (I−, I+) introduced in theorem 2.1 and
which are O(ε1+η)-closely spaced in terms of the action variable, for some η > 0. Moreover,
theorem 3.1 provides explicit approximate expressions for the invariant tori, which are of two
types depending on the region of the phase of space where invariant tori lie: the big gaps region
and the flat tori region.

The big gaps region is defined as

DBG = {(I, ϕ, s) ∈ (I−, I+) × T2 : |I + l/k| � L/|k|, |(k, l)| < MBG}, (23)

where L is defined in (56) and is going to be introduced precisely along this third part and
MBG was introduced in hypothesis H3 of theorem 2.1. For the purpose of this exposition it
is enough to know now that L = O(ε1/n) and MBG = O(ε−1/r ), where n is the regularity of
the Hamiltonian required for the application of the KAM theorem (n = 26 will be enough,
see hypotheses of theorem 3.1) and r (r > n) is the regularity of the Hamiltonian required for
theorem 2.1. The flat tori region is the complementary region of the big gaps region.

In the flat tori region, there exists a Cantorian foliation of primary KAM tori, which are
just a continuation of invariant tori I = constant present in 
̃0 for the unperturbed Hamiltonian
(1) for ε = 0.

The big gaps region is formed by gaps of size bigger than or equal to ε in the Cantorian
foliation of primary KAM tori. These gaps are bigger than the size ε of the heteroclinic jumps
provided by the scattering map (22). This is what is known in the literature as the large gap
problem. Inside these regions, apart from the primary KAM tori which are bent, there appear
other invariant objects, which were not present in the unperturbed case, like secondary KAM
tori and lower dimensional tori, which are not detected by a direct application of the KAM
theorem, but require a more careful analysis based on an averaging procedure.

In order to prove theorem 3.1 we will restrict Hamiltonian (1) to the NHIM 
̃ε and perform
an averaging procedure before applying a quantitative version of the KAM theorem. The



2010 A Delshams and G Huguet

fundamental difference with respect to [DLS06a] is that for every fixed ε it will be necessary
to truncate adequately the perturbation in order to deal with a finite number of harmonics
depending on ε. The phase space of the truncated Hamiltonian possesses an heterogeneous
sea of a finite number of big gaps of different sizes, depending on the size of the harmonics of
the perturbation.

Restriction to the NHIM 
̃ε. Following the same arguments given in sections 8.1 and 8.2
in [DLS06a], we have that the flow restricted to 
̃ε is Hamiltonian. More precisely, by
proposition 8.2 of [DLS06a], we can construct a Cr system of coordinates (J, ϕ, s) on 
̃ε,
where

J = J (I, ϕ, s; ε) = I + OCr−1(ε), (24)

such that the symplectic form on any 
s
ε = {(J ′, ϕ′, s ′) ∈ 
̃ε : s ′ = s} has the standard

expression ω|
s
ε

= dJ ∧ dϕ. Since 
̃ε = 
̃ for ε = 0 according to equation (18), by
proposition 8.4 in [DLS06a], the restriction of the Hamiltonian Hε in (1) to 
̃ε expressed in
these action angle coordinates (J, ϕ, s) has the form

k(J, ϕ, s; ε) = Z(J ) + εR(J, ϕ, s; ε) (25)

with

Z(J ) = J 2/2 and R(J, ϕ, s; 0) = h(0, 0, J, ϕ, s; 0), (26)

where h is the perturbation in Hε given in (6) and R is OCr (1).

Remark 2.10. Note that, by expression (26), Rk,l(J ; 0) = hk,l(0, 0, J ; 0), where hk,l and Rk,l

are the Fourier coefficients in the angle variables (ϕ, s) of the perturbation h and its restriction
R to 
̃ε, respectively.

Averaging procedure. We start performing an averaging procedure to the restricted
Hamiltonian (25), as was done in [DLS06a], which follows the argument used in the proof
of the KAM theorem in [Arn63], but paying attention to the resonant regions. In [DLS06a]
the perturbation was assumed to be a trigonometric polynomial, so there was only a finite
number of resonances. However, in Hamiltonian (1) the perturbation h has an infinite number
of harmonics, in the same way as R in equation (25), which give rise to an infinite number of
resonances, so the results in [DLS06a] do not apply directly.

The main result for the implementation of an averaging procedure for a generic perturbation
will be theorem 3.11 in section 3.2. This theorem makes precise the hypotheses required to
truncate the Fourier series of the perturbation R in (25) with respect to the angle variables and
develops a global averaging procedure that casts the Hamiltonian (25) into a global normal form
that has different expressions in the non-resonant and resonant regions. The main property of
the normal form is that it is almost ready to apply a quantitative version of the KAM theorem
on it.

The precise statement and rigorous proof of theorem 3.11 are postponed to section 3.2.
In the following we only describe its main features and the results needed to apply the KAM
theorem.

There are three parameters that play an important role in the averaging procedure of
theorem 3.11. One is the number of steps of averaging m to be performed, which imposes
a restriction on the differentiability r of the perturbation: r > 2(m + 1)2. This number of
averaging steps is chosen later in the application of the KAM theorem. The other two are M ,
which is of the order of truncation of the Fourier series and L, which determines the size of the
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resonant regions. Both of them are chosen to depend on ε in the following way: M ∼ ε−ρ and
L ∼ εα where ρ, α > 0 are going to be chosen conveniently during this averaging procedure.

For every fixed ε, we truncate the Fourier series of the perturbation R in equation (25)
with respect to the angle variables (ϕ, s) up to order M in the following way:

R = R[�M] + R[>M],

where

R[�M](J, ϕ, s; ε) =
∑

(k, l) ∈ Z
2,|k| + |l| � M

Rk,l(J ; ε)ei(kϕ+ls) (27)

and

R[>M](J, ϕ, s; ε) =
∑

(k, l) ∈ Z
2,|k| + |l| > M

Rk,l(J ; ε)ei(kϕ+ls), (28)

and we deal only with R[�M], which is the trigonometric polynomial of degree M , as a
perturbation. The error introduced in Hamiltonian (25) coming from the neglected tail of the
Fourier series will have to be estimated later on.

Since the truncated Hamiltonian R[�M] has a finite number of harmonics, an averaging
procedure of m steps has to take into account a finite number of resonances, which are the set
of rational numbers J = −l/k with |l| + |k| � mM (see definitions 3.6 and 3.4).

This averaging procedure divides the phase space (J, ϕ, s) into two types of domains. On
the one hand, the non-resonant regions up to order m Dm

nr, which are the set of points (J, ϕ, s)

such that its action variable J is at a distance greater than 2Lk of any resonance J = −l/k,
where Lk = L/|k|. On the other hand, the resonant regions up to order m Dm

r , which are the
set of points (J, ϕ, s) such that its action variable J is at a distance smaller than Lk of any
resonance J = −l/k (see definitions 3.7 and 3.9).

To avoid overlapping between all the resonant domains, the distance between a resonance
−l0/k0 and any other −l/k must be greater than 2(Lk0 +Lk). Since the resonances considered
satisfy |k| � mM we need to impose 4L < 1/(mM), which requires ρ � α in terms of
exponents of ε and this corresponds to the left hand side inequality of hypothesis (57) in
theorem 3.11.

Along the averaging procedure, one needs to control the C� norms of the averaged terms
and the remainders, for 0 � � � n and 2m < n < r , where n is the regularity which will be
needed for the KAM theorem and r is the regularity of the perturbation R in Hamiltonian (25).
It turns out that the estimates for the C� norm blow up as a negative power of L ∼ εα . Since
the averaged terms and the remainder contain a power of ε in front of them, bounds for them
can be kept small provided that α is small enough, that is for α < 1/n. This corresponds to
the right hand side inequality of hypothesis (57) in theorem 3.11 and also implies ρ < 1/n,
which is formula (53) in the hypotheses of theorem 3.11.

In all these averaging procedures, there was an initial error coming from the neglected tail
of the truncation of order M of the perturbation R in Hamiltonian (25), whose C� norm can be
bounded by ε/Mr−�−2, where r is the regularity of the perturbation R. To keep it smaller than
the C� norm of the remainder after m steps of averaging, one has to impose a lower bound on ρ,
which implies r � (1/ρ − 2)m + 2 in order to make the lower and upper bounds compatible
for ρ, and this is hypothesis (54) in theorem 3.11.

These conditions on m, ρ, α and r are stated in the hypotheses of theorem 3.11. In it, it
is proved that one can develop a global averaging procedure that casts the Hamiltonian (25)
into a global normal form (58), that has different expressions in the non-resonant and resonant
regions (these correspond to expressions (59) and (60) in theses of theorem 3.11). In the
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non-resonant regions one can perform non-resonant averaging transformations in such a way
that the averaged Hamiltonian is very close to a rotor. On the other hand, near the resonances,
the resonant averaging transformations cast the system to a one d.o.f. Hamiltonian, which is
close to an integrable pendulum, provided that the perturbation satisfies some non-degeneracy
conditions like H3′.

Summing up, we end up with a Hamiltonian (58) that consists of an integrable part
Z̄m (the averaged Hamiltonian) plus a perturbation εm+1R̄m which is OC� (εm+1−α(�+2m)), for
� = 0, . . . , n − 2m, where m is the number of steps of averaging performed. Recall that
the integrable Hamiltonian Z̄m has different expressions in the resonant regions and the non-
resonant regions.

The integrable part of Hamiltonian (58) gives us an approximate equation Z̄m = constant
for the invariant tori. The next step is to show which tori survive and what is the distance
between them when we add the perturbation term εm+1R̄m in equation (58).

Quantitative version of KAM theorem. The main tool for this section will be KAM theorem
3.22, which is a result about the existence of invariant tori of a periodic perturbation of a
Hamiltonian expressed in action-angle variables. It is a direct adaptation of theorem 8.12
in [DLS06a]. We will use theorem 3.22 to show that there exists a discrete foliation of
invariant tori which are O(ε1+η)-closely spaced, for some η > 0, and give approximate explicit
expressions for them.

Since the integrable Hamiltonian (58) after m steps of averaging has different expressions
in the resonant and non-resonant regions (up to order m) introduced along the averaging
procedure, we perform this study separately. In the end, we will show that all these regions
can be grouped into two according to the expressions for the invariant tori obtained in each one,
which are the big gaps region (23) and its complement the flat tori region, already mentioned at
the beginning of this subsection. Note that the big gaps region (23) is formed by the resonances
J = −l/k of order 1, such that |(k, l)| � MBG, whereas the flat tori region is composed of the
non-resonant regions up to order m and the resonant regions up to order m such that J = −l/k

and |(k, l)| > MBG, where MBG is explicitly chosen in hypothesis H3 as MBG = ε−(1+ν)/r for
any 1/(r/6 − 1) < ν � 1/16.

The non-resonant regions are studied in section 3.3.2. In proposition 3.24, we apply
theorem 3.22 directly to Hamiltonian (58) and (59), which is already written in action-angle
variables, and we conclude that for these regions there exist flat primary KAM tori given in (81)
as the level sets of a flat function F = I + O(ε1−4α), for α < 1/n, which are O(ε1+η)-closely
spaced for some η > 0, provided that m � 2 and n � 2m + 6.

The resonant regions are studied in section 3.3.3. As we already said, for these regions
Hamiltonian (58)–(60) is not written in action-angle variables but it is close to an integrable
pendulum (60) provided that hypothesis H3′ is satisfied. The integrable pendulum has
rotational and librational orbits as well as separatrices, which separate these two types of
motion. Rotational orbits have the same topology as the primary tori in the integrable
Hamiltonian Z(J ) = J 2/2 in Hamiltonian (25) and librational orbits are contractible to a
periodic orbit, so they correspond to motions which were not present in the unperturbed
Hamiltonian Z(J ) and they are called secondary tori. Librational orbits cover all the region
inside the separatrix loop of Hamiltonian (60), giving rise to a gap between the primary tori,
and the size of this gap depends on the order of the corresponding resonance and the size of
the Fourier coefficient associated with it.

When gaps are of size smaller than ε, which is the size of the heteroclinic jumps provided
by the scattering map (19), they are called small gaps. In section 3.3.4, we study the resonant
regions with small gaps DSG and in proposition 3.26 we show that we can apply the same
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argument as in the case of non-resonant regions to conclude that for these regions there exist
flat primary KAM tori given in (89) as the level sets of a flat function F = I + O(ε1−4α),
for α < 1/n, which is the same as in the non-resonant case, and which are O(ε1+η)-closely
spaced, for some η > 0, provided that m � 2 and n � 2m + 6.

Note that tori in the non-resonant regions and resonant regions with small gaps are given
by the level sets of the same function F = I + O(ε1−4α) and they are flat up to O(ε1−4α), for
α < 1/n. Both regions form the flat tori region.

The resonant regions with big gaps DBG are studied in section 3.3.5. They correspond to
resonances J = −l/k such that |(k, l)| < MBG, where MBG = ε−(1+ν)/r , for 1/(r/6 − 1) <

ν � 1/16. The size of the gap for these resonances is Cε1/2|(k, l)|−r/2, where C is a constant
independent of ε and (k, l). Note that there is no uniform size of the gaps since it runs from
order ε1/2 for resonances with low |(k, l)| to ε1+ν/2 for resonances with |(k, l)| ∼ MBG.

Our criterion for the choice of the big gaps has been motivated by the size of the heteroclinic
jumps provided by the scattering map (22): small gaps are of size smaller than ε, so they can
always be traversed just connecting two primary tori by the scattering map, whereas this is
not the case for big gaps. For these big gaps, we will show that we can find other invariant
objects, like secondary tori, which fill the region inside the gaps and they get rather close to
the frontier of the gaps among the primary KAM tori.

Remark 2.11. We would like to remark that our result about resonances that create big gaps
is remarkably different from the one obtained in [DLS06a], where the case of a perturbation
h with a finite number of harmonics was considered. In that case there was a uniform size for
the gaps created by the resonances of order 1 which was Cε1/2. Moreover, for resonances of
order 2 the uniform size of the associated gap was Cε. Hence, both resonances of orders 1 and
2 were considered as big gaps.

In the case of resonances with big gaps, we will need to write the integrable pendulum
Z̄m given in (60) into action-angle variables before applying KAM theorem 3.22. Since this
change of coordinates becomes singular on the separatrix of the pendulum, we will need to
define different action-angle variables inside and outside the separatrix, and we will exclude a
thin neighbourhood of the separatrix.

Moreover, since the behaviour of the tori outside is different depending on their distance
to the separatrix (tori are flatter as they are further from the separatrix) we consider different
regions in the outside part of the separatrix, where we perform different scalings. This strategy,
which was already introduced in [DLS06a], has been improved introducing a new sequence
of domains in theorem 3.30, which reduces the differentiability requirements.

The main result for the implementation of the above strategy for resonances with big
gaps is theorem 3.30 jointly with corollary 3.31 which make explicit the relationship between
the minimum distance between the surviving tori and the number m of steps of averaging
performed.

In theorem 3.28 we use both theorem 3.30 and corollary 3.31 to show that many of the
invariant tori (both primary and secondary) of the integrable averaged Hamiltonian persist
under the perturbation forming a sequence of tori given in (96) as the level sets of a function
F , close to the averaged Hamiltonian with a distance between consecutive tori of order ε1+η,
for some η > 0, in terms of the action variable, provided that m � 10 and n � 2m + 6.

Propositions 3.24 and 3.26 and theorem 3.28 can be joined in a unique result about the
existence of nearby invariant tori for the inner dynamics, which is theorem 3.1. This theorem
also gives explicit approximate expressions for the invariant tori, which are of two types
depending on the region of the phase of space where the invariant tori lie: the big gaps region
and the flat tori region.
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We refer to sections 3.2 and 3.3 for the referenced theorems where one can find the
complete proof.

2.3.4. Fourth part: construction of a transition chain and obstruction property. In order
to finish the proof, it remains to check that the finite sequence of KAM tori Ti provided by
theorem 3.1 form a transition chain along the NHIM 
̃ε, traversing both the big gaps and the
flat tori regions, and to show that there are orbits that follow it closely. These are the orbits
claimed in theorem 2.1.

The scattering map Sε associated with the homoclinic channel �ε, defined in (19), is the
main tool to detect that there exist transverse heteroclinic connections between these tori,
which are objects of different topology. Indeed, by lemma 10.4 in [DLS06a], we know that
two submanifolds, like the invariant tori Ti , of a NHIM 
̃ε, have a transverse heteroclinic
intersection if they are transversal under the scattering map as submanifolds of 
̃ε.

The main result of this section is proposition 4.1 where it is proved the existence of
transition chains, that is chains of KAM tori Ti , both primary and secondary, such that their
image under the scattering map Sε in (22) intersects transversally Ti+1 on 
̃ε, that is

Sε(Ti ) �
̃ε
Ti+1. (29)

In section 2.3.2 we have obtained an explicit expression (22) up to first order for the
scattering map Sε using the first order calculation of the Hamiltonian function Sε. In
section 2.3.3 we have shown that on the NHIM 
̃ε there exists a discrete foliation of KAM
tori Ti (primary and secondary) which are O(ε1+η)-closely spaced, for some η > 0. Moreover,
we have obtained explicit expressions for tori Ti , both primary and secondary, and we have
seen that these invariant objects are given approximately by the level sets of the averaged
Hamiltonian.

In lemma 4.2 in section 4.1, we give an expression for the action of the scattering map
Sε on a foliation given by the level sets of a given function F , using the expression for
the Hamiltonian function Sε generating the deformation of the scattering map, introduced in
section 2.3.2. Moreover, we give conditions to assure transversality between the foliation in

̃ε and its image under the scattering map Sε.

As we have seen in the previous section, the different types of tori that appear in our problem
have different quantitative properties and therefore the dominant terms in the expression of
these invariant objects as the level sets of a certain function are different whether they lie in a
flat tori region or a big gaps region. Lemma 4.2 is applied in lemma 4.5 for the case of the flat
tori region, and in lemma 4.7 for the case of the big gaps region. In these lemmas it is shown
that the sufficient conditions on the perturbation of the Hamiltonian (1) for the transversality
are hypotheses H2′′, H3′′ and H3′′′ in theorem 2.1.

Putting all these results together in proposition 4.1, we have that, by hypothesis H2′′ and
the non-degeneracy conditions H3′′ and H3′′′, the scattering map Sε maps pieces of these tori
transversally in 
ε to other tori at a distance O(ε), that is Sε(Ti ) � Ti+1, where Ti and Ti+1 are
invariant tori at a distance smaller than ε. Therefore, by lemma 10.4 in [DLS06a] we have that
Wu

Ti
� Ws

Ti+1
and we have constructed a transition chain.

Finally, we use the well-known result that given a transition chain {Ti}Ni=0, we can find an
orbit visiting all the elements of the chain. In our case, as was the case in [DLS06a], we have
incorporated in the chain objects with different topologies, so applying lemma 11.1 in [DLS06a]
to the transition chain obtained, we get that there is ε∗ > 0 such that for 0 < |ε| < ε∗, and for
any interval [I ∗

−, I ∗
+ ] ∈ (I−, I+), x̃(t) satisfies that, for some T > 0,

I (x̃(0)) � I ∗
−; I (x̃(T )) � I ∗

+ .
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Note that this result, which proves the existence of a diffusing orbit whose action variable
I increases by order 1, is obtained when we assume in hypothesis H2′′ that there exists an
open set J ∗+

I where the function (13) is positive. By the same argument, if we assume that
there exists an open set J ∗−

I where (13) is negative, the action variable of diffusing orbit x̃(t)

decreases, that is the orbit x̃(t) satisfies that, for some T > 0,

I (x̃(0)) � I ∗
+ ; I (x̃(T )) � I ∗

−.

3. Inner dynamics

The main goal of this section is to prove theorem 3.1 about the existence of a sequence of
invariant tori Ti in the NHIM 
̃ε, which are distributed along all the actions in the interval
(I−, I+) and are O(ε1+η)-closely spaced, for some η > 0. The method of proof will consist of
the combination of two parts: averaging methods and the KAM theorem.

In section 3.2 we will consider the restricted Hamiltonian (25) and perform, in
theorem 3.11, a global averaging procedure that casts the Hamiltonian into a global normal
form, which has different expressions in the non-resonant and resonant regions. In the non-
resonant regions, averaging transformations cast the system too close to a rotor and, in general,
in the non-resonant regions too close to an integrable pendulum.

In section 3.3 we will use KAM theorem 3.22 to show that many of the invariant tori of
the averaged Hamiltonian persist when we add the error terms of the normal form and they
are close enough in terms of the action variables. For the flat tori region, which consists of
non-resonant regions and resonant regions with small gaps, we can apply KAM theorem 3.22
almost straightforwardly and this is done in propositions 3.24 and 3.26, respectively. For the
big gaps region, we will show in theorem 3.28 that we can apply the KAM theorem after we
have written the Hamiltonian in action-angle coordinates.

3.1. Main result

The main result for the inner dynamics shows that in the NHIM 
̃ε, there exists a sequence of
tori, which are distributed along all the actions in the interval (I−, I+) and are O(ε1+η)-closely
spaced, for some η > 0. Moreover, it provides analytic expressions for the invariant tori. It is
stated in the following theorem:

Theorem 3.1. Consider a Hamiltonian of the form (1) and assume that r > 2(m + 1)2, with
m � 10 and n = 2m + 6, as well as hypothesis H3′. Choose η = min((m − 1 − αn)/2, ν/2 −
3(1 + ν)/r), where α < 1/n and 1/(r/6 − 1) < ν � 1/16. Then, for ε small enough, there
exists a finite sequence of invariant tori {Ti}Ni=0 in 
̃ε, which satisfy:

1. They are defined by the equation F(I, ϕ, s; ε) ≡ Ei , where F is a C4−� function, for any
� > 0, which has the form (89) and (96) depending on the region where the invariant tori
lie: the flat tori region or a connected component of the big gaps region defined in (84),
respectively. In the flat tori region, the invariant tori are primary whereas in the big gaps
region the invariant tori can be primary or secondary. In the big gaps region, for values
of Ei > 0 equation (96) provides two primary tori T ±

Ei
, whereas for Ei < 0 it gives a

secondary torus TEi
.

2. They can be also written as a graph of the variable I over the angle variables (ϕ, s):
I = λE(ϕ, s; ε) with λE given in (90) for the flat tori region. In the case of the big gaps
region, the equations for them are given for two different invariant tori T ±

i (two different
components in the case of secondary KAM tori) in the form I = λ±

E(ϕ, s; ε), with λ±
E

given in (97).
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3. These tori are O(ε1+η)-distributed along the actions in the interval (I−, I+), that is,
they are O(ε1+η)-closely spaced in terms of the action variable I . In the connected
component (84) of the big gaps region associated with the resonance −l0/k0, they are
O(ε3/2+η|(k0, l0)|−r/2+1)-closely spaced in terms of energies Ei , where −l0/k0 is the
associated resonance.

4. T0 and TN are OC2(ε1+η)-close to I− and I+, respectively.

The proof of theorem 3.1 is a combination of an averaging procedure (section 3.2) and a
KAM theorem (section 3.3). In section 3.4 we put the results obtained in the previous sections
together to give a proof of theorem 3.1.

3.2. Averaging procedure

In this section we proceed to obtain a suitable global normal form of the restricted Hamiltonian
(25), according to the procedure described in section 2.3.3. We use the standard formalism
of Lie series, so we are considering canonical transformations obtained as the time-one map
of the flow of a Hamiltonian. A very pedagogical treatment of this method can be found
in [LM88]. As we have already mentioned, we consider a truncation of the Fourier series of
the perturbation and we deal with trigonometric polynomials of finite order. We first introduce
a Banach space with a suitable norm, which allows an efficient study of the estimates for the
different terms that appear in the averaging procedure.

3.2.1. Preliminaries. Functional spaces. We consider the space of functions defined on
I × T2, I ⊂ R compact set, which consists of trigonometric polynomials of order M on
(ϕ, s) ∈ T2, and Cr with respect to J ∈ I ⊂ R. We denote this space TM(I × T2). A function
u ∈ TM(I × T2) is of the form

u(J, ϕ, s) =
∑

(k, l) ∈ Z
2,|k| + |l| � M

uk,l(J )ei(kϕ+ls). (30)

Remark 3.2. Note that the product of two elements u ∈ TM(I × T2) and v ∈ TN(I × T2)

is another trigonometric polynomial in the variables (ϕ, s) ∈ T2 but of degree M + N , that is
uv ∈ TM+N(I × T2).

Clearly, the space TM(I × T2) is a closed subset of Cr (I × T2). Therefore, TM(I × T2)

is a Banach space with the Cr norm introduced in (2).
Moreover, since the functions u are trigonometric polynomials in (ϕ, s), we can consider

expression (30) and deal with the Fourier norm:

‖u‖[�M]
C�(I×T2)

:=
�∑

m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

|uk,l|Cn(I)|(k, l)|m−n (31)

where |uk,l|Cn(I) is defined in (2) and |(k, l)| = max(|k|, |l|), and | · | denotes the standard
modulo. When there is no possibility of confusion about M we abbreviate it as ‖·‖C� .

On the other hand, to understand better the behaviour of the function u with respect to the
variable J when it gets closer to the resonances, we use the Fourier norm with a weight L � 1:

‖u‖[�M]
C�(I×T2),L

:=
�∑

m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

|uk,l|Cn(I),L|(k, l)|m−n (32)



Geography of resonances and Arnold diffusion 2017

where |(k, l)| is as before and

|uk,l|Cn(I),L :=
n∑

i=0

Li |Diuk,l|C0(I)

i!
.

As before, when there is no confusion about M we abbreviate these norms as ‖·‖C�,L and
| · |Cn,L, respectively.

Note that when L = 1, we recover the Fourier norm (31).
The basic properties of these norms are collected in appendix B. In particular they are

related by

L�|u|C� � ‖u‖C�,L � CM2|u|C� , (33)

where C is a constant that depends on � but it is independent of M and 0 < L � 1.
For the seminorm |·|j,�−j defined in (3) one has that for all 0 � j � �,

Lj |u|j,�−j � ‖u‖C�,L. (34)

Note that in the case that the function u ∈ TM(I × T2) does not depend on the action
variable J , we have that

|u|C� = |u|0,�,

therefore by equation (34),

|u|C� � ‖u‖C�,L. (35)

Moreover, given u ∈ TM(I × T2) and v ∈ TN(I × T2), we have that uv ∈ TM+N(I × T2)

and for 0 < L � 1 and 0 � � � r ,

‖uv‖[�M+N ]
C�,L

� ‖u‖[�M]
C�,L

‖v‖[�N ]
C�,L

. (36)

We will say that a function f is OCr ,L(η) when ‖f ‖Cr ,L � η.

3.2.2. The homological equation. In this section, we will use the standard formalism of Lie
series to perform a resonant averaging procedure. We first start discussing the infinitesimal
equations for averaging, which will serve as a motivation for the phenomenon of resonances
and therefore for the resonant averaging.

We begin with a Hamiltonian K(J, A, ϕ, s) = K0(J, A) + εK1(J, A, ϕ, s), where
(J, A, ϕ, s) ∈ R2 × T2 and K0(J, A) = A + J 2/2. We start looking for a canonical
transformation g, given by the time-one map of the flow of a Hamiltonian εG(J, A, ϕ, s)

(generating function), that eliminates, when it is possible, the dependence on the angle variables
(ϕ, s) up to order ε. Therefore,

K ◦ g = K + {K, εG} + 1
2 {{K, εG}, εG} + · · ·

= K0 + ε(K1 + {K0, G}) + O(ε2)

where {, } denotes the Poisson bracket in the canonical coordinates (J, A, ϕ, s):

{f, g} = ∂f

∂ϕ

∂g

∂J
+

∂f

∂s

∂g

∂A
− ∂f

∂J

∂g

∂ϕ
− ∂f

∂A

∂g

∂s
.

We seek for a solution G of the infinitesimal equation

K1 + {K0, G} = K̄,

which produces a K̄ as simple as possible. In Fourier coefficients this equation has the form

Kk,l(J ) − i(ω(J ) · (k, l))Gk,l(J ) = K̄k,l(J ) (37)
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where Kk,l(J ), Gk,l(J ) and K̄k,l(J ) are the Fourier coefficients of K1, G and K̄ , respectively,
for (k, l) ∈ Z2, and ω(J ) ∈ R2 is of the form

ω(J ) =
(

∂K0

∂J
,
∂K0

∂A

)
= (J, 1).

This vector ω(J ) is called resonant when (J, 1) · (k, l) = Jk + l = 0, for (k, l) �= (0, 0);
and the values J = −l/k, with k �= 0, for which this equation vanishes and Kk,l(−l/k) �= 0
are called resonances. Looking at equation (37) it is clear that these are the places where we
cannot choose Gk,l(J ) in order to have K̄k,l(J ) ≡ 0. So, for these values of J and, in order
to keep smoothness, the ones in a neighbourhood around them, we choose K̄k,l(J ) to be the
Fourier term Kk,l(−l/k). Note that we cannot have K̄0,0(J ) ≡ 0 for any J either, so we will
also keep the Fourier coefficient K0,0(J ).

The precise result with the estimates for the functions is formulated in the following
lemma:

Lemma 3.3. Let K(J, ϕ, s) be a Hamiltonian defined on I × T2, I ⊂ R compact set, which
is a Cr+1 function with respect to J and a trigonometric polynomial in (ϕ, s) of degree M , so
it can be expressed in the following way:

K(J, ϕ, s) =
∑

(k,l)∈N

Kk,l(J )ei(kϕ+ls),

with N = {(k, l) ∈ Z2, |k| + |l| � M}. We refer to resonances as the elements of the finite set
of rational numbers

R = {−l/k ∈ Q : (k, l) ∈ N , k �= 0, Kk,l(−l/k) �= 0}. (38)

For any (k, l) ∈ N , we consider (k̃, l̃) ∈ Z2 such that −l/k = −l̃/k̃ and gcd(k̃, l̃) = 1
and we define Lk = Lk̃ = L/|k̃|, L � 1 being some constant small enough such that for all
−l/k ∈ R, the real intervals [−l/k − 2Lk, −l/k + 2Lk] are all disjoint.

Then, there exists a function G = G[�M] of class Cr with respect to J and K̄ = K̄ [�M]

of class Cr+1, which are both trigonometric polynomials in (ϕ, s), such that they solve the
homological equation

K + {K0, G} = K̄, (39)

and verify the following:

1. If |J + l/k| � 2Lk for any (k, l) ∈ N , then

K̄(J, ϕ, s) = K0,0(J ). (40)

2. If |J + l0/k0| � Lk0 for some (k0, l0) ∈ N , then

K̄(J, ϕ, s) = K0,0(J ) +
∑

t ∈ Z − {0}|t |(|k0| + |l0|) � M

Ktk0,t l0(−l0/k0)e
it (k0ϕ+l0s)

=: K0,0(J ) + Uk0,l0(k0ϕ + l0s). (41)

3. The function K̄ verifies∥∥K̄∥∥C�,L
� C�‖K‖C�,L, (42)

for � = 0, . . . , r + 1, where C� is a constant independent of L, M .
4. The function G verifies

‖G‖C�,L � C�

L
‖K‖C�+1,L, (43)

for � = 0, . . . , r , where C� is a constant independent of L, M .
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Proof. We want to solve for each (k, l) ∈ N equation (37)

Kk,l(J ) − i(J k + l)Gk,l(J ) = K̄k,l(J ), (44)

where the unknowns are the Fourier coefficients of the generating function G and the averaged
Hamiltonian K̄ .

So, we first choose:

1. K̄0,0(J ) = K0,0(J ),
2. if (0, l) ∈ N , l �= 0, K̄0,l(J ) = 0,
3. if (k, l) ∈ N , k �= 0, we choose K̄k,l(J ) as

K̄k,l(J ) = Kk,l(−l/k)ψ

(
1

Lk

(J + l/k)

)
, (45)

where ψ(x) is a fixed C∞ function such that: ψ(x) = 1, if x ∈ [−1, 1], and ψ(x) = 0, if
x /∈ [−2, 2]. With this choice we have that K̄k,l verifies the following:
(a) If |J + l/k| � Lk then K̄k,l(J ) = Kk,l(−l/k),
(b) if |J + l/k| � 2Lk then K̄k,l(J ) = 0.

Once we have defined K̄ as above, it is clear that it is a Cr+1 function, and its Fourier
coefficients satisfy∣∣K̄k,l

∣∣
Cn,L

=
n∑

i=0

Li

∣∣DiK̄k,l

∣∣
C0

i!

=
n∑

i=0

Li

i!

|Kk,l(−l/k)|∣∣Diψ
∣∣
C0

Li
k

�
∣∣Kk,l

∣∣
C0 |k|n

n∑
i=0

∣∣Diψ
∣∣
C0

i!
(46)

= ∣∣Kk,l

∣∣
C0 |k|n|ψ |Cn .

Using this inequality for the Fourier coefficients it is easy to see that K̄ verifies the desired
bound (42). More precisely,∥∥K̄∥∥C�,L

=
�∑

m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

∣∣K̄k,l

∣∣
Cn,L

|(k, l)|m−n

�
�∑

m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

|ψ |Cn

∣∣Kk,l

∣∣
C0 |k|n|(k, l)|m−n

� |ψ |C�

�∑
m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

∣∣Kk,l

∣∣
C0 |(k, l)|m

� (� + 1)|ψ |C�‖K‖C�,L

for � = 0, . . . , r + 1, so choosing C� = (� + 1)|ψ |C� , which is independent of L, we get the
desired bound.

Now, we choose G to verify equation (44) so we get the following:

1. G0,0 = 0 and Gk,l(J ) = 0 if (k, l) /∈ N ,
2. if (0, l) ∈ N , l �= 0, G0,l(J ) = K0,l(J )/il,
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3. if (k, l) ∈ N , k �= 0, we choose Gk,l(J ) as

(a) If J �= −l/k then Gk,l(J ) = i
K̄k,l(J ) − Kk,l(J )

J k + l
,

(b) Gk,l(−l/k) = lim
J→−l/k

Kk,l(J ) − K̄k,l(J )

i(J k + l)
= K ′

k,l(−l/k)

ik
.

Then G(J, ϕ, s) is a trigonometric polynomial in (ϕ, s) of degree M , and of class Cr with
respect to J . To bound the function G, we first need to bound its Fourier coefficients in terms
of |·|C�,L norm for 0 � � � r . Given a fixed (k0, l0) ∈ N , by the definition of K̄ and G, we
have

1. ∀J ,
∣∣G0,l

∣∣
Cn,L

�
∣∣K0,l

∣∣
Cn,L

/|l|, for � = 0, . . . , r .

2. If |J + l0/k0| � Lk0 , then
∣∣Gk0,l0

∣∣
Cn,L

� (n + 1)

∣∣Kk0,l0

∣∣
Cn+1,L

L|k0| , for n = 0, . . . , r .

This estimate comes from∣∣Gk0,l0

∣∣
Cn,L

=
n∑

i=0

Li

∣∣DiGk0,l0

∣∣
C0

i!

�
n∑

i=0

Li

i!

∣∣Di+1Kk0,l0

∣∣
C0

|k0|

� (n + 1)

L|k0|
n∑

i=0

Li+1

(i + 1)!

∣∣Di+1Kk0,l0

∣∣
C0

� (n + 1)

∣∣Kk0,l0

∣∣
Cn+1,L

L|k0| .

3. If |J + l0/k0| � 2Lk0 then
∣∣Gk0,l0

∣∣
Cn � n + 1

L

�∑
i=0

∣∣Kk0,l0

∣∣
Ci ,L

|k0|n−i , for n = 0, . . . , r + 1.

This estimate is obtained using Leibniz rule for derivatives in the following way:

∣∣Gk0,l0

∣∣
Cn,L

=
n∑

i=0

Li

∣∣DiGk0,l0

∣∣
C0

i!

=
n∑

i=0

Li

i!

∣∣∣∣Di

(
−i

Kk0,l0

Jk0 + l0

)∣∣∣∣
C0

�
n∑

i=0

Li

i!

i∑
j=0

(
i

j

) ∣∣DjKk0,l0

∣∣
C0

(2Lk0)
i−j+1|k0|

�
n∑

i=0

1

L

i∑
j=0

Lj

∣∣DjKk0,l0

∣∣
C0

j !
|k0|i−j

� n + 1

L

n∑
i=0

Li

∣∣DiKk0,l0

∣∣
C0

i!
|k0|n−i

� n + 1

L

n∑
i=0

∣∣Kk0,l0

∣∣
Ci ,L

|k0|n−i .
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4. If Lk0 � |J + l0/k0| � 2Lk0 , then

∣∣Gk0,l0

∣∣
Cn,L

� n + 1

L

n∑
i=0

∣∣Kk0,l0

∣∣
Ci ,L

|k0|n−i + (n + 1)
∣∣Kk,l

∣∣
C0 |k|n|ψ |Cn ,

for n = 0, . . . , r and C is a constant independent of L.
This estimate can be obtained in the same way as the previous one using the estimate
obtained for K̄k,l in (46), in the following way:∣∣Gk0,l0

∣∣
Cn,L

=
n∑

i=0

Li

∣∣DiGk0,l0

∣∣
C0

i!

�
n∑

i=0

Li

i!

∣∣∣∣Di

(
i

K̄k0,l0

Jk0 + l0

)∣∣∣∣
C0

+
n∑

i=0

Li

i!

∣∣∣∣Di

(
−i

Kk0,l0

Jk0 + l0

)∣∣∣∣
C0

� (n + 1)2

L

∣∣Kk,l

∣∣
C0 |k|n|ψ |Cn +

n + 1

L

n∑
i=0

∣∣Kk0,l0

∣∣
Ci ,L

|k0|n−i .

In order to finish the proof, we will use these estimates for the Fourier coefficients of G

to bound the function G.
First we concentrate on the set I ′ ⊂ I formed by J ∈ R, such that |J + l0/k0| � Lk0 for

some −l0/k0 ∈ R. Note that if J ∈ I ′, for any other (k, l) ∈ N , such that (k, l) �= (tk0, t l0)

for t ∈ Z, J satisfies that |J + l/k| � 2Lk . Therefore, we will distinguish three types of
Fourier coefficients Gk,l of G, which are the ones described in points 1, 2 and 3 in this proof.
Using their corresponding bounds we have

‖G‖C�(I ′×T2),L =
�∑

m=0

m∑
n=0

2�

 M∑
l=−M

∣∣G0,l

∣∣
Cn,L

|l|m−n +
∑

(k, l) ∈ N
(k, l) �= t (k0, l0)

∣∣Gk,l

∣∣
Cn,L

|(k, l)|m−n

+
∑

t ∈ Z \ {0}|t |(|k0| + |l0|) � M

∣∣Gtk0,t l0

∣∣
Cn,L

|t (k0, l0)|m−n



�
�∑

m=0

m∑
n=0

2�

 M∑
l=−M

∣∣K0,l

∣∣
Cn,L

|l| |l|m−n

+
∑

(k, l) ∈ N
(k, l) �= t (k0, l0)

(
(n + 1)

L

n∑
i=0

∣∣Kk,l

∣∣
Ci ,L

|k|n−i

)
|(k, l)|m−n

+
∑

t ∈ Z \ {0}|t |(|k0| + |l0|) � M

(n + 1)

L|k0|
∣∣Ktk0,t l0

∣∣
Cn+1,L

|t (k0, l0)|m−n


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�
�∑

m=0

m∑
n=0

2�

 M∑
l=−M

∣∣K0,l

∣∣
Cn,L

|l|m−n

+
∑

(k, l) ∈ N
(k, l) �= t (k0, l0)

(n + 1)

L

n∑
i=0

∣∣Kk,l

∣∣
Ci ,L

|(k, l)|m−i

+
∑

t ∈ Z \ {0}|t |(|k0| + |l0|) � M

(n + 1)

L

∣∣Ktk0,t l0

∣∣
Cn+1,L

|t (k0, l0)|m−n−1



�
�∑

m=0

m∑
n=0

2�

 M∑
l=−M

∣∣K0,l

∣∣
Cn,L

|l|m−n

+
(n + 1)(m + 1)

L

∑
(k, l) ∈ N

(k, l) �= t (k0, l0)

∣∣Kk,l

∣∣
Cn,L

|(k, l)|m−n

+
n + 1

L

∑
t ∈ Z \ {0}|t |(|k0| + |l0|) � M

∣∣Ktk0,t l0

∣∣
Cn+1,L

|t (k0, l0)|m−n−1


� ‖K‖C�,L +

(� + 1)

L

(
(� + 1)‖K‖C�,L + ‖K‖C�+1,L

)
� C�

L
‖K‖C�+1,L

for � = 0, . . . , r , where C� = 3(� + 1)2 is a constant independent of L.
Analogously, for the set I ′′ ⊂ I formed by J ∈ R such that Lk0 � |J + l0/k0| � 2Lk0

for some −l0/k0 ∈ R, we note that if J ∈ I ′′ then for any other (k, l) ∈ N such that
(k, l) �= (tk0, t l0), t ∈ Z, J satisfies that |J + l/k| � 2Lk . In this case, we will distinguish
three types of Fourier coefficients Gk,l of G, which are the ones described in points 1, 3 and
4 in this proof. Using the same argument as in the previous case, jointly with the bounds for
the Fourier coefficients, we have that

‖G‖C�(I ′′×T2),L � ‖K‖C�,L +
(� + 1)2

L

(‖K‖C�,L + |ψ |C�‖K‖C�,L + ‖K‖C�,L

)
� C�

L
‖K‖C�,L

for � = 0, . . . , r , where C� = 4(� + 1)2 is a constant independent of L.
And finally, for the remaining set I ′′′ ⊂ I formed by J ∈ R, such that |J + l/k| � 2Lk

for any (k, l) ∈ N , the Fourier coefficients Gk,l of G are just the ones described in points 1
and 3. Arguing as before we have

‖G‖C�(I ′′′×T2),L � ‖K‖C�,L +
(� + 1)2

L
‖K‖C�,L � C�

L
‖K‖C�,L,

for � = 0, . . . , r , where C� = 2(� + 1)2 is a constant independent of L.
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So putting all these estimates together we get the desired bound (43) for the whole
domain. �

3.2.3. The main averaging result. In this section we apply repeatedly the procedure stated
in the previous section to the truncated Fourier series of the perturbation R[�M] in (27) to get
a suitable normal form.

We start the averaging procedure with the Hamiltonian (25) truncated up to order M ,

k0(J, ϕ, s; ε) = Z0(J, ϕ, s; ε) + εR0(J, ϕ, s; ε),

where Z0(J, ϕ, s; ε) = J 2/2 and R0(J, ϕ, s; ε) = R[�M](J, ϕ, s; ε), which is a trigonometric
polynomial of degree M in the angle variables (ϕ, s).

We will search for a canonical transformation g0, given by the time-one map of the flow of
Hamiltonian εG0 provided by lemma 3.3 that eliminates, when it is possible, the dependence
on the angle variables (ϕ, s) at order ε.

According to expression (38), we will refer to resonances of order 1 as the elements of

R1 = {−l/k ∈ Q ∩ (I−, I+), |k| + |l| � M, k �= 0, R0
k,l(−l/k; 0) �= 0},

where R0
k,l are the Fourier coefficients of R0. For each resonance −l/k in R1 we will define

a strip of size 2L/|k|, for L ∼ εα and α > 0, centred on the resonance. We will call resonant
region of order 1 the union of these strips, where the averaging transformation g0 cannot
eliminate the dependence on the angle variables, and non-resonant region up to order 1 the
complementary region in 
̃ε, where k0 ◦ g0 reduces to contain only the harmonic R0

0,0(J ; 0)

at order ε.
Hence, the Hamiltonian k1 = k0 ◦ g0 is now of the form

k1(J, ϕ, s; ε) = Z1(J, ϕ, s; ε) + ε2R1(J, ϕ, s; ε),

where the normal form Z1 is a Cr function, which has different expressions in the resonant and
non-resonant regions, and the remainder ε2R1 is a Cr−2 function.

Proceeding by induction, we obtain a sequence of Hamiltonians kq−1, for q � 1, which
are normalized up to order εq−1, that is in adequate symplectic coordinates Hamiltonian kq−1

takes the form

kq−1(J, ϕ, s; ε) = Zq−1(J, ϕ, s; ε) + εqRq−1(J, ϕ, s; ε), (47)

where, as before, the normal form Zq−1 is a Cr−2(q−2) function, which has different expressions
in the resonant and non-resonant regions up to order q − 1, and the remainder εqRq−1 is a
Cr−2(q−1) function.

The set of resonances of order q and its associated resonant and non-resonant regions up
to order q are defined recursively in the following way:

Resonances. Resonant and non-resonant regions.

Definition 3.4. The set of resonances of order q � 1 is the set of rational numbers r ∈
Rq\(R1 ∪ · · · ∪ Rq−1), where Rq is the set of rational numbers r ∈ Q ∩ (I−, I+) which
admit a representation r = −l/k for some integers k, l satisfying |l| + |k| � qM , such that
R

q−1
k,l (−l/k; 0) �= 0; in symbols,

Rq = Rq(M) =
{
− l

k
∈ Q ∩ (I−, I+) : |k| + |l| � qM, k �= 0, R

q−1
k,l (−l/k; 0) �= 0

}
, (48)

where R
q−1
k,l are the Fourier coefficients of the remainder Rq−1 in (47).

Roughly speaking, we call resonances of order q the places in J where the qth order
averaging cannot eliminate the dependence on the angles at order q.
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Remark 3.5. Note that, by hypothesis H3′ in theorem 2.1, for all
−l0/k0 ∈ Q ∩ (I−, I+) such that |(k0, l0)| < MBG there exists t∗ ∈ Z2 such that
ht∗k0,t∗l0(0, 0, −l0/k0; 0) �= 0 and therefore, by equation (26), Rt∗k0,t∗l0(−l0/k0; 0) �= 0.
Hence, by definition 3.4 for resonances of order 1, as long as MBG � M , all the rational
numbers −l/k with |(k, l)| < MBG are resonant of order 1.

Definition 3.6. The set R[�q](M) of resonances up to order q is the union of sets of resonances
of order i, for i = 1, . . . , q; in symbols,

R[�q] = R[�q](M) =
⋃

i=1,...,q

Ri (M) ⊂ Q. (49)

For this set of resonances we define different strips in 
̃ε of a width depending on a
parameter L, which is L ∼ εα , with α > 0. This divides the phase space into two types of
regions:

Definition 3.7. The non-resonant region up to order q Dq
nr is the set of points (J, ϕ, s) ∈ 
̃ε

which are at a distance greater than 2Lk in terms of the J variable of any resonance
−l/k ∈ R[�q], where Lk = L/|k|; in symbols,

Dq
nr = Dq

nr(M, L) =
{
(J, ϕ, s) ∈ (I−, I+) × T2 :

∣∣∣∣J +
l

k

∣∣∣∣ � 2Lk, for − l

k
∈ R[�q]

}
. (50)

Definition 3.8. The resonant region of order q Dr,q is the set of points (J, ϕ, s) ∈ 
̃ε which
are at a distance smaller than Lk = L/|k| in terms of the J variable from any resonance
−l/k ∈ Rq\(R1 ∪ . . . ∪ Rq−1); in symbols,

Dr,q = Dr,q(M, L) = {
(J, ϕ, s) ∈ (I−, I+) × T2 :

∣∣J + l
k

∣∣ � Lk,

for some − l
k

∈ Rq\(R1 ∪ . . . ∪ Rq−1)
}
.

(51)

The union of resonant regions of order i, for i = 1, . . . , q, gives us the resonant region
up to order q, which can be defined in the following way:

Definition 3.9. The resonant region up to order q Dq
r is the set of points (J, ϕ, s) ∈ 
̃ε which

are at a distance smaller than Lk = L/|k| in terms of the J variable from any resonance
−l/k ∈ R[�q]; in symbols,

Dq
r = Dq

r (M, L) =
{
(J, ϕ, s) ∈ (I−, I+) × T2 :

∣∣∣∣J +
l

k

∣∣∣∣ � Lk, for some − l

k
∈ R[�q]

}
(52)

The dependence of these domains on M and L, Dq
nr = Dq

nr(M, L), Dr,q = Dr,q(M, L)

and Dq
r = Dq

r (M, L), will be suppressed to simplify notation.

Remark 3.10. Note that, by remark 3.5, the big gaps region DBG introduced in (23) is contained
in the resonant region of order 1 Dr,1.

The precise result to obtain a global normal form for the reduced Hamiltonian by applying
repeatedly the averaging procedure, jointly with the estimates for the bounds of the normal
form terms and the expression of the order of truncation M and the constant L as functions
of ε, is stated in the following theorem 3.11. It is worth remarking that we obtain a global
normal form by a direct application of the global averaging procedure of lemma 3.3, thanks to
the fact that the action variable I is one-dimensional, so a standard smoothing procedure can
be applied to the Fourier coefficients of the normal form. For I multidimensional, one has to
restrict to deal with local normal forms, which are nevertheless enough for the application of
the KAM theorem and to get an approximate equation for the KAM tori.
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Theorem 3.11. Let n, m be any given integers satisfying 1 � 2m � n. Given ρ a real number
satisfying

ρ <
1

n
, (53)

and r an integer verifying

r � (1/ρ − 2)m + 2, (54)

consider a Cr Hamiltonian of the form (25):

k(J, ϕ, s; ε) = J 2

2
+ εR(J, ϕ, s; ε), (55)

satisfying εR(J, ϕ, s; ε) = OCr (ε).
Introduce M ∼ ε−ρ , for any −l/k ∈ R[�m](M), introduced in (49), consider Lk = L/|k|,

where

L = Cεα (56)

with

ρ � α < 1/n (57)

and C a constant independent of ε, such that for −l/k ∈ R[�m], the real intervals
I−l/k ≡ [−l/k − 2Lk, l/k + 2Lk] are disjoint. Then, there exists a symplectic change of
variables, depending on time, (J, ϕ, s) = g(B, φ, s), periodic in φ and s, and of class Cr−2m,
which is ε-close to the identity in the Cn−2m−1 sense, such that transforms the Hamiltonian
system associated with k(J, ϕ, s; ε) into a Hamiltonian system of Hamiltonian

k̄m(B, φ, s; ε) = Z̄m(B, φ, s; ε) + εm+1R̄m(B, φ, s; ε), (58)

where the function Z̄m is of class Cr−2m+2 and R̄m is of class Cr−2m and they verify the following:

1. If B /∈⋃−l/k∈R[�m]
I−l/k , then

Z̄m(B, φ, s; ε) = 1
2B2 + εZ̃m(B; ε), (59)

for any (B, φ, s) ∈ Dm
nr (Dm

nr was introduced in (50)).
2. If B ∈ I−l0/k0 for some −l0/k0 ∈ Ri \ (R1 ∪ . . . Ri−1), for some 1 � i � m, then

Z̄m(B, φ, s; ε) = 1
2B2 + εZ̃m(B; ε) + εiUk0,l0

m (k0φ + l0s; ε), (60)

for any (B, φ, s) ∈ Dr,i (Dr,i was introduced in (51)).
In a particular case of a resonance −l0/k0 of order 1, Uk0,l0

m (k0φ + l0s; 0) does not depend
on m and is given by

Uk0,l0
m (θ; 0) = U

k0,l0
1 (θ) =

∑
t ∈ Z − {0}|t |(|k0| + |l0|) � M

Rtk0,t l0(−l0/k0; 0)eitθ (61)

where θ = k0φ + l0s and Rk,l(J ; ε) are the Fourier coefficients of the perturbation
R(J, ϕ, s; 0) with respect to (ϕ, s).

3. The function εZ̃m(B; ε) in (59) and (60) is a polynomial of degree m in ε, whose term of
order q + 1 is of class Cr−2q and of size OC� (εq+1−α(�+2q)), for � = 0, . . . , n − 2q and q =
0, . . . , m−1. The function εiUk0,l0

m (k0φ+l0s; ε) in (60) is a polynomial of degree m in ε and
a trigonometric polynomial in θ = k0φ + l0s, which is OC�,θ (ε

i−2α(i−1)|(k0, l0)|−r+2(i−1)),
for � = 0, . . . , n − 2(i − 1). The function εm+1R̄(B, φ, s; ε) in (58) is OC� (εm+1−α(�+2m)),
for � = 0, . . . , n − 2m. Finally, the change of variables (J, ϕ, s) = g(B, φ, s) satisfies
g − Id = OC� (ε1−α(�+2)), for � = 0, . . . , n − 2m.
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Remark 3.12. We always consider that Hamiltonian (55) is Hamiltonian (25) and therefore,
by equation (26) and remark 2.10, the function Uk0,l0

m given in (61) for a resonance −l0/k0 ∈ R1

is equal to the function Uk0,l0 in hypothesis H3′:

Uk0,l0
m (θ; 0) = Uk0,l0(θ) =

∑
t ∈ Z − {0},|t ||(k0, l0)| < M

htk0,t l0(0, 0, −l0/k0; 0)eitθ . (62)

By the same reason Z̃m(B; 0) in formulae (59) and (60) is equal to h(0, 0, B; 0).

Remark 3.13. Note that the bound on the trigonometric polynomial εiUk0,l0
m (θ; ε), where

θ = k0φ + l0s, is more precise because it incorporates the size of its Fourier coefficients. We
use the notation OC�,θ to emphasize that we are bounding the derivatives with respect to the
variable θ .

Remark 3.14. Note that although the remainder term εm+1R̄m is Cr−2m, it is bounded in the
supremum norm |·|C� for � only up to n − 2m, for n < r , which is enough for the future
application of the KAM theorem.

3.2.4. Proof of theorem 3.11. The proof of this theorem will follow by the repeated application
of the inductive lemma 3.18 m times. Before stating it, we need two previous lemmas that we
will use to prove lemma 3.18 and finally theorem 3.11.

Lemma 3.15. Let G(J, ϕ, s) a Hamiltonian and assume that G is Cr trigonometric polynomial
of order M defined in a compact domain I × T2, with I ⊂ R, such that supx∈I×T2 |x| � D.
Consider the Cr−1 change of variables defined on I × T2,

(J, ϕ, s) = gt (B, φ, s),

given by the time-t map of the flow of Hamiltonian εpG(J, ϕ, s), for some p ∈ N. Assume
that G is OC� (εη�), η� being some positive number. Then,

max
0�t�1

|gt |C� � D�, max
0�t�1

|gt − Id|C� � D′
� εη�+1 (63)

for � = 0, . . . , r − 1, D� and D′
� being some constants, which depend on the domain and �,

but not on ε. In terms of the notation introduced in section 2.1, the above inequalities read
gt = OC� (1) and gt − Id = OC� (εη�+1), for � = 0, . . . , r − 1 and 0 � t � 1.

Proof. By the fundamental theorem of calculus we can write

gt (x) = x +
∫ t

0

∂gτ

∂τ
(x) dτ = x +

∫ t

0
J∇G ◦ gτ (x) dτ,

where x = (B, φ, s) ∈ I × T2 and J is the canonical matrix of the symplectic form
ω = dJ ∧ dϕ + dA ∧ ds. The extra variable A, conjugated to the angle s, was introduced to
make apparent the symplectic character of the change of variables.

Using formula (C.5) in appendix C we obtain

|gt |C� � |Id|C� +
∫ 1

0
|J∇G ◦ gτ |C�dτ

� |Id|C� + C�

∫ 1

0

(|J∇G|C1 |gτ |C� + |J∇G|C� |gτ |C�−1
�
)

dτ (64)

for � = 2, . . . , r − 1, where C� is a constant depending on �; and

|gt |C1 � |Id|C1 +
∫ 1

0
|J∇G|C1 |gτ |C1 dτ.
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Let us define a� = max
0�t�1

|gt |C� . Then,

a1 � D + δ1a1,

and

a� � D + δ1a� + C�δ�a
�
�−1, for � � 2,

with δ� = |G|C�+1 . Hence,

a� �
D + δ�a

�
�−1

1 − δ1
for � � 2.

Since δ1 ∼ εη2 
 1 and δ� ∼ εη�+1 
 1, it is easy to check by induction that a� � D�, for
� � 1, D� being some constant independent of ε.

Denoting by b� = max
0�t�1

|gt − Id|C� , one has

b1 � δ1a1,

and

b� � δ1a� + C�δ�a
�
�−1, for � � 2.

So that,

b� � D�δ1 + C�D
�
�−1δ� � D′

�δ
� = D′

�ε
η�+1 ,

for � � 1, D′
� being some constant independent of ε. �

Since the averaging procedure is based on the method of Lie transforms, the transformed
Hamiltonian will be expressed in terms of Poisson brackets. In the following lemma 3.16 we
give an estimate for the bound of the Poisson bracket of two functions, where the second one
is a generating function, in terms of the bounds on the norm (32) of each one.

Lemma 3.16. Let ρ, α be two positive real numbers, such that ρ � α and M ∼ ε−ρ and
L = Cεα . Given Fp(J, ϕ, s) and Gq(J, ϕ, s) two trigonometric polynomials in (ϕ, s),
assume that Fp(J, ϕ, s) is a Cn, n > 0, function in J and a trigonometric polynomial
of degree Mp = (p + 1)M and Gq(J, ϕ, s) is a Cm, m > 0, function in J and a
trigonometric polynomial of degree Mq = (q + 1)M , that satisfy ‖εp+1Fp‖C�,L � εp+1−α(2p)

and ‖εq+1Gq‖C�,L � εq+1−α(2q+1), for � = 0, . . . , n, with ε > 0. Then {Fp, Gq} is a Cr function
in J , for r = min(n, m) − 1 and a trigonometric polynomial of degree Mp̃ = (p̃ + 1)M in
(ϕ, s), where p̃ = p + q + 1, and εp̃+1F p̃ = {εp+1Fp, εq+1Gq} satisfies∥∥∥εp̃+1F p̃

∥∥∥
C�,L

� εp̃+1−α(2p̃),

for � = 0, . . . , r .

Proof. From

{Fp, Gq} = ∂Fp

∂ϕ

∂Gq

∂J
− ∂Fp

∂J

∂Gq

∂ϕ
,

we have

{Fp, Gq} =
∑

(k, l) ∈ Z
2,|k| + |l| � Mp

ikF
p

k,l(J )ei(kϕ+ls)
∑

(k, l) ∈ Z
2,|k| + |l| � Mq

∂G
q

k,l(J )

∂J
ei(kϕ+ls)

−
∑

(k, l) ∈ Z
2,|k| + |l| � Mp

∂F
p

k,l(J )

∂J
ei(kϕ+ls)

∑
(k, l) ∈ Z

2,|k| + |l| � Mq

ikG
p

k,l(J )ei(kϕ+ls).
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It is clear from this expression that {Fp, Gq} is a trigonometric polynomial of degree
Mp + Mq = (p + q + 2)M .

On the other hand, using equation (36), it follows that∥∥{εp+1Fp, εq+1Gq}∥∥C�,L

�

∥∥∥∥∥∥∥∥ε
p+1

∑
(k, l) ∈ Z

2,|k| + |l| � Mp

ikF
p

k,l(J )ei(kϕ+ls)

∥∥∥∥∥∥∥∥
C�,L

∥∥∥∥∥∥∥∥ε
q+1

∑
(k, l) ∈ Z

2,|k| + |l| � Mq

∂G
q

k,l(J )

∂J
ei(kϕ+ls)

∥∥∥∥∥∥∥∥
C�,L

+

∥∥∥∥∥∥∥∥ε
p+1

∑
(k, l) ∈ Z

2,|k| + |l| � Mp

∂F
p

k,l(J )

∂J
ei(kϕ+ls)

∥∥∥∥∥∥∥∥
C�,L

∥∥∥∥∥∥∥∥ε
q+1

∑
(k, l) ∈ Z

2,|k| + |l| � Mq

ikG
p

k,l(J )ei(kϕ+ls)

∥∥∥∥∥∥∥∥
C�,L

�

∥∥∥∥∥∥∥∥ε
p+1

∑
(k, l) ∈ Z

2,|k| + |l| � Mp

F
p

k,l(J )ei(kϕ+ls)

∥∥∥∥∥∥∥∥
C�+1,L

1

L

∥∥∥∥∥∥∥∥ε
q+1

∑
(k, l) ∈ Z

2,|k| + |l| � Mq

G
q

k,l(J )ei(kϕ+ls)

∥∥∥∥∥∥∥∥
C�+1,L

+
1

L

∥∥∥∥∥∥∥∥ε
p+1

∑
(k, l) ∈ Z

2,|k| + |l| � Mp

F
p

k,l(J )ei(kϕ+ls)

∥∥∥∥∥∥∥∥
C�+1,L

∥∥∥∥∥∥∥∥ε
q+1

∑
(k, l) ∈ Z

2,|k| + |l| � Mq

G
q

k,l(J )ei(kϕ+ls)

∥∥∥∥∥∥∥∥
C�+1,L

� 2

L

∥∥εp+1Fp
∥∥

C�+1,L

∥∥εq+1Gq
∥∥

C�+1,L
.

Using now the hypotheses on εq+1Fp and εp+1Gp in this lemma and the fact that L = Cεα ,
where C is a constant independent of ε, we have∥∥{εp+1F, εq+1G}∥∥C�,L

� ε−αεp+1−α(2p)εq+1−α(2q+1)

= εp+q+2−α(2(p+q+1))

= εp̃+1−α(2p̃). �

Remark 3.17. This lemma will be applied a certain number of times and expresses the
fact that given two functions εp+1Fp and εq+1Gq , which are trigonometric polynomials
in (ϕ, s) of degree Mp = (p + 1)M and Mq = (q + 1)M , respectively, with bounds∥∥εp+1Fp

∥∥
C�,L

� εp+1−α(2p) and
∥∥εq+1Gq

∥∥
C�,L

� εq+1−α(2q+1), its Poisson bracket is a function

εp̃+1F p̃, with p̃ = p+q +1, that is, εp̃+1F p̃ = {εp+1Fp, εq+1Gq} is a trigonometric polynomial
in (ϕ, s) of degree Mp̃ = (p̃ + 1)M with a bound

∥∥εp̃+1F p̃
∥∥

C�,L
� εp̃+1−α(2p̃).

Note that this process of ‘εq+1Gq Poisson-bracketing’ can be iterated: εp̂+1F p̂ =
{εp̃+1F p̃, εq+1Gq}, with p̂ = p̃ + q + 1, is a trigonometric polynomial in (ϕ, s) of degree
Mp̂ = (p̂ + 1)M with a bound

∥∥εp̂+1F p̂
∥∥

C�,L
� εp̂+1−α(2p̂).

We state and prove now the iterative lemma 3.18 for averaging, which we will apply a
finite number of times q = 1, . . . , m in the proof of theorem 3.11 and m will be chosen m � 10
in theorem 3.28. It basically tells us that given a Hamiltonian already in normal form up to
some order εq , we can produce another Hamiltonian which is normalized up to order εq+1.
The averaged Hamiltonian is given rather explicitly both in the resonant regions and in the
non-resonant ones, which are redefined at every step according to the new resonances that will
come up.
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Lemma 3.18. Let r > n > 1 and 0 � 2q < n be any given integers. Consider a Hamiltonian
of the form

kq(J, ϕ, s; ε) = Zq(J, ϕ, s; ε) + εq+1Rq(J, ϕ, s; ε),

satisfying the following hypotheses:

1. Z0(J, ϕ, s; ε) = J 2

2 and, for q � 1, Zq(J, ϕ, s; ε) is a Cr−2q+2 function that verifies the
following:
There exist finite sets Ri ⊂ Q, i = 1, . . . , q, depending on M ∼ ε−ρ , where ρ is a positive
number satisfying ρ < 1/n, and a number L = Cεα > 0, which satisfy hypothesis (57),
that is, ρ � α < 1/n and C a constant independent of ε, such that

1a For a resonance −l/k up to order q, that is −l/k ∈ R[�q] ≡ ⋃i=1...q Ri (see (49)),
the intervals I−l/k ≡ [−l/k − 2Lk, −l/k + 2Lk], with Lk = L/|k|, are disjoint.

1b If J /∈⋃−l/k∈R[�q]
I−l/k , then

Zq(J, ϕ, s; ε) = J 2

2
+ εZ̃q(J ; ε),

for any (J, ϕ, s) ∈ Dq
nr (Dq

nr was introduced in (50)), where εZ̃q(J ; ε) is a polynomial
of degree q in ε whose term of order p + 1 is OC�,L(εp+1−α(2p)), for � = 0, . . . , r −2p

and p = 0, . . . , q − 1.
1c If J ∈ I−l0/k0 , for some resonance −l0/k0 of order q, that is −l0/k0 ∈ Ri\R1 ∪· · ·∪

Ri−1 for some 1 � i � q, then

Zq(J, ϕ, s; ε) = J 2

2
+ εZ̃q(J ; ε) + εiUk0,l0

q (k0ϕ + l0s; ε)

for any (J, ϕ, s) ∈ Dr,i (Dr,i was introduced in (51)), where εZ̃q(J ; ε) is a polynomial
of degree q in ε and Uk0,l0

q (θ; ε) is a polynomial of degree q−i in ε and a trigonometric
polynomial in θ = k0ϕ + l0s. The term of order p + 1 in ε of Zq is OC�,L(εp+1−α(2p)),
for � = 0, . . . , r − 2p and p = 0, . . . , q − 1.

2. εq+1Rq(J, ϕ, s; ε) is a Cr−2q function and is OC� (εq+1−α(�+2q)), for � = 0, . . . , n − 2q.
For the particular case of the first iteration (q = 0), εR0 is O�(ε), for � = 0, . . . , n.
The term of order i + 1 of the Taylor expansion with respect to ε of εq+1Rq(J, ϕ, s; ε) is a
trigonometric polynomial in (ϕ, s) of degree Mi = (i + 1)M and is OC�,L(εi+1−α(2i)), for
� = 0, . . . , r − q − i and for i = q, . . . , r − q.

Denote K = Rq(J, ϕ, s; 0), which is the term of the perturbation of order exactly q + 1
in ε. Following definition 3.4, introduce the set

Rq+1 = {−l/k ∈ Q ∩ (I−, I+), |k| + |l| � Mq, k �= 0, R
q

k,l(−l/k; 0) �= 0}, (65)

where Mq = (q + 1)M and R
q

k,l are the Fourier coefficients of Rq .
Choose a new value of C, independent of ε, in L = Cεα , such that the intervals

I−l/k ≡ [−l/k − 2Lk, −l/k + 2Lk], with Lk = L/|k|, are disjoint for −l/k ∈ R[�q+1].
Let G(J, ϕ, s) = Gq(J, ϕ, s) be the Cr−2q−1 trigonometric polynomial of order Mq given

by lemma 3.3, verifying (39) with K = Rq(J, ϕ, s; 0).
Then, the Cr−2q−2 change of variables

(J, ϕ, s) = gq(B, φ, s),

given by the time-one map of the flow of Hamiltonian εq+1Gq(B, φ, s), transforms the
Hamiltonian kq(J, ϕ, s; ε) into a Hamiltonian kq+1 = kq ◦ gq of the form

kq+1(B, φ, s; ε) = Zq+1(B, φ, s; ε) + εq+2Rq+1(B, φ, s; ε),
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with

Zq+1(B, φ, s; ε) = Zq(B, φ, s; ε) + εq+1R̄q(B, φ, s; 0)

where R̄q(B, φ, s; 0) = K̄(B, φ, s) given in lemma 3.3, is a Cr−2q function, such that

i. If B /∈⋃−l/k∈R[�q+1]
I−l/k , then

R̄q(B, φ, s; 0) = R
q

0,0(B; 0),

for any (B, φ, s) ∈ Dq+1
nr and εq+1R̄q is OC�,L(εq+1−α(2q)), for � = 0, . . . , r − 2q.

ii. If B ∈ I−l0/k0 , for some −l0/k0 ∈ Ri\R1 ∪ · · · ∪ Ri−1 for some 1 � i � q + 1, then

R̄q(B, φ, s) = R
q

0,0(B; 0) +
∑

t ∈ Z − {0},|t |(|k0| + |l0|) � Mq

R
q

tk0,t l0
(−l0/k0; 0)eitθ , (66)

for any (B, φ, s) ∈ Dr,i , where R
q

k,l(J ; ε) are the Fourier coefficients of the function
Rq(J, ϕ, s; ε) with respect to (ϕ, s). Moreover, εq+1R̄q is OC�,L(εq+1−α(2q)), for � =
0, . . . , r − 2q.

Moreover, the Hamiltonian Zq+1(B, φ, s; ε) verifies properties 1b and 1c up to order q +1,
and Rq+1(B, φ, s; ε) verifies property 2 replacing q by q + 1.

Remark 3.19. Note that all the terms of order p + 1, for p � 0, in the Taylor expansion in
ε that appear in lemma 3.18 are Cr−2p functions in J and trigonometric polynomials in the
variables (ϕ, s) and they are bounded independently of ε in the Fourier weighted norm ‖·‖C�,L

defined in (32) for � up to r − 2p. However, the whole remainder term εq+2Rq+1 is not a
trigonometric polynomial in the variables (ϕ, s), so we cannot use the Fourier weighted norm.
In this case we estimate their supremum norm |·|C� defined in (2), but only for � up to n − 2q,
as in theorem 3.11 (see remark 3.14).

Proof. We will apply lemma 3.3 with K = Rq(J, ϕ, s; 0), which is a Cr−2q function, as well as
a trigonometric polynomial in (ϕ, s) of degree Mq = (q +1)M . Accordingly, by definition 3.4,
resonances of order q + 1 correspond to the set of rational numbers r ∈ Rq+1 \ (R1 ∪ . . .∪Rq).

Let us first see that taking L = Cεα , with α satisfying α < 1/n and C = Cq

chosen adequately, the real intervals I−l/k = [−l/k − 2Lk, −l/k + 2Lk], with Lk = L/|k|,
for −l/k ∈ R[�q+1] are disjoint. Indeed, the distance dk,k0 between any two resonances
−l0/k0, −l/k ∈ R[�q+1] is greater than or equal to 1/(|k0||k|). In order to avoid overlapping
between all these intervals, the distance dk,k0 must be greater than 2Lk0 + 2Lk . Taking into
account that we only consider resonances with denominators |k|, |k0| � (q+1)M , the condition
that ensures that these intervals are separated is 1/((q + 1)M) > 4L, which requires ρ � α in
terms of exponents of ε. This is guaranteed by the hypothesis on α and ρ in this lemma.

Hence, we can apply lemma 3.3, obtaining a Cr−2q−1 function Gq(J, ϕ, s) and a Cr−2q

function K̄ = Rq(J, ϕ, s), which are also trigonometric polynomials in (ϕ, s) of degree Mq .
Under the canonical change of variables (J, ϕ, s) = gq(B, φ, s), where gq is the time-one

map of the flow of Hamiltonian εq+1Gq , the extended autonomous Hamiltonian A+kq becomes

A + kq+1 = (A + kq) ◦ gq

= (A + Zq + εq+1Rq) ◦ gq

= A + Zq + εq+1({A + Z0, Gq} + Rq(·, 0))

+ (Zq − Z0) ◦ gq − (Zq − Z0)

+ (A + Z0) ◦ gq − (A + Z0) − {A + Z0, εq+1Gq}
+ εq+1(Rq ◦ gq − Rq) + εq+1(Rq − Rq(·, 0))

:= A + Zq + εq+1R̄q + εq+2Rq+1,



Geography of resonances and Arnold diffusion 2031

where

R̄q = {A + Z0, Gq} + Rq(·, 0), (67)

and

εq+2Rq+1 = (Zq − Z0) ◦ gq − (Zq − Z0)

+ (A + Z0) ◦ gq − (A + Z0) − {A + Z0, εq+1Gq}
+ εq+1(Rq ◦ gq − Rq) + εq+1(Rq − Rq(·, 0)). (68)

We first see that the normal form term εq+1R̄q is bounded in the ‖·‖C�,L norm by εq+1−α(2q),
for � = 0, . . . , n − 2q.

Indeed, using (40) and (41) from lemma 3.3 we have

i. If B /∈⋃−l/k∈R[�q+1]
I−l/k , then

R̄q(B, φ, s) = R
q

0,0(B; 0) (69)

for any (B, φ, s) ∈ Dq+1
nr and, by formula (42) and the second part of hypothesis 2 for

i = q of lemma 3.18, we have∥∥εq+1R̄q
∥∥

C�,L
�
∥∥εq+1Rq(·; 0)

∥∥
C�,L

� εq+1−α(2q), (70)

for � = 0, . . . , r − 2q.
ii. If B ∈ I−l0/k0 , for some −l0/k0 ∈ Ri\R1 ∪ · · · ∪ Ri−1 for some 1 � i � q + 1, then, by

equation (41) in lemma 3.3,

R̄q(B, φ, s) = R
q

0,0(B; 0) +
∑

t ∈ Z
2 − {0},|t |(|k0| + |l0|) � Mq

R
q

tk0,t l0
(−l0/k0; 0)eitθ (71)

for any (B, φ, s) ∈ Dr,i , where R
q

k,l(J ; 0) are the Fourier coefficients of the function
Rq(J, ϕ, s; 0) with respect to (ϕ, s).
As before, by formula (42) from lemma 3.3 and the second part of hypothesis 2 of this
lemma for i = q, we have∥∥εq+1R̄q

∥∥
C�,L

� ∥∥εq+1Rq(·; 0)
∥∥

C�,L
� εq+1−α(2q) (72)

for � = 0, . . . , r − 2q.

Note that, since α < 1/n and 2q < n, the power of ε in the bounds obtained in (70) and
(72), is a positive number greater than q.

To finish the proof, we only need to estimate the remainder term εq+2Rq+1 in (68) and its
Taylor expansion coefficients with respect to ε.

We will first estimate the remainder term εq+2Rq+1 in (68). Since it is not a trigonometric
polynomial we will estimate it in terms of the supremum norm |·|C� . Using the integral bound
for the Taylor remainder and definitions (67) and (68) of R̄q and εq+2Rq+1, respectively, we have∣∣εq+2Rq+1

∣∣
C� �

∫ 1

0

∣∣{Zq − Z0, εq+1Gq} ◦ gq,t

∣∣
C� dt

+
∫ 1

0

∣∣(1 − t)({{A + Z0, εq+1Gq}, εq+1Gq} ◦ gq,t )
∣∣
C� dt

+
∫ 1

0

∣∣{εq+1Rq, εq+1Gq} ◦ gq,t

∣∣
C� dt

+
∣∣εq+1(Rq − Rq(·; 0))

∣∣
C�
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=
∫ 1

0

∣∣{Zq − Z0, εq+1Gq} ◦ gq,t

∣∣
C� dt

+
∫ 1

0

∣∣(1 − t){εq+1(R̄q − Rq(·; 0)), εq+1Gq} ◦ gq,t

∣∣
C� dt

+
∫ 1

0

∣∣{εq+1Rq, εq+1Gq} ◦ gq,t

∣∣
C� dt

+
∣∣εq+1(Rq − Rq(·; 0))

∣∣
C� ,

for � = 0, . . . , n − 2(q + 1).
Using Faa–di Bruno formulae (C.4) we obtain∣∣εq+2Rq+1

∣∣
C� � ∣∣{Zq − Z0, εq+1Gq}

∣∣
C�

∫ 1

0

∣∣gq,t

∣∣�
C� dt

+
∣∣{εq+1(R̄q − Rq(·; 0)), εq+1Gq}

∣∣
C�

∫ 1

0
(1 − t)

∣∣gq,t

∣∣�
C� dt

+
∣∣{εq+1Rq, εq+1Gq}

∣∣
C�

∫ 1

0

∣∣gq,t

∣∣�
C� dt (73)

+
∣∣εq+1(Rq − Rq(·; 0))

∣∣
C� ,

for � = 0, . . . , n − 2(q + 1).
By formula (43) from lemma 3.3, the second part of hypothesis 2 for i = q of this lemma,

and using that L ∼ εα , we get that∥∥εq+1Gq

∥∥
C�,L

� C

L

∥∥εq+1Rq(·; 0)
∥∥

C�+1,L
� εq+1−α(2q+1),

for � = 0, . . . , r − 2q − 1. Hence, using the equivalence relation (33) between ‖·‖C�,L and
|·|C� norms, εq+1Gq satisfies∣∣εq+1Gq

∣∣
C� � εq+1−α(�+2q+1), (74)

for � = 0, . . . , n − 2q − 1, and the power of ε, η� = q + 1 − α(� + 2q + 1) > q + 1 − αn in
equation (74) is positive. So, we can apply lemma 3.15 with G = εq+1Gq in D = (I−, I+)×T2,
and we have that gq,t = OC� (1) and gq,t − Id = OC� (εq+1−α(�+2(q+1))) for t ∈ [0, 1) and
� = 0, . . . , n − 2(q + 1).

In expression (73), the terms Zq −Z0, Gq , R̄q and Rq(·; 0) are trigonometric polynomials
in the variables (ϕ, s). In order to bound their corresponding Poisson brackets in the |·|C�

norm, we will first estimate their ‖·‖C�,L norm and apply lemma 3.16. Finally, using the
equivalence relation (33) between |·|C� and ‖·‖C�,L norms, we will bound their corresponding
Poisson bracket in the |·|C� norm. On the other hand, the terms Rq and therefore Rq −Rq(·; 0)

are not trigonometric polynomials, so we cannot use the ‖·‖C�,L norm. For this reason we will
bound the |·|C� norm for the Poisson brackets directly.

The terms εq+1Rq(·; 0) and εq+1R̄q in (73) are both bounded in the ‖·‖C�,L norm by
εq+1−α(2q), for � = 0, . . . , r − 2q, because of the second part of hypothesis 2 for i = q

and points (i) and (ii) already proved, respectively. Note that both terms are of type εq+1Fq ,
according to remark 3.17.

The term Zq − Z0 = εR̄0 + ε2R̄1 + . . ., is a polynomial with respect to ε, so it can be
bounded by its main term εR̄0. Hence, using the bound for the term of order 1 (p = 0) of Zq
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given in hypotheses 1b and 1c, we have∥∥Zq − Z0
∥∥

C�,L
� ∥∥εR̄0

∥∥
C�,L

� ε, (75)

for � = 0, . . . , r − 2(q − 1). Note that εR̄0 is of type εF 0, according to remark 3.17.
The estimate for the |·|C� norm of the term (Rq −Rq(·; 0)) can be obtained from the bound

for the Taylor remainder and the first part of hypothesis 2. More precisely,∣∣εq+1(Rq − Rq(·; 0))
∣∣
C� � εq+2

∣∣Rq
∣∣
C�+1 � εq+2−α(�+1+2q), (76)

for � = 0, . . . , n − 2q − 1.
Moreover using the bounds for εq+1Rq and εq+1Gq in the |·|C� norm, and Leibniz rule for

derivatives we have∣∣{εq+1Rq, εq+1Gq}
∣∣
C�

�
�∑

i=0

(
�

i

)(∣∣∣∣εq+1 ∂Rq

∂ϕ

∣∣∣∣
Ci

∣∣∣∣εq+1 ∂Gq

∂J

∣∣∣∣
C�−i

+

∣∣∣∣εq+1 ∂Rq

∂J

∣∣∣∣
Ci

∣∣∣∣εq+1 ∂Gq

∂ϕ

∣∣∣∣
C�−i

)

�
�∑

i=0

(
�

i

) ∣∣εq+1Rq
∣∣
Ci+1

∣∣εq+1Gq

∣∣
C�−i+1 .

Hence, using that |R0|C�+1 � 1 and |G0|C�+1 � ε−α(�+2) from (74), we have∣∣{εR0, εG0}
∣∣
C� � εε1−α(�+2) � ε2−α(�+2),

otherwise, ∣∣{εq+1Rq, εq+1Gq}
∣∣
C� �

�∑
i=0

(
�

i

)
εq+1−α(i+1+2q)εq+1−α(�−i+1+2q+1)

� ε2(q+1)−α(�+2(2q+1)+1),

for � = 0, . . . , n − 2(q − 1).
Putting together in (73) the estimates in (74), (75) and (76), as well as the estimate for

{εq+1Rq, εq+1Gq} and εq+1R̄q (these last two not relevant for q �= 0), and using lemma 3.16
and the equivalence relation (33) one gets the following bound for (68):∣∣εq+2Rq+1

∣∣
C� � εq+2−α(�+2(q+1)),

for � = 0, . . . , n − 2(q + 1).
Finally, all the terms in the Taylor expansion of εq+2Rq+1(B, φ, s, ε) with respect to ε

are obtained from a finite number of algebraic operations and a process of ‘εq+1Gq Poisson
bracketing’, as stated in remark 3.17, to the Taylor coefficients in ε of Zq and of εq+1Rq , all of
which are of the form εp+1Fp. Applying lemma 3.16 iteratively, we conclude that the Taylor
expansion coefficient of order i+1 of εq+2Rq+1(B, φ, s, ε) with respect to ε is of the type εi+1F i

according to remark 3.17, that is a trigonometric polynomial of order Mi = (i + 1)M in the
angle variables, satisfying OC�,L(εi+1−α(2i)) for � = 0, . . . , r − q − i and for i = q, . . . , r − q.
Again, by condition α < 1/n, the power of ε is a positive number greater than i. �

Proof of theorem 3.11. The proof is by induction in q. To begin the induction process, we
consider R[�M], which is the truncated Fourier series of the perturbation R up to some order
M0 = M as in (27). The order of truncation M is M ∼ ε−ρ , with ρ satisfying hypothesis (53).
We want to apply lemma 3.18 for q = 0 to the Hamiltonian

k0(J, ϕ, s; ε) = Z0(J, ϕ, s; ε) + εR0(J, ϕ, s; ε),

where Z0(J, ϕ, s; ε) = J 2/2 and R0(J, ϕ, s; ε) = R[�M](J, ϕ, s; ε).
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We introduce the finite set

R1 = {−l/k ∈ Q ∩ (I−, I+), |k| + |l| � M, k �= 0, R0
k,l(−l/k; 0) �= 0},

where R0
k,l are the Fourier coefficients of R0. According to definition 3.4 we will refer to

resonances of order 1 the elements of the set R1.
Since Z0 = J 2/2 and R0 satisfy trivially hypotheses 1 and 2 of lemma 3.18 and hypothesis

(57) holds, we can apply lemma 3.18 for q = 0, which provides a symplectic change of
variables (B, φ, s) �→ (J, ϕ, s) = g0(B, φ, s) of class Cr−2 and we get a Hamiltonian of the
form

k1(J, ϕ, s; ε) = Z1(J, ϕ, s; ε) + ε2R1(J, ϕ, s; ε),

where Z1 is a Cr function and ε2R1 is a Cr−2 function, verifying properties 1b,1c and 2 of
lemma 3.18 with q = 1.

In particular, in the resonant regions of order 1 Dr,1 defined in (51), expression (66) in
lemma 3.18 for q = 0 provides that Z1 has the form (60) for i = m = 1, that is

Z1(B, φ, s; ε) = 1
2B2 + εZ̃1(B) + εU

k0,l0
1 (k0φ + l0s; ε),

where U
k0,l0
1 is given by expression (61).

Proceeding by induction, we assume that we have applied lemma 3.18 up to order q, for
0 < q < m, so that in adequate symplectic coordinates, the Hamiltonian kq of this theorem
takes the form

kq(J, ϕ, s; ε) = Zq(J, ϕ, s; ε) + εq+1Rq(J, ϕ, s; ε),

and satisfies hypotheses 1 and 2 of lemma 3.18, so that it can be applied again to the Hamiltonian
kq , providing a Hamiltonian

kq+1(J, ϕ, s; ε) = Zq+1(J, ϕ, s; ε) + εq+2Rq(J, ϕ, s; ε)

satisfying properties 1 and 2 of lemma 3.18 replacing q by q + 1 and a new constant C = Cq

in L = Cεα to accommodate new resonances.
Applying the inductive lemma m times, we get a Hamiltonian km

km(J, ϕ, s; ε) = Zm(J, ϕ, s; ε) + εm+1Rm(J, ϕ, s; ε),

that consists of an integrable Hamiltonian Zm, which already satisfies theses 1 and 2
of theorem 3.11 for Z̄m = Zm, plus a perturbation εm+1Rm of order OC� (εm+1−α(�+2m)),
0 � � � n − 2m.

Moreover, lemma 3.18 gives us estimates for the terms of the integrable part Z̄m of the
Hamiltonian km in the Fourier weighted norm ‖·‖C�,L defined in (32). More precisely, we know
that Z̄m is a polynomial of degree m in ε, whose term of order q + 1 is OC�,L(εq+1−α(2q)), for
� = 0, . . . , r − 2q and q = 0, . . . , m − 1. By the equivalence relation (33) we immediately
also have that this term of order q + 1 is OC� (εq+1−α(�+2q)), for � = 0, . . . , n − 2q and
q = 0, . . . , m − 1.

It remains to prove the estimates of thesis 3 of theorem 3.11 on Z̄m and R̄m in the supremum
norm | · |C� .

The estimation for Z̃m follows from the ones obtained for Z̄m and we will concentrate on
the ones for Uk0,l0

m .
In particular, in Dr,i , we can obtain a better estimate for the | · |C� norm of the term

εiUk0,l0
m (θ; ε) in expression (66), which is the one claimed in point 3 of the theorem. In order

to check this, we first note that the function Uk0,l0
m (θ; ε) in expression (60) is a polynomial of

degree m − i in ε and a trigonometric polynomial in θ = k0φ + l0s. So, εiUk0,l0
m (θ; ε) can be
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bounded by its main term εiUk0,l0
m (θ; 0), which is a trigonometric polynomial in the variable

θ = k0φ + l0s and independent of the action variable B. Using that∥∥εiUk0,l0
m (·; 0)

∥∥
Cr−2(i−1),L

� εi−α(2(i−1)),

and the definition of the Fourier weighted norm in (32), we have∥∥εiUk0,l0
m (·; 0)

∥∥
Cr−2(i−1),L

= εi
∑

t ∈ Z − {0}|t |(|k0| + |l0|) � Mq

|Utk0,t l0 |C0 |t (k0, l0)|r−2(i−1) � εi−α(2(i−1)),

where Uk,l are the Fourier coefficients of the function Uk0,l0
m (θ; 0), Mq = (q + 1)M and

|(k, l)| = max(|k|, |l|). From this expression it is clear that

|Utk0,t l0 |C0 � Cεi−α(2(i−1))/|t (k0, l0)|r−2(i−1),

for some constant C independent of ε. Hence, bounding derivatives with respect to the variable
θ we have

|Uk0,l0
m (·; ε)|C�,θ �

∑
t ∈ Z − {0}|t |(|k0| + |l0|) � Mq

∣∣Utk0,t l0

∣∣
C0 |t |�

�
∑

t ∈ Z − {0}|t |(|k0| + |l0|) � Mq

εi−α(2(i−1))

|t (k0, l0)|r−2(i−1)
|t |�

� εi−α(2(i−1))

|(k0, l0)|r−2(i−1)

∑
t ∈ Z − {0}|t |(|k0| + |l0|) � Mq

1

|t |r−2(i−1)−�

� εi−α(2(i−1))

|(k0, l0)|r−2(i−1)
,

for � = 0, . . . , n − 2(i − 1), as claimed in point 3 of theorem 3.11.
Finally, it remains to prove that the tail εR[>M] of the Fourier series of the perturbation εR

that we have truncated at order M ∼ ε−ρ at the beginning of this proof is OC� (εm+1−α(�+2m)),
for 0 � � � n − 2m. Since the perturbation R in Hamiltonian (55) of theorem 3.11 is a
OCr (1) function, the Fourier coefficients Rk,l(J, ε) of R(J, ϕ, s, ε) decrease at a rate of order
1/|(k, l)|r , for (k, l) −→ ∞. So, by equation (A.2) in proposition A.2 we have the following
bound for εR[>M]:

|εR[>M]|C� � ε

Mr−�−2
� ε1+ρ(r−�−2), (77)

for � = 0, . . . , n − 2m.
From lemma 3.18 and equation (63), we know that the changes of coordinates gq satisfy, for

q = 0, . . . , m−1, gq = O�(1) and gq − Id = O�(ε
q+1−α(�+2(q+1))), for � = 0, . . . , n−2(q +1).

Therefore, the total change of coordinates of theorem 3.11 (J, ϕ, s) = g(B, φ, s) where
g = gm−1 ◦ · · · ◦ g0, satisfies g = O�(1) and g − Id = O�(ε

1−α(�+2)), for � = 0, . . . , n − 2m.
Then, using this fact and formula (77), by Faa–di Bruno formula (C.4) we have

|R[>M] ◦ g|C� � ε1+ρ(r−�−2).

To get |εR[>M] ◦ g|C� � εm+1−α(�+2m), we need ε1+ρ(r−�−2) � εm+1−α(�+2m), that is

ρ � m − α(� + 2m)

(r − � − 2)
, (78)

for � = 0, . . . , n − 2m. In order that bounds (57) and (78) are compatible, we need to choose

r �
(

1
ρ

− 2
)

m + 2, which is condition (54) in the hypotheses of this theorem.
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Finally the choice Z̄ = Zm and R̄ = Rm + R[>M] ◦ g, with g = gm ◦ · · · ◦ g0, gives the
desired averaged Hamiltonian (58) which satisfies theses 1,2 and 3. �

Remark 3.20. Choosing ρ = 1/(n + δ), with 0 < δ < 1/m, so that condition (57) is fulfilled
for any α between ρ and 1/n, we have that r must satisfy

r � (n − 2 + δ)m + 2,

where m is the number of steps of averaging performed. So, as long as the regularity r of the
Hamiltonian satisfies

r > rmin := (n − 2)m + 2, (79)

there exist ρ, α satisfying condition (57) and therefore (53) of theorem 3.11 and henceforth,
m steps of averaging can be performed to provide estimates of class Cn−2m, contained in the
theses of theorem 3.11.

Remark 3.21. It is important to note that the averaging procedure is valid in the full domain
(I−, I+) × T2 ⊂ 
̃ε. Indeed, we have performed an averaging procedure to the Hamiltonian
k(J, ϕ, s; ε) in all (I−, I+) × T2, except at the subsets Dt(L), where

Dt(L) = {(J, ϕ, s) ∈ (I−, I+) × T2; Lk � |J + l/k| � 2Lk, for − l/k ∈ R[�m]}.
To provide an averaging procedure in the full domain (I−, I+)×T2, we apply again theorem 3.11
with L̃k = L̃/|k|, where L̃ = L/2. The region Dt(L) is now contained in the non-resonant
region corresponding to L̃k , Dm

nr(M, L̃) defined in definition 3.7. So the averaged Hamiltonian
in Dt is also given by theorem 3.11, with slightly different constants.

3.3. KAM theorem

Up to this point, once we choose m, by theorem 3.11 we can perform m steps of averaging
and we obtain a Cr−2m Hamiltonian (58) which consists of an integrable Hamiltonian Z̄m

plus a perturbation εm+1R̄m which is Cn−2m small, more precisely it is OC� (εm+1−α(�+2m)), for
� = 0, . . . , n − 2m. Note that n � 2m is required as well as a large r and that the integrable
Hamiltonian has different expressions in the resonant regions and non-resonant regions as
specified in theorem 3.11.

The integrable part of the Hamiltonian gives us an approximate equation Z̄m = constant
for the invariant tori in 
̃ε. To finish the proof of theorem 3.1 it remains to determine which
tori survive and what is the distance between them when we add the perturbation term εm+1R̄m.
By choosing an adequate m large enough the goal is to show that we can cover the whole region
(I−, I+)×T2 ⊂ 
̃ε with invariant tori which are O(ε1+η)-closely spaced, for some η > 0, and
obtain an approximate expression for them.

To that end, we will use KAM theorem 3.22 stated in section 3.3.1, which is a result
about the existence of invariant tori for a periodic perturbation of a Hamiltonian expressed in
action-angle variables. It is a direct adaptation of theorem 8.12 in [DLS06a].

Since the integrable Hamiltonian (58) has different expressions in the resonant and non-
resonant regions, we perform this study separately.

The non-resonant regions are studied in section 3.3.2. In proposition 3.24, we apply
theorem 3.22 directly to Hamiltonian (58) for m � 2 and we conclude that for these regions
there exist primary KAM tori which are O(ε1+η)-closely spaced, for some η > 0.

The resonant regions are studied in section 3.3.3. As has been described in section 2.3.3,
we will see that for these regions, gaps of different sizes are created in the foliation of primary
KAM tori. According to the size of the gaps, we will distinguish two types of resonant
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regions: the resonant regions with big gaps, where gaps are of size greater than or equal to ε,
which is the size of the heteroclinic jumps provided by the scattering map, and the resonant
regions with small gaps, where gaps are of size smaller than ε.

In the referred section 3.3.3, we will see that the resonant regions with big gaps introduced
in (23) correspond to the resonances J = −l/k of order 1 such that |(k, l)| < MBG = ε−(1+ν)/r ,
for 1/(r/6 − 1) < ν � 1/16, whereas the resonant regions with small gaps correspond to the
rest of the resonances.

The case of resonant regions with small gaps is studied in section 3.3.4. It will not be
different from the non-resonant case and it will be enough to apply KAM theorem 3.22 to
Hamiltonian (58) for m � 2 to obtain primary tori O(ε1+η)-closely spaced, for some η > 0.
This is done in proposition 3.26. The resonant regions with small gaps constitute, jointly with
the non-resonant regions, what we call the flat tori region introduced in section 2.3.3.

The case of resonant regions with big gaps is significantly different and it will be studied in
section 3.3.5. In this case the integrable Hamiltonian Z̄m is like a pendulum, and we will need
to write it first in action-angle variables before applying KAM theorem 3.22 to Hamiltonian
(58) for m � 10. We will see that in these regions we can find other invariant objects, the
secondary tori, which fill the region inside the gaps and they get rather close to the frontier
of the gaps among the primary KAM tori. The precise result, jointly with the approximate
equations for the invariant tori, is given in proposition 3.28.

Finally, theorem 3.1 follows directly from propositions 3.24, 3.26 and theorem 3.28.

3.3.1. The KAM theorem. The following result is about the existence of invariant tori for
a periodic perturbation 2πk0-periodic in the variable ϕ and 2π -periodic in the variable s,
of a Hamiltonian system expressed in action-angle variables and it is standard in the KAM
theory (see [Lla01] for a tutorial on this theory). We skip its proof since it is simply an
adaptation of theorem 8.12 in [DLS06a], where the explicit dependence of the constants on
k0 is given, since k0 will be chosen depending on ε. It relies on a quantitative KAM theorem
of Herman [Her83, theorem 5.4, p 198] for exact symplectic mappings of the annulus.

Theorem 3.22. Let K(I, ϕ, s; ε) be Hamiltonian of the form

K(I, ϕ, s; ε) = K0(I ; ε) + K1(I, ϕ, s; ε), (80)

for (I, ϕ, s) ∈ I × (R/2πk0Z) × T, for some k0 ∈ N. Assume that

i. K is a Cn0+β function of the variables (I, ϕ, s), with n0 � 5 and 0 < β < 1,
ii. For any s ∈ T, |K1(·, s; ε)|Cn0+β � δ and

∣∣K ′′
0(·; ε)

∣∣
C0 � M > 0, where δ = δ(ε) and

M = M(ε) depend on ε.

Then, for ε sufficiently small and fixed, there exists a constant C(k0) = const |k0|(n0+β)/2

and a finite set of values Ii ∈ I, such that the Hamiltonian K(I, ϕ, s; ε) has invariant tori Ti ,
such that

a. The torus Ti can be written as a graph of the variable I over the angle variables (ϕ, s):

Ti = {(I, ϕ, s) ∈ I × T2 : I = Ii + �i(ϕ, s; ε)},
where �i(ϕ, s; ε) is a Cn0−2+β function and |�i(·; ε)|Cn0−2+β � C(k0)M

−1δ1/2.
b. The motion on the torus is Cn0−4+β conjugate to a rigid translation of frequency (ω(Ii), 1),

whereω(Ii) is a Diophantine number of constant type and Markov constantκ = C(k0)δ
1/2,

that is

|ω(Ii)k − l|−1 � Cκ−1|(k, l)| ∀(k, l) ∈ Z2\{(0, 0)}.
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c. The union of neighbourhoods of size C(k0)M
−1δ1/2 of these tori cover all the region

I × (R/2πkZ) × T.

Remark 3.23. This version of the KAM theorem requires to have the system written in action-
angle variables. We would like to mention that recently some quantitative results have appeared
on the KAM theory without action-angle variables (see [LGJV05, FLS09]) for analytic maps,
which could be adapted but some extra work is required.

3.3.2. Non-resonant region. In this section we apply directly theorem 3.22 to the averaged
Hamiltonian (58) in the non-resonant region up to order m Dm

nr introduced in (50). According
to remark 3.21, we use L/2 instead of L, so that

Dm
nr = Dm

nr(M, L/2) = {(J, ϕ, s) ∈ (I−, I+) × T2 : |J + l/k| � Lk, for − l/k ∈ R[�m]},
where Lk = L/|k|, with L = Cεα and α < 1/n, as required in theorem 3.11.

Going back to the original variables (I, ϕ, s), using the changes given by theorem 3.11
and equation (24), we obtain the following result about the existence of invariant tori of
Hamiltonian (1):

Proposition 3.24 (Invariant tori in the non-resonant region). Assume that m � 2, n �
2m + 6 and r > (n − 2)m + 2. Choose any 0 < η � (m − 1 − αn)/2, where α < 1/n

as required in theorem 3.11. Then, for ε small enough, in any connected component of the
non-resonant region up to order m Dm

nr, there exists a finite set of values Ei such that

i. For any Ei there exists a torus Ti invariant by the flow of Hamiltonian (1) contained in

̃ε, which is given in 
̃ε by the equation F(I, ϕ, s; ε) ≡ Ei , where F is a Cn−2m−2−�

function F , for any � > 0, of the form

F(I, ϕ, s; ε) = I + OC2(ε1−4α). (81)

ii. The torus Ti contained in 
̃ε can also be written as a graph of the variable I over the
angle variables (ϕ, s):

Ti = {(I, ϕ, s) ∈ Dm
nr, I = λEi

(ϕ, s; ε)},
with

λE(ϕ, s; ε) = E + UE(ϕ, s; ε); (82)

where UE(ϕ, s; ε) is a Cn−2m−2−� function, for any � > 0, and UE = OC2(ε1−4α).
iii. These tori are O(ε1+η)-closely spaced in terms of the variable I .

Proof. By equations (58) and (59) in theorem 3.11, in one connected component of the non-
resonant region Dm

nr, the Hamiltonian (25) expressed in the averaged variables (B, φ, s) has
the following expression:

km(B, φ, s; ε) = B2

2
+ εZ̃m(B, ε) + εm+1R̄m(B, φ, s; ε), (83)

where εZ̃m(B; ε) is a polynomial of degree m in ε, whose coefficient in terms of ε of
order q + 1, for q = 0, . . . , m − 1, is a Cr−2q function and is OC� (εq+1−α(�+2q)), for � =
0, . . . , n − 2q. Moreover, εm+1R̄m(B, φ, s; ε) is a Cr−2m function, which is OC� (εm+1−α(�+2m))

for � = 0, . . . , n − 2m.
Our next step is to apply KAM theorem 3.22 to the Hamiltonian (83), which is of the form

(80), for K0 = B2/2+εZ̃m(B, ε) and K1 = εm+1R̄m(B, φ, s; ε) and 2π -periodic in ϕ and s, so
that k0 = 1. Assuming that n � 2m+6, it satisfies properties (i) and (ii) with n0 = n−2m−1,
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β = 1−�, for any � > 0, δ = εm+1−αn and M independent of ε. Therefore we can apply KAM
theorem 3.22 and we conclude that the non-resonant region Dm

nr contains KAM tori given by

B = Bi + �i(φ, s; ε),

where �i is a Cn−2m−2−� function, for any � > 0, and |�i |C2 � ε(m+1−αn)/2. These tori are
O(ε(m+1−αn)/2)-closely spaced in terms of the averaged variable B.

For a fixed value of ε 
 1, we have that ε(m+1−αn)/2 � ε1+η, where η = 1
2 (m − 1 − αn)

is positive by hypotheses m � 2 and α < 1/n for n � 2m + 6.
After applying the KAM theorem to Hamiltonian (83), we can go back to the original

variables (I, ϕ, s). Using that the change (J, ϕ, s) �→ (B, φ, s) is ε1−α(�+2)-close to the
identity in the C� sense for � = 0, . . . , n − 2m by theorem 3.11 and (I, ϕ, s) �→ (J, ϕ, s) is
ε-close to the identity in the Cr−1 sense by equation (24), the invariant tori obtained in the
region Dm

nr are given by

I = Ii + Ui(ϕ, s; ε)

where Ui is a Cn−2m−2−� function, for any � > 0 and Ui = OC2(ε1−4α), and they are O(ε1+η)-
closely spaced in terms of the variable I . We get the results claimed for Ei = Ii . �

3.3.3. Resonant region. In this section, we analyse Hamiltonian (25) in the resonant region
up to order m Dm

r defined in (52).
We will perform an accurate study in this resonant region Dm

r and we will estimate the size
of the gaps created in the foliation of primary KAM tori. We will see that this size depends on
the order j of the resonance, for 1 � j � m, and on the size of the harmonic associated with
the corresponding resonance. According to this, we define two types of regions: the small gaps
regions DSG where the size of the gap is smaller than ε and the big gaps regions DBG where
the size of the gap is bigger than or equal to ε.

We will work in one connected component of the resonant domain Dm
r which, according

to (52), is of the form

{(J, ϕ, s) ∈ [−l0/k0 − Lk0 , −l0/k0 + Lk0 ] × T2}, (84)

for some −l0/k0 ∈ Rj\(R1 ∪· · ·∪Rj−1), for 1 � j � m, where Lk0 = L/|k0|, with L = Cεα

and α < 1/n, as required in theorem 3.11.
By formulae (58) and (60) of theorem 3.11, in component (84), Hamiltonian (25) expressed

in the averaged variables (B, φ, s), can be written as

km(B, φ, s; ε) = 1
2B2 + εZ̃m(B; ε) + εjUk0,l0

m (k0φ + l0s; ε) + εm+1R̄m(B, φ, s; ε),

:= Z̄m(B, φ, s; ε) + εm+1R̄m(B, φ, s; ε), (85)

where Z̃m(B; ε) and Uk0,l0
m (k0φ + l0s; ε) are polynomials of degree m − 1 and m − j in ε,

respectively, and Uk0,l0
m (k0φ + l0s; ε) is a trigonometric polynomial in θ = k0φ + l0s.

For q = 0, . . . , m− 1, the coefficient of order q + 1 in ε of εZ̃m is a Cr−2q function which
is OC� (εq+1−α(�+2q)) for � = 0, . . . , n − 2q. The function εjUk0,l0

m (θ; ε), for θ = k0φ + l0s,
satisfies ∣∣εjUk0,l0

m (·; ε)
∣∣
C� � εj−2α(j−1)|(k0, l0)|−r+2(j−1), (86)

for � = 0, . . . , n − 2(j − 1) and |(k0, l0)| = max(|k0|, |l0|).
Moreover, εm+1R̄m is a Cr−2m function which is OC� (εm+1−α(�+2m)), for � = 0 . . . n − 2m.
From expression (85) it is clear that the integrable part Z̄m is like a pendulum. The

integrable pendulum has rotational and librational orbits as well as separatrices, which separate
these two types of motion. It is straightforward to see that the size of the gap, created by the
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separatrix loop, associated with the resonance −l0/k0 ∈ Rj \R1 ∪ · · · ∪Rj−1, in terms of the

J variables, can be bounded from above by
√

2εj/2
∣∣Uk0,l0

m (·; ε)
∣∣1/2
C0 .

From expression (86), we have that the size of the gap for a resonance −l0/k0 of order
j is

O(ε(j−2α(j−1))/2|(k0, l0)|(−r+2(j−1))/2). (87)

Expression (87) shows that the gaps form a heterogeneous sea since their size depends
on the order j � 1 of the resonance and the size of the harmonic |(k0, l0)|. Among them, the
biggest gaps are those of order j = 1 and harmonic |(k0, l0)| � MBG, where MBG = ε−(1+ν)/r

was introduced in theorem 2.1 and satisfies MBG > M , where M is the order of truncation.
Indeed, in the particular case of a resonance −l0/k0 of order 1 (j = 1), the size of the gap is

O(ε1/2|(k0, l0)|−r/2), (88)

so that for any ν > 0, the resonances of order 1 such that |(k0, l0)| � MBG = ε−(1+ν)/r , create
gaps of size O(ε1+ν/2), that is, smaller than ε.

On the other hand, we know that resonances −l0/k0 of order greater than 1 satisfy
MBG � |(k0, l0)| � mM (see remark 3.5). Hence, according to (87) the size of the gap
created by a resonance −l0/k0 of order j , for j = 2, . . . , m is

O(ε(j+1+ν−(α+(1+ν)/r)2(j−1))/2).

Using the condition α < 1/n, with r > n � 2m and m � 2, the size of the gap is

O(ε(j+1−4α(j−1))/2).

For j � 2 the size of the gaps is smaller than ε1+η, for η = (1−4α)/2. Note that η > 0 thanks
to the condition on α.

As we already said, we will distinguish between two types of resonant regions depending
on whether the size of the gaps created in the foliation of primary KAM tori is bigger or smaller
than the size ε of the heteroclinic jumps provided by the scattering map (19).

• Resonant regions with big gaps DBG. Gaps of size of order equal or greater than ε are
created in the foliation of the primary invariant tori. According to (88) they correspond
to resonances −l0/k0 of order 1 with gcd(k0, l0) = 1, satisfying |(k0, l0)| < MBG, where
MBG = ε−(1+ν)/r , for 1/(r/6 − 1) < ν � 1/16. See definition (23).

• Resonant regions with small gaps DSG. Gaps between primary tori are smaller than
ε. They correspond to the resonant regions of resonances −l0/k0 of order 1 such that
|(k0, l0)| � MBG, and resonances of order greater than or equal to 2 (which also satisfy
|(k0, l0)| � MBG, see remark 3.5).

Remark 3.25. We would like to emphasize that our result about resonances is remarkably
different from the one obtained in [DLS06a], where the case of a perturbation h with a finite
number of harmonics was considered. In that case there was a uniform size for the gaps created
by the resonances. For instance, the gaps created by the resonances of orders 1 and 2 were
Cε1/2 and Cε, respectively. In our case we have a heterogeneous sea of gaps of different sizes.
Moreover, in our case the resonances that create big gaps are just the resonances of order 1 up
to some order MBG, whereas in [DLS06a], both resonances of orders 1 and 2 created big gaps.

3.3.4. Resonant regions with small gaps. In this section, we will study the resonant regions
with small gaps DSG, which correspond to resonances −l0/k0 such that |(k0, l0)| � MBG,
where MBG was introduced in theorem 2.1, of order j greater than or equal to 1.
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We will work in one connected component, and we will apply directly theorem 3.22 to
Hamiltonian (85) in order to prove that this component is covered by the primary tori which
are O(ε1+η)-closely spaced, for some η > 0.

Going back to the original variables (I, ϕ, s) using the changes given by theorem 3.11 and
equation (24), we obtain the following result about the existence of invariant primary KAM
tori of Hamiltonian (1):

Proposition 3.26 (Invariant tori in the small gaps region). Assume that m � 2, n � 2m+6
and r > (n − 2)m + 2. Choose any 0 < η � 1

2 min(ν − 6(1 + ν)/r, m − 1 − α(6 + 2m)),
for ν > 1/(r/6 − 1). Then, for ε small enough, in any connected component of DSG, which
is of the form (84) for some −l0/k0 ∈ R[�m] with |(k0, l0)| � MBG and Lk0 = L/|k0| with
L = Cεα and α < 1/n, as required in theorem 3.11, there exists a finite set of values Ei such
that

i. For any Ei there exists a torus Ti invariant by the flow of Hamiltonian (1) contained in

̃ε, which is given in 
̃ε by the equation F(I, ϕ, s; ε) ≡ Ei , where F is a Cn−2m−2−�

function, for any � > 0, of the form

F(I, ϕ, s; ε) = I + OC2(ε1−4α). (89)

ii. The torus Ti can be written as a graph of the variable I over the angle variables (ϕ, s):

Ti = {(I, ϕ, s) ∈ DSG; I = λEi
(ϕ, s; ε)},

with

λE(ϕ, s; ε) = E + UE(ϕ, s; ε) (90)

where UE is a C4−� function, for any � > 0, and UE = OC2(ε1−4α).
iii. These tori are O(ε1+η)-closely spaced in terms of the variable I .

Proof. By theorem 3.11, in any connected component of DSG, Hamiltonian (25) expressed in
the averaged variables (B, φ, s) has expression (85).

Hamiltonian (85) is of the form (80), with K0(B; ε) = 1
2B2 + εZ̃m(B; ε), which is a

Cr−2m+2 function and

K1(B, φ, s; ε) = εj (Uk0,l0
m (k0φ + l0s; ε) + εm+1−j R̄m(B, φ, s; ε)), (91)

which is a Cr−2m function and 2π -periodic in both angle variables φ and s.
Our aim is to apply KAM theorem 3.22. It is clear that |K ′′

0 (·; ε)| � M > 0, for M

independent of ε. We will now see that K1 in (91) satisfies |K1(·, ·, s; ε)|C6 � δ, for δ = ε2+2η,
for η > 0.

Recall from theorem 3.11 that Uk0,l0
m (k0φ + l0s; ε) is a polynomial in ε of degree m − j

and a trigonometric polynomial in θ = k0φ + l0s, which has the following bound with respect
to θ :

|εjUk0,l0
m (·; ε)|C�,θ � εj−2α(j−1)|(k0, l0)|−r+2(j−1), (92)

and therefore

|εjUk0,l0
m (·; ε)|C�,(φ,s) � εj−2α(j−1)|(k0, l0)|−r+2(j−1)+� (93)

for � = 0, . . . , n − 2m. Moreover, εm+1R̄m is a Cr−2m function with a bounded C� norm up to
� = n − 2m given by∣∣εm+1R̄m(·; ε)

∣∣
C� � εm+1−α(�+2m). (94)
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Hence, from the estimates for the C� norm of functions εjUk0,l0
m in (93) and εm+1R̄m in

(94) with � = 6, one gets

|K1(·, ·, s; ε)|C6 � εj−2α(j−1)|(k0, l0)|−r+2(j−1)+6 + εm+1−α(6+2m),

for any 1 � j � m. Taking into account that |(k0, l0)| � MBG = ε−(1+ν)/r and that the worse
estimate comes from j = 1, one gets

|K1(·, ·, s; ε)|C6 � εε
1+ν
r

(r−6) + εm+1−α(6+2m) = ε2+η1 + ε2+η2 ,

where η1 = ν − 6(1 + ν)/r and η2 = m − 1 − α(6 + 2m) are both positive. Indeed, by
hypotheses m � 2 and α < 1/n � 1/(2m + 6), we have η2 > 0 and η1 > 0 is equivalent to
ν > 1/(r/6 − 1).

So, for any η � 1
2 min(η1, η2) we have |K1(·, ·, s; ε)|C6 � ε2+2η and we can apply KAM

theorem 3.22 with n0 = 5, β = 1 − �, for any � > 0, δ = ε2+2η and M independent of ε.
Therefore, we conclude that for a constant C(k0) because k0 = 1, regions DBG contain the
KAM tori given by

B = Bi + �i(φ, s; ε),

where �i(φ, s; ε) is a C4−� function, for any � > 0, and

|�i |C2 � ε1+η.

These tori are O(ε1+η)-closely spaced in terms of the variable B.
As in the non-resonant regions we can go back to the original variables (I, ϕ, s). Using

that the change (J, ϕ, s) �→ (B, φ, s) is ε1−α(�+2)-close to the identity in the C� sense for
� = 0, . . . , n − 2m by theorem 3.11 and (I, ϕ, s) �→ (J, ϕ, s) is ε-close to the identity in the
Cr−1 sense by equation (24), the invariant tori obtained in the region Dm

nr are given by

I = Ii + Ui(ϕ, s; ε),

where the function Ui is a C4−� function, for any � > 0, and Ui = OC2(ε1−4α), and
they are O(ε1+η)-closely spaced in terms of the variable I . We get the results claimed
for Ei = Ii . �

Remark 3.27. Note that invariant tori in the small gaps region DSG are given by a certain
function F in (89) that, as in the case of non-resonant regions (see (81)), is of the form

F(I, ϕ, s; ε) = I + OC2(ε1−4α). (95)

3.3.5. Resonant regions with big gaps. In this section, we will see that the resonant regions
with big gaps DBG which correspond to resonances of order 1 such that |(k0, l0)| < MBG are
covered with invariant objects (either primary tori or secondary tori) which are O(ε1+η)-closely
spaced in terms of the action variable I , for some η > 0.

To that end, we will apply theorem 3.22 to Hamiltonian (83) as we did in the previous
cases. The main difference is that in this case the integrable Hamiltonian is not written down
into action-angle variables, so we will need to perform a change of coordinates before applying
the KAM theorem. Furthermore, we will perform two useful changes of coordinates, which
are not symplectic but conformally symplectic, that is, the new Hamiltonian is just the old one
multiplied by a constant.



Geography of resonances and Arnold diffusion 2043

Finally, going back to the original variables (I, ϕ, s) using the changes given by
theorem 3.11 and equation (24), we obtain the following result about the existence of invariant
tori of Hamiltonian (1):

Theorem 3.28 (Invariant tori in the big gaps region). Assume that m � 10, n � 2m + 6
and r > (n− 2)m + 2. Assume that the function Uk0,l0

m (k0φ + l0s; 0) in Hamiltonian (85) has a
global maximum which is non-degenerate (this assumption corresponds to the hypothesis H3′

on (k0, l0) in theorem 2.1). Choose any 0 < η � ν/2 and assume ν � 1/16.
Then, for ε small enough, in any connected component of DBG, which is of the form (84),

for some −l0/k0 of order 1 such that |(k0, l0)| < MBG, Lk0 = L/|k0| with L = Cεα and
α < 1/n, as required in theorem 3.11, there exists a finite set of values Ei in some range of
energies −ε|(k0, l0)|−r+2 � E � L2 such that

i. For any Ei there exist invariant objects by the flow of Hamiltonian (1) contained in 
̃ε,
which are given in 
̃ε by the equation F(I, ϕ, s; ε) ≡ Ei , where F is a C4−� function, for
any � > 0, of the form

F(I, ϕ, s; ε) = (k0I + l0 + O2(|k0|ε1−4α))2

2
(1 + εk2

0 h̃(k0I + l0 + O2(|k0|ε1−4α); ε))

+ εk2
0U

k0,l0
m (k0ϕ + l0s; ε) + OC2(k4

0 |(k0, l0)|−r/2ε3/2+η), (96)

where h̃ satisfies (108). For values of Ei > 0, equation F ≡ Ei consists of two invariant
objects that are primary KAM tori T ±

Ei
, whereas for Ei < 0 it consists of an invariant

object which is a secondary KAM torus TEi
. In this case we denote by T ±

Ei
each of the

components of

TEi
∩ {(I, ϕ, s) ∈ DBG; ρ � k0ϕ + l0s � 2π − ρ},

for some 0 < ρ < 2π .
ii. There exists ρ � 0, such that the two primary KAM tori (components of the secondary tori)

T ±
Ei

contained in 
̃ε can be written as graphs of the variable I over the angle variables
(ϕ, s):

T ±
Ei

= {(I, ϕ, s) ∈ [−l0/k0 − Lk0 , −l0/k0 + Lk0 ] × [ρ, 2π − ρ] × T; I = λ±
Ei

(ϕ, s; ε)},
where

λ±
E(ϕ, s; ε) = − l0

k0
+

1

k0
Y±(θ, E) + OC2(ε1−4α), (97)

for ρ � θ = k0ϕ + l0s � 2π − ρ, where

Y±(x, E) = ±(1 + εb)�(θ, E) + εỸ±(�(θ, E)), (98)

�(θ, E) =
√

2(E − εk2
0U

k0,l0
m (θ; ε)) and Ỹ± satisfies (120).

iii. These invariant tori are O(ε1+η)-closely spaced in terms of the variable I and
O(ε3/2+η|(k0, l0)|−r/2+1) in terms of energies Ei .

Remark 3.29. In remark 3.12 we already pointed out that the function Uk0,l0
m (k0ϕ + l0s; 0)

given explicitly in (61) is the function Uk0,l0(θ) for θ = k0ϕ + l0s in hypothesis H3 on (k0, l0)

in theorem 2.1.

3.3.6. Proof of theorem 3.28. The proof of this theorem is organized in three parts.
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Invariant tori given by the averaged Hamiltonian. By theorem 3.11, in any connected
component of the resonant domain DBG, which is of the form (84), Hamiltonian (25) expressed
in the averaged variables (B, φ, s) is of the form (85) with j = 1, so it can be written as

km(B, φ, s; ε) = 1
2B2 + εZ̃m(B; ε) + εUk0,l0

m (k0φ + l0s; ε) + εm+1R̄m(B, φ, s; ε)

:= Z̄m(B, φ, s; ε) + εm+1R̄m(B, φ, s; ε), (99)

on the domain

{(B, φ, s) ∈ R × T2; |B + l0/k0| � L̄k0}, (100)

where |Lk0 − L̄k0 | � const ε.
In this domain, εZ̃m(B; ε) is a Cr−2m+2 function in the variable B and it is a polynomial of

degree m in ε, whose coefficient of order q + 1, for q = 1, . . . , m − 1 is a Cr−2q function and
OC� (εq+1−α(�+2q)), for � = 0, . . . , n−2q, so that Z̄m has a bounded norm up to � = n−2m+2.
Its main term Z̃m(B; 0) is equal to h0,0(0, 0, B; 0) by remark 3.12.

Moreover Uk0,l0
m (k0φ + l0s; ε) is a polynomial of degree m − 1 in ε and a trigonometric

polynomial in θ = k0φ + l0s, satisfying εUk0,l0
m (θ; ε) = OC� (ε|(k0, l0)|−r ), for � = 0, . . . , n.

Its main term Uk0,l0
m (θ; 0) is given in expression (62) in remark 3.12.

Finally, εm+1R̄m is a Cr−2m function in the variables (B, φ, s) with a bounded C� norm up
to � = n − 2m, which is∣∣εm+1R̄m(·; ε)

∣∣
C� � εm+1−α(�+2m). (101)

By the hypothesis in theorem 3.28, the function Uk0,l0
m (θ, 0) (the first order term in ε of

the function Uk0,l0
m (θ, ε)) has a global maximum which is non-degenerate and this implies that

the integrable part Z̄m of the Hamiltonian (99) is like an integrable pendulum.
As has been done in section 8.5.2 in [DLS06a], we perform two useful changes of

coordinates which are not symplectic but conformally symplectic. The first one depends
on the time s and the resonance (k0, l0) and is given by

b = k0(B + l0/k0), θ = k0φ + l0s, s = s, (102)

hence the system of equations verified by (b, θ, s) is also Hamiltonian of Hamiltonian:

K̄(b, θ, s; ε) = K̄0(b; ε) + εV̄ (θ; ε) + εm+1K̄1(b, θ, s; ε), (103)

with

K̄0(b, ε) = b2/2 + εk2
0Z̃

m(−l0/k0 + b/k0; ε),

V̄ (θ; ε) = k2
0U

k0,l0
m (θ; ε), (104)

K̄1(b, θ, s; ε) = k2
0R̄

m(−l0/k0 + b/k0,
θ − l0s

k0
, s; ε).

Note that K̄0 is of class Cr−2m+2 with a bounded C� norm up to � = n−2m+2 and V̄ is analytic
because it is a trigonometric polynomial in θ and a polynomial of degree m − 1 in ε. K̄1 is a
function of class Cr−2m with a bounded C� norm up to � = n − 2m, which is 2πk0-periodic in
θ and 2π -periodic in s. Note that V̄ is 2π -periodic in θ , whereas K̄1 is 2πk0-periodic in θ .

The integrable part K̄0(b; ε)+εV̄ (θ; ε) of the Hamiltonian (103) is a one degree of freedom
Hamiltonian close to a pendulum-like Hamiltonian

b2

2
+ εV̄ (θ; 0) = b2

2
+ εk2

0U
k0,l0
m (θ; 0),

where Uk0,l0
m (θ; 0) is given in (62). By hypothesis H3′ on (k0, l0) this pendulum-like

Hamiltonian has a hyperbolic saddle at (0, θ1) and by the implicit function theorem the
whole integrable Hamiltonian K̄0(b; ε) + εV̄ (θ; ε) also has a saddle at (b(ε), θ1(ε)). Since



Geography of resonances and Arnold diffusion 2045

Z̃m(B; 0) = h(0, 0, B; 0) does not depend on ε, the function b(ε) is of class Cr−2m+1 in ε and
of the form b(ε) = O(|k0|ε) whereas θ1(ε) is analytic in ε and of the form θ1(ε) = θ1 + O(ε).

To make the analysis of this system easier we perform a second change of variables, which
depends on ε and consists of the following translation:

y = b − b(ε), x = θ − θ1(ε), s = s, (105)

in such a way that the integrable part of the Hamiltonian expressed in these new variables has
a saddle point at (0, 0) and the energy of the saddle and the separatrices is 0. More precisely,
we obtain the Cr−2m Hamiltonian with respect to (y, x, s) with a bounded C� norm up to
� = n − 2m

K(y, x, s; ε) = h0(y; ε) + εU(x; ε) + εm+1S(y, x, s; ε) (106)

which consists of an integrable part corresponding to the terms up to order εm, which is the
following Cr−2m+2 function with a bounded C� norm up to � = n − 2m + 2,

K0(y, x; ε) = h0(y; ε) + εUk0,l0(x; ε), (107)

and a perturbation εm+1S(y, x, s; ε), which is a Cr−2m function with a bounded C� norm up to
� = n − 2m.

The function h0(y; ε) in the integrable part K0 is a Cr−2m+2 function in y with a bounded
C� norm up to � = n − 2m + 2 of the form

h0(y; ε) = y2

2
ĥ(y; ε) = y2

2
(1 + εk2

0 h̃(y; ε)), (108)

for some Cr−2m function in (y, ε), h̃(y; ε), with a bounded C� norm up to � = n − 2m in y.
The function U in K0 is given by

U(x; ε) = k2
0(U

k0,l0
m (x + θ1(ε); ε) − Uk0,l0

m (θ1(ε); ε)), (109)

and it satisfies

|εU(·; ε)|C� � ε|k0|2|(k0, l0)|−r (110)

for � = 0, . . . n.
We also note that the following conditions are satisfied:

h0(0; ε) = ∂h0

∂y
(0; ε) = 0, U(0; ε) = ∂U

∂x
(0; ε) = 0,

∂2U

∂x2
(0; ε) < 0,

as well as that x = 0 is a global maximum of U .
The perturbation term εm+1S(y, x, s; ε) is given by

S(y, x, s; ε) = k2
0R̄

m

(
− l0

k0
+

y + b(ε)

k0
,
x + θ1(ε) − l0s

k0
, s; ε

)
and by equation (101) it can be bounded in the variables (y, x) by∣∣εm+1S(·, s; ε)

∣∣
C� � |k0|2−�εm+1−α(�+2m) (111)

for � = 0, . . . , n − 2m.
Since we want to apply some of the results in [DLS06a], it will be convenient for us to

have K0 written in another way adapted to the notation in [DLS06a]. Motivated by the size
ε|k0|2|(k0, l0)|−r of εU estimated in formula (110), we introduce here the parameter γ ∈ R,
2 > γ � 1, depending on (k0, l0) and ε, such that

εγ = ε|k0|2|(k0, l0)|−r , (112)

in such a way that εU(·; ε) = OC� (εγ ), for � = 0, . . . , n.
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Note that γ = 1 for small values of (k0, l0), that is |(k0, l0)| ∼ 1, and in general
1 < γ < 2 + ν for |(k0, l0)| ∼ ε−�, for any 0 < � < (1 + ν)/r , where 0 < ν � 1/16.

With this choice of γ , we will denote K0 the one degree of freedom Cr−2m+2 Hamiltonian
in (y, x)

K0(y, x; ε) = h0(y; ε) + εγ Ũ(x; ε), (113)

where

εγ Ũ(x; ε) = εU(x; ε), (114)

with 2 + ν > γ � 1 and Ũ (·; ε) = OC� (1), for � = 0, . . . , n.
The energy level K0(y, x; ε) = 0 consists of the saddle (0, 0) and its separatrices.
The Hamiltonian K(y, x, s; ε) introduced in (106) is 2πk0-periodic in x and 2π -periodic

in s and is defined in the domain Dk0 given by

Dk0 = {(y, x, s) ∈ R × R/(2πk0Z) × T, |y| � L̄}, (115)

where L̄ = k0L̄k0 , whereas the integrable part K0(y, x; ε) in (113) is 2π -periodic in x and
independent of s, therefore the region Dk0 can be seen as k0 copies of the region

D = {(y, x, s) ∈ R × T2, |y| � L̄}.
This effect is colloquially described as saying that the resonance −l0/k0 has k0 eyes. As k0

increases, these eyes form long necklaces.
The region D (and also Dk0 ) is filled by the energy surfaces of the Hamiltonian K0,

T 0
E = {(y, x, s) ∈ [−L̄, L̄] × T2 : K0(y, x; ε) = E}

which are invariant under the flow of Hamiltonian K0.
As we already said, the energy surface T 0

0 corresponding to E = 0 consists of the
saddle (0, 0) and its separatrices forming a separatrix loop. Therefore, this separatrix loop
T 0

0 separates two types of topological invariant objects. The energy surfaces corresponding to
the values E > 0 are primary tori and the ones corresponding to the values E < 0 are called
secondary tori, which are tori of different topology than the primary ones because they are
contractible to points. Secondary tori cover all the region inside the separatrix loop T 0

0 . In the
next section we will discuss the persistence of primary and secondary tori when we add the
perturbation term.

KAM theorem. In this section, we will show that many of the invariant tori T 0
E of the

Hamiltonian K0(y, x; ε) in (113), inside the region Dk0 given in (115), both primary and
secondary, survive when we add the perturbation term εm+1S(y, x, s; ε) to consider the
Hamiltonian K given in equation (106). Moreover, we will estimate the number of steps
of averaging m required to get invariant tori with a distance of O(ε1+η) between them, for
some η > 0, in terms of the original variables (I, ϕ, s).

To establish this we will write the Hamiltonian (113) into action-angle variables and apply
KAM theorem 3.22. Since the unperturbed Hamiltonian K0(y, x; ε) is a pendulum, we cannot
define global action-angle variables because the change of coordinates becomes singular on
the separatrix. Therefore, we will define different action-angle variables inside and outside
the separatrix and we will exclude a thin neighbourhood around it.

We find it convenient to consider different regions in the domain Dk0 in terms of the values
of the energy E, in which the behaviour of the tori is different.

Recall that tori T 0
E in Dk0 are given approximately by the energy surfaces of Hamiltonian

K0, that is

K0(y, x; ε) = E,
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and we see that by excluding a small interval they can be seen as a graph of the action variable
y over the angle variables (x, s).

Introducing δ = εγ , we consider the foliation given by the level sets

h0(y; ε) + δŨ(x; ε) = E, (116)

where h0(y; ε) is of the form (108) and Ũ (·; ε) = OC� (1) for � = 0, . . . , n satisfies also that on
x = 0 there is a non-degenerate global maximum of Ũ (x; ε), which verifies −c � Ũ (·; ε) � 0
and Ũ (·; ε) � −ax2 as x → 0, with a > 0.

Since h0(y; ε) + δŨ(x; ε) � y2

2 + δŨ(x; ε), the main term in the solution of (116) is

y = ±�(x, E), (117)

where

�(x, E) =
√

2(E − δŨ(x; ε)). (118)

Writing y in (116) as a function of (117), we can apply the implicit function theorem to
equation (116) and we get a solution y = Y±(x, E) given by

Y±(x, E) = ±(1 + εb)�(x, E) + εỸ±(�(x, E)), (119)

where

i. b = O(|k0|ε) and independent of δ. Moreover, Ỹ±(0) = Ỹ ′
±(0) = 0.

ii. εỸ± is a Cr−2m+2 function and∣∣∣εỸ± ◦ �

∣∣∣
Cs (IE0 )

� |k0|ε, s = 0, 1,∣∣∣εỸ± ◦ �

∣∣∣
Cs (IE0 )

� |k0|εE−s+1/2
0 , 2 � s � n − 2m + 2, (120)

where IE0 := {(x, E), x ∈ T, E � E0 > 0}.
This result is stated explicitly in lemma 8.34 in [DLS06a]. For more details and a rigorous

proof we refer the reader to it.
From expression (118) it is clear that the size of the energy determines the dominant terms

in �(x, E). Thus, if E � δ = εγ the tori T 0
E are rather flat because the term εγ Ũ(x; ε) is very

small compared with E, whereas if E � εγ , the term
√

E − εγ Ũ(x; 0) and therefore the size
of y oscillates between E and εγ and it has the effect of bending the tori up to the point that
they are bunched near the critical point (see figure 1).

Hence Dk0 will be divided into three regions in a similar way as in [DLS06a]: Df is
the region far from the separatrix, Do close to the separatrix but outside the region bounded
by the separatrix loop and Din close to the separatrix but inside the separatrix loop, in the
following way:

Df = {(y, x, s) ∈ Dk0 : K0(y, x; ε) = E, εγ � E � L̄2} (121)

Do = {(y, x, s) ∈ Dk0 : K0(y, x; ε) = F, εβ � F � εγ } (122)

Din = {(y, x, s) ∈ Dk0 : K0(y, x; ε) = G, −εγ � G � −εβ} (123)

where 1 � γ < 2 + ν as in (112) and β is arbitrary provided that β > γ (see figure 1).
Theorem 3.30 establishes the existence of primary tori in Df ∪ Do and secondary tori in

Din at a certain distance between them that depends on the number m of averaging steps and
close to the level sets of the averaged Hamiltonian K0(y, x; ε).
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Figure 1. Schematic representation for the bending effect.

Theorem 3.30 (KAM theorem in the big gaps region). Consider the Cr−2m reduced Hamil-
tonian K(y, x, s; ε) given in (106) inside the region Dk0 defined in (115). Consider β > γ ,
with γ as in (112) and assume that r > (n− 2)m + 2, n � 2m + 6 and m � 14(β − γ ) + 3γ /2.
Then, for |ε| small enough, one has the following:

1. Primary tori far from resonance. There exists a set of values E1 < · · · < ElE verifying
εγ � Ei � L̄2 ∼ ε2α and α < 1/n, such that

(a) The frequencies ω(Ei) are Diophantine numbers of constant type and Markov
constant E

−1/4
i ε

m+1−α(6+2m)

2 |k0|.
(b) For any value Ei , there exist two primary invariant tori T ±

Ei
of Hamiltonian (106)

contained in Df .
(c) The motion of the tori T ±

Ei
is C1-conjugated to a rigid translation of frequencies

(ω(Ei), 1).
(d) These tori can be written as

T +
Ei

= {(y, x, s) ∈ Df , KEi
(y, x, s; ε) = Ei, y > 0}

T −
Ei

= {(y, x, s) ∈ Df , KEi
(y, x, s; ε) = Ei, y < 0}

where KEi
(y, x, s; ε) is a C4−� function, for any � > 0, given by

KEi
(y, x, s; ε) = K0(y, x; ε) + OC2

(
ε

m+1−α(6+2m)

2 E
1/4
i |k0|

)
(124)

(e) Df ⊂⋃i B(T ±
Ei

, ε
m+1−α(6+2m)

2 E
1/4
i |k0|), where

B(T ±
E , δ) = {(y, x, s) ∈ Dk0 , |K0(y, x; ε) − E| � δ}

2. Primary tori close to resonance. There exists a set of values F1 < · · · < FlF verifying
εβ � Fi � εγ , such that

(a) The frequenciesω(Fi)are Diophantine numbers of constant type and Markov constant
ε

m+1−α(6+2m)−γ /2+6γ

2 F−3
i |k0|.

(b) For any value Fi , there exist two primary invariant tori T ±
Fi

of Hamiltonian (106)
contained in Do.
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(c) The motion of the tori T ±
Fi

is C1-conjugated to a rigid translation of frequencies
(ω(Fi), 1).

(d) These tori can be written as

T +
Fi

= {(y, x, s) ∈ Do, KFi
(y, x, s; ε) = Fi, y > 0}

T −
Fi

= {(y, x, s) ∈ Do, KFi
(y, x, s; ε) = Fi, y < 0}

where KFi
(y, x, s; ε) is a C4−� function, for any � > 0, given by

KFi
(y, x, s; ε) = K0(y, x; ε) + OC2

(
ε

m+1−α(6+2m)+γ /2+14γ

2 F−7
i |k0|

)
(125)

(e) Do ⊂⋃i B(T ±
Fi

, ε
m+1−α(6+2m)+γ /2+10γ

2 F−5
i |k0|), where

B(T ±
E , δ) = {(y, x, s) ∈ Dk0 , |K0(y, x; ε) − E| � δ}

3. Secondary tori close to resonance. There exists a set of values G1 < · · · < GlG verifying
−εγ � Gi � −εβ , such that

(a) The frequencies ω(Gi) are Diophantine numbers of constant type and Markov
constant ε

m+1−α(6+2m)−γ /2+6γ

2 |Gi |−3|k0|.
(b) For any value Gi , there exists a secondary invariant torus T ±

Gi
of Hamiltonian (106)

contained in Din, contractible to the set

{(0, a, s), a ∈ R, s ∈ R/(2πk0Z)} ⊂ Din

(c) The motion on the torus TGi
is C1-conjugated to a rigid translation of frequencies

(ω(Gi), 1).
(d) This torus can be written as

TGi
= {(y, x, s) ∈ Din, KGi

(y, x, s; ε) = Gi}
where KGi

(y, x, s; ε) is a C4−� function, for any � > 0, given by

KGi
(y, x, s; ε) = K0(y, x; ε) + OC2

(
ε

m+1−α(6+2m)+γ /2+14γ

2 |Gi |−7|k0|
)

(126)

(e) Din ⊂⋃i B(T ±
Gi

, ε
m+1−α(6+2m)+γ /2+10γ

2 |Gi |−5|k0|).
The following corollary makes more explicit the assertions about the proximity of these

tori as a function of m, and it also gives properties of the KAM tori when expressed as graphs
of the action y in terms of the angle variables (x, s).

Corollary 3.31. Consider the Cr−2m reduced Hamiltonian K(y, x, s; ε) given in (106) inside
the region Dk0 defined in (115). Consider β = γ /2 + 1 + ν/2, with 1 � γ < 2 + ν as in (112)
and ν � 1/16. Assume that r > (n − 2)m + 2, n � 2m + 6 and m � 10. Then, the tori
obtained in theorem 3.30 verify the following:

1. For any value Ei , the primary tori T ±
Ei

can be written as graphs of the action y over the
angles (x, s):

T ±
Ei

= {(y, x, s) ∈ Df , y = f ±
Ei

(x, s; ε)}.
2. For any value Fi , the primary tori T ±

Fi
can be written as graphs of the action y over the

angles (x, s):

T ±
Fi

= {(y, x, s) ∈ Do, y = f ±
Fi

(x, s; ε)}.
3. There exists ρ0 > 0 such that for any 0 < ρ0 � ρ � π , and for any value Gi , each of the

components of

TGi
∩ {(y, x, s) : x ∈ Iρ}, Iρ =

k0−1⋃
l=0

[2πl + ρ, 2π(l + 1) − ρ],
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that we denote by T ±,ρ

Gi
, can be written as a graph of the action y over the angles (x, s):

T ±,ρ

Gi
= {(y, x, s) ∈ Di, x ∈ Iρ, y = f ±

Gi
(x, s; ε)}

4. All these functions fv = f ±
v are at least of class C2 with respect to (x, s), and, denoting by

D the derivatives with respect to x and s, for v = Ei , i = 1, . . . , lE , v = Fi , i = 1, . . . , lF ,
and v = Gi , i = 1, . . . , lG, they verify the following:
(a) There exists a function Y(x, E) given explicitly in (119) such that

|fv − Y(x, v)|C1 � |k0|ε1+ν/2 (127)
(b) |Dfv| � εγ/2, |D2fv| � εγ/2.
(c) For any two consecutive values v and v we have

|v − v̄| � |k0|εβ,

and

|fv − fv|C1 � |v − v|
εγ/2

� |k0|ε1+ν/2.

Proof of theorem 3.30. The proof follows the strategy established in [DLS06a], with the same
scaling in the domains Do and Din. The main difference is that we will perform a sequence
of scalings in the far domain Df , whereas in [DLS06a] there was no scaling in this region.
This sequence of scalings in Df will reduce the number of averaging steps m needed to get tori
close enough in the region Df , and therefore the required differentiability r .

We will first give a detailed proof of part (1) of this theorem. Note that in Df defined
in (121), the energy E ranges from εγ to L̄2 ∼ ε2α . Hence, we consider a value of E,
let us say El , in the interval [εγ , ε2α] and a small neighbourhood around it of the form
[caEl, cbEl] ⊆ [εγ , ε2α], where ca, cb are constants independent of ε and El , such that ca < 1
and cb > 1. Thus, we introduce the following domain contained in Df :

DEl
= {(y, x, s) ∈ Df : K0(y, x; ε) = E, caEl � E � cbEl} . (128)

By the equation of K0 in (113) and the expression of h0 in (108), the main term in y is given
in (118). Therefore, in DEl

the coordinate y is of size O(
√

Ei) and it is natural to perform the
scaling

y =
√

ElY, (129)

which transforms the Hamiltonian system of Hamiltonian K(y, x, s; ε) given in (106), which
is Cr−2m with respect to the variables (y, x, s) with a bounded C� norm up to � = n − 2m, into
a Hamiltonian system of Cr−2m Hamiltonian with respect to (Y, x, s) with a bounded C� norm
up to � = n − 2m,

K(Y, x, s;
√

El, ε) = 1√
El

K(
√

ElY, x, s; ε)

=
√

ElK0(Y, x;
√

El, ε) +
εm+1

√
El

S(
√

ElY, x, s; ε), (130)

with

K0(Y, x;
√

El, ε) = 1

El

K0(
√

ElY, x; ε)

= Y 2

2
ĥ(
√

EiY ; ε) +
εγ

Ei

Ũ(x; ε), (131)

where ĥ(y; ε) = 1 + O(|k0|2ε) is given in (108) and, consequently, K0 is a Cr−2m+2 function
with respect to (Y, x) with a bounded C� norm up to � = n−2m+2, because ĥ(y; ε) is Cr−2m+2

with respect to y with a bounded C� norm up to � = n − 2m + 2.
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The scaling (129) transforms the domain DEl
in (128) into

D̃ = {(Y, x, s) ∈ R × R/2πk0Z × T : K0(Y, x;
√

El, ε) = E/El, caEi � E � cbEi}
= {(Y, x, s) ∈ R × R/2πk0Z × T : K0(Y, x;

√
El, ε) = e, ca � e � cb}. (132)

Next we will define the action-angle variables (A, ψ) associated with the Hamiltonian
K0(Y, x; √

El, ε) in the domain D̃. Note that the Hamiltonian K(Y, x, s; √
El, ε) is 2πk0-

periodic in x and 2π -periodic in s, whereas K0(Y, x; √
El, ε) is 2π -periodic in x and

independent of s. Therefore, the domain D̃ is nothing else but k0 copies of the domain
D∗ × T, where

D∗ = {(Y, x) ∈ R × T : K0(Y, x;
√

El, ε) = e, ca � e � cb}. (133)

Note that, by expression (131) for K0, the equation

K0(Y, x;
√

El, ε) = e

has the same form as equation (116) with δ = εγ /El and it defines two functions Y = Y±(x, e)

on D∗, given in (119), which are of the form

Y±(x, e) = ±
√

2

(
e − εγ

El

Ũ(x; ε)

)
(1 + OCn−2m+2(|k0|ε)).

Since, by construction of Ũ (x; ε), on x = 0 there is a global maximum such that −c �
Ũ (x; ε) � 0, in the domain D∗ we have

0 � ca � e � e − εγ

El

Ũ(x; ε) � e + c
εγ

El

� cb + const,

where we have used El � εγ and therefore c̃a � Y±(x, e) � c̃b + const and Y± is OCn−2m+2(1),
for some constants c̃a and c̃b.

We consider in D∗ the action-angle variables

A = 1

2π

∫ 2π

0
Y±(x, e) dx,

ψ = 2π

T (e)
τ (x, e), (134)

where τ(x, e) is the time along the orbit of the Hamiltonian K0(Y, x; √
El, ε) with energy e

given by

τ(x, e) =
∫ x

0

∂Y±
∂e

(u, e) du. (135)

We have chosen the origin of time at x = 0 and with this choice T (e) = τ(2π, e) is the period
of the periodic orbit.

From expression (134) it is obvious that A satisfies c̃a � A � c̃b and that A is OCn−2m+3(1).
The action-angle variables (A, ψ) introduced in (134) have already been studied in

proposition 8.35 of [DLS06a] for the case when they become singular, that is when the domain
D∗ depends on ε. In our case, we can adapt the result in proposition 8.35 of [DLS06a] for
the domain D∗ not depending on ε. We obtain that we can express the integrable Hamiltonian√

ElK0(Y, x; √
El, ε) in (131) into action-angle variables (A, ψ) in the domain D∗ and the

change of coordinates is away from the singularity in this domain. More precisely, there exists
a Cr−2m+2 change of variables in D∗

X : D∗∗ → D∗,
(A, ψ) �→ (Y, x) (136)
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given in (134) with D∗∗ = {(A, ψ) : c̃a � A � c̃b, ψ ∈ T} = [c̃a, c̃b] × T and c̃a, c̃b, suitable
constants independent of ε and El , such that

i. K0(X (A, ψ); √
El, ε) = G(A; √

El, ε).
ii. |X |Cn0 (D∗∗) � 1,

∣∣X −1
∣∣
Cn0 (D∗) � 1, 0 � n0 � n − 2m + 2.

iii. |G|C3(D∗∗) � 1 and
∣∣G ′′∣∣

C0(D∗∗) � 1

where the constants in the above inequalities do not depend on ε and El .
Now, we consider the Hamiltonian K in (130) expressed in action-angle variables,

K̃(A, ψ, s;
√

El, ε) =
√

ElG(A;
√

El, ε) +
εm+1

√
El

S̃(A, ψ, s;
√

El, ε), (137)

where K̃ = K ◦ X and S̃ = S ◦ X .
The Hamiltonian (137) is of the form (80) with K0 = √

ElG(A; √
El, ε) and K1 =

εm+1E
−1/2
l S̃(A, ψ, s; √

El, ε) and 2πk0-periodic in ψ .
The functions G and S̃ are Cr−2m+2 and Cr−2m with bounded C� norms up to � = n−2m+2

and � = n − 2m in the variables (A, ψ), respectively. Since by hypotheses of theorem 3.30
we have that r > n � 2m + 6, G and S̃ have a bounded C6 norm in the variables (A, ψ).
Therefore, using Faa–di Bruno formula (C.3) and the bound for the C6 norm in the variables
(y, x) for εm+1S in expression (111) jointly with the bounds for the change of coordinates X
in item (ii) we have that, for any s ∈ T,∣∣∣∣εm+1

√
El

S̃(·, s;
√

El, ε)

∣∣∣∣
C6(D∗∗

k0
)

� |k0|−4E
−1/2
l εm+1−α(6+2m),

where D∗∗
k0

= [c̃a, c̃b] × R/2πk0Z. Moreover, by item (iii) in this proof we have that√
El

∣∣∣G ′′(·;
√

El, ε)

∣∣∣
C0(D∗∗)

�
√

El.

Therefore, we can apply KAM theorem 3.22 to Hamiltonian (137) with n0 = 5, β = 1−�,
for any � > 0, δ = δ(ε) = |k0|−4E

−1/2
l εm+1−α(6+2m) and M = M(ε) = const

√
El and we

obtain the following:

1. There exists a set of values Al , such that the Hamiltonian K ◦ X has the invariant tori
given by

Tl = {(A, ψ, s) ∈ D∗∗
k0

× T : A = Al + Al(ψ, s;
√

El, ε)}
where Al are C4−� functions in the variables (ψ, s), for any � > 0 and∣∣∣Al(·;

√
El, ε)

∣∣∣
C2(R/2πk0Z×T)

� |k0|E−3/4
l ε(m+1−α(6+2m))/2.

2. The motion of these tori is C2−�-conjugate to a rigid translation of frequencies
(ω(Al), 1), where ω(Al) is a Diophantine number of constant type and Markov constant
|k0|E−1/4

l ε(m+1−α(6+2m))/2.

3. The union of neighbourhoods of size |k0|E−3/4
l ε(m+1−α(6+2m))/2 of these tori cover all the

region D∗∗
k0

× T.

In the variables (Y, x, s) = (X (A, ψ), s), the torus Tl satisfies K0(Y, x; √
El, ε) =

G(Al + Al(ψ, s; √
El, ε);

√
El, ε), so that, introducing G(Al;

√
El, ε) = el and using the
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estimates in items (ii) and (iii) in this proof as well as Faa–Di Bruno formulae, one obtains
that the tori are given by

K0(Y, x;
√

El, ε) = G(Al;
√

El, ε) + +OC2

(
|G|C3 |Al|C2

∣∣X −1
∣∣
C2

2
)

= el + OC2

(
|k0|E−3/4

l ε(m+1−α(6+2m))/2
)

. (138)

Going back to the variables (y, x, s) performing the scaling y = √
ElY and using the

expression for K0 given in (131) one obtains that the tori are given by

K0(y, x; ε) = Ei + OC2

(
|k0|E1/4

i ε
m+1−α(6+2m)

2

)
,

where Ei = Elel .
By compactness of Df , the covering {int(DEi

)}∞i=1 of Df admits a finite subcovering
Df =⋃N

i=0 int(DEi
), and we get the claimed results in part (1) of theorem 3.30.

The proof of parts (2) and (3) of this theorem follows as in [DLS08]. The only difference
is that we introduce a sequence of domains as we did in this proof in the far region and we
perform adequate scalings which allow us to get better estimates for the functions describing
the searched tori. More precisely, consider the region Do (the case for Din is analogous) and
introduce the domain

DFl
= {(y, x, s) ∈ Do : K0(y, x; ε) = F, caFl � F � cbFl},

analogous to (128) in part (1). Since the energy Fl � εγ in Do (see (122)), from the expression
for the main term of y given by �(x, E) in (118), the coordinate y ranges from

√
Fl to εγ/2.

Hence we perform the scaling y = εγ/2Y and we proceed as in lemma 8.36 in [DLS06a]. We
obtain that the original system is transformed into a Hamiltonian system of Cr−2m Hamiltonian
with respect to (Y, x, s) of the form

K(Y, x, s; εγ/2, ε) = εγ/2K0(Y, x; εγ/2, ε) + εm+1−γ /2S(εγ/2Y, x, s; ε),

with

K0(Y, x; εγ/2, ε) = Y 2

2
ĥ(
√

EiY ; ε) + Ũ (x; ε)

where ĥ(y; ε) = 1 + O(|k0|2ε) is given in (108). The Hamiltonian is defined now on the
domain

D̃ = {(Y, x, s) ∈ R × R/2πk0Z × T : K0(Y, x; εγ/2) = F/Fl, c0
aFi � F � c0

bFi}
= {(Y, x, s) ∈ R × R/2πk0Z × T : K0(Y, x; εγ/2) = e, c0

aFl/ε
γ � e � c0

bFl/ε
γ }.

Next, we define the action angle variables in the domain D̃ by formulae (134). The only
change is that we need to take into account that instead of expression (8.77) in [DLS06a] we
have

ca

Fl

εγ
� e − Ũ (x; ε) � cb

Fl

εγ
+ c � const,

and by (111) the perturbation εm+1−γ /2S(εγ/2Y, x, s; εγ/2) can be bounded in the C6 norm in
the variables (Y, x) by ε−γ /2εm+1−α(6+2m)|k0|−4.

Therefore we can apply proposition 8.38 in [DLS06a] and proceed as in the proof of
parts (2) and (3) of theorem 8.30 in [DLS06a] replacing the estimates in terms of ε in (2.1),
equation (8.50) and (2.5), εj by εγ , εm+1 by εm+1−α(6+2m)|k0|−4 and εα−j by Flε

−γ , and
multiplying by the constant Ck0 = const |k0|3 of KAM theorem 3.22, to obtain the estimates
in 2(a), equation (125) and 2(e). Finally, by compactness of Do, we get the claimed results.
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We skip the proof of these two parts and we refer the reader to section 8.5.4 in [DLS06a]
for it. �

Proof of corollary 3.31. It is totally analogous to the proof of corollary 8.31 in [DLS06a] and
it follows from theorem 3.30 just applying the implicit function theorem.

We apply theorem 3.30, with m � 10 and β = γ /2 + 1 + ν/2, where 1 � γ < 2 + ν

and ν � 1/16. From these conditions it follows that β > γ and m � 14(β − γ ) + 3γ /2 and
therefore, we obtain that the invariant tori in the domains Df , Do and Din are given by the
implicit equations (124), (125) and (126), which are of the form

K0(y, x, s; ε) = E + δg(y, x, s, E; ε) (139)

with |g|C2 � const and

E = Ei, δ = ε
m+1−α(6+2m)

2 E
1/4
i |k0|,

E = Fi, δ = ε
m+1−α(6+2m)+γ /2+14γ

2 F−7
i |k0|, (140)

E = Gi, δ = ε
m+1−α(6+2m)+γ /2+14γ

2 |G|−7
i |k0|,

respectively.
Equation (139) is equivalent to the equation

M(y, x, s, t; δ, ε) ≡ y − Y±(x, t) = 0,

where t = E + δg(y, x, s, E; ε) and Y±(x, t) is given in equation (119). The above equation
has been studied in full detail in lemma 8.39 of [DLS06a]. It is not difficult to check that
one has ∣∣∣∣∂M

∂y
− 1

∣∣∣∣ � const δε−γ /2,

which is a bound analogous to (8.95) in lemma 8.39 in [DLS06a], where the factor εγ comes
directly from expression (113) of K0. So, as long as δε−γ /2 � δ0 
 1, for some constant δ0

independent of ε, we can apply the implicit function theorem in order to get the invariant tori
of items 1, 2 and 3 written as graphs of the action y over the angles (x, s) as

y = f ±
v (x, s; ε)

where v = Ei, Fi, Gi , respectively and

f ±
v (x, s; ε) = Y±(x, v) + OC1(δε−γ /2).

Let us check first that condition δε−γ /2 
 1 is fulfilled. Note, first, that by the choice
m � 10 and β = γ /2 + 1 + ν/2, where ν � 1/16, Ei � ε2α and Fi, Gi � εβ , one obtains in
the three cases of (140), that |δ| � |k0|εβ , which clearly implies δε−γ /2 � |k0|ε1+ν/2 � δ0, for
some constant δ0 
 1 since, by expression (112), |k0| � ε−(1+ν)/r � ε−1. Thus, we obtain
results in items (1), (2), (3) and

|fv − Y(x, v)|C1 � δε−γ /2 � |k0|εβ−γ /2 = |k0|ε1+ν/2,

as claimed in (4a). In an analogous way one gets (4b).
Finally, from results (1e), (2e) and (3e) in theorem 3.30 and definitions of Df , Do and Din

given in (121), (122) and (123) we have

|Ei − Ei+1| � ε
m+1−α(6+2m)

2 (E
1/4
i + E

1/4
i+1 )|k0|

|Fi − Fi+1| � ε
m+1−α(6+2m)+γ /2+10γ

2 (F−5
i + F−5

i+1)|k0|
|Gi − Gi+1| � ε

m+1−α(6+2m)+γ /2+10γ

2 (|Gi |−5 + |Gi+1|−5)|k0|
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and taking into account that E1 ∼ FlF ∼ εγ and F1 ∼ GlG ∼ εβ we get

|E1 − FlF | � ε
m+1−α(6+2m)+γ /2

2 |k0|
|F1 − GlG | � (εβ + ε

m+1−α(6+2m)+γ /2−10(β−γ )

2 )|k0|.
Since β = γ /2+1+ν/2, m � 10, all these exponents are bigger than β as claimed in item (4c).
The last estimate in item (4c) follows from the inequalities above and the following bounds:∣∣∣∣∂fE

∂E

∣∣∣∣ � ε−γ /2,

∣∣∣∣∂DfE

∂E

∣∣∣∣ � ε−γ /2,

analogous to (8.91) given by lemma 8.39 in [DLS06a]. �

Remark 3.32. In the case considered in [DLS06a], where the perturbation h in (1) is assumed
to be a trigonometric polynomial in the angular variables (ϕ, t), there exists a finite number
of resonances so L can be chosen independent of ε, that is α = 0. Moreover γ is simply
replaced by the values j = 1, 2 in [DLS06a] corresponding to resonances of order 1 and 2,
respectively. In this case, corollary 3.31 only requires m � 9 and r = n � 24 since there is no
need of a truncation process, so that Hamiltonian in (1) only needs to be C26. This improves
substantially the regularity required in [DLS06a], since Hamiltonian (1) was assumed to be
C60 because m was chosen = 26.

Invariant tori in the original variables. Theorem 3.30 gives the KAM tori, both primary and
secondary, in the variables (y, x, s). From equations (124), (125) and (126) in theorem 3.30,
we know that these tori are given approximately by the level sets of the Hamiltonian K0(y, x; ε)

in (113).
We can write them in the original variables (I, ϕ, s) using the change of coordinates given

by theorem 3.11 and changes (24), (102) and (105). More precisely, we have that the relation
with the original variables is given by

y = k0I + l0 + OC2(|k0|ε1−4α), x = k0ϕ + l0s + OC2(|k0|ε1−4α), (141)

whose inverse in terms of the I variable can be written in the form

I = − l0

k0
+

1

k0
y + ζ(y, x, s; ε),

where ζ is OC2(ε1−4α).
Using expressions (107) and (108) these invariant objects are given by the level sets of a

C4−� function F , for any � > 0, which has the form

F(I, ϕ, s; ε) = y2

2
(1 + εk2

0 h̃(y; ε)) + εγ Ũ(x; ε) + OC2(|k0|3εγ/2+1+ν/2),

where y and x are given in (141) in terms of (I, ϕ, s). By the definition of γ in (112) jointly
with Ũ and U in (114) and (109), respectively, we get expression (96) given in theorem 3.28.

Moreover, from items (1), (2) and (3), together with the estimates in item (4a) in
corollary 3.31 we have that KAM tori can be written as graphs in the variables (y, x, s)

of functions of the form

y = f ±
E (x, s; ε) = Y±(x, E) + OC1(|k0|ε1+η).
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Using the mentioned changes, we obtain that the tori inside the region DBG, are given in the
original variables (I, ϕ, s) by

I = λ±
E(ϕ, s; ε) = − l0

k0
+

1

k0
Y±(θ, E) + OC2(ε1−4α)

with θ = k0ϕ + l0s, where Y± is given (119).
For the purposes of this paper, it will be convenient to keep the expression of the variable

y in terms of the variables ϕ and s, that is

y = f̂ ±
E (ϕ, s; ε) = Y±(θ, E) + OC1(|k0|ε1+η),

where θ = k0ϕ + l0s.
Finally, from corollary 3.31 we know that there exist invariant tori TE, TE′ of energies

E, E′ such that

|E − E′| = O(|k0|εγ/2+1+ν/2) = O(|k0|2ε3/2+ν/2|(k0, l0)|−r/2)

and there exist also points (y1, x, s) ∈ TE and (y2, x, s) ∈ TE′ with

|y1 − y2| = OC1(|k0|ε1+ν/2),

so in terms of their I variables it follows that

|I1 − I2| � 1

|k0| |y1 − y2| +
1

|k0|
∣∣∣∣∂ζ

∂y

∣∣∣∣ |y1 − y2|

� ε1+ν/2 + |k0|ε1−4αε1+ν/2

� ε1+ν/2

and by the definition of γ given in (112), we obtain the claimed results in item (iii) of
theorem 3.28. �

3.4. Proof of theorem 3.1

The proof of theorem 3.1 follows directly from the results obtained in propositions 3.24, 3.26
and theorem 3.28.

Choosing n = 2m + 6 and assuming m � 10 and r > 2(m + 1)2, the hypotheses on
r , n and m in the mentioned propositions and theorem are satisfied. Moreover, the choice
η = min((m − 1 − αn)/2, ν/2 − 3(1 + ν)/r) with 1/(r/6 − 1) < ν � 1/16, fits clearly with
the assumptions on η in propositions 3.24 and 3.26, and also with the one in theorem 3.28.

By propositions 3.24 and 3.26, the tori obtained in the non-resonant region and in the
resonant region with small gaps are primary and they are given by the level sets of the same
function F = I + OC2(ε1−4α), so they are flat up to OC2(ε1−4α). Both regions form the flat tori
region. The explicit approximate expressions for the invariant tori are given implicitly by the
function (89) and as a graph of the action I over the variables (ϕ, s) by (90), both functions in
proposition 3.26.

By hypothesis H3′, theorem 3.28 provides a sequence of invariant KAM tori (both primary
and secondary) for the big gaps region. In a connected component of this region of the form
(84), these tori are given by the level sets of a function F in (96) and as a graph of the action
I over the angle variables (ϕ, s), in (97). Moreover, the distance between the consecutive
tori is O(ε1+η) in terms of the action variable and O(ε3/2+η|(k0, l0)|−r/2+1) in terms of the
energy. �
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4. Construction of a transition chain

In the previous section, we have proved that in the NHIM 
̃ε there exists a discrete foliation of
invariant tori Ti (primary and secondary) with graphs at a distance OC1(ε1+η), for some η > 0.
We have also shown that these tori are close to being the level sets of the averaged Hamiltonian,
and we have given its first order perturbative calculation for the flat tori region DF and the big
gaps region DBG.

The goal of this section is to prove proposition 4.1, which states that, assuming that the
non-degeneracy conditions H2′′, H3′′ and H3′′′ in theorem 2.1 hold, there exists transversality
between the foliation of invariant tori in 
̃ε provided by theorem 3.1 and its image under the
scattering map Sε given in (22) and it is possible to construct a transition chain.

Recall that, as we said in section 2.3.4, by lemma 10.4 in [DLS06a] two submanifolds, like
the invariant tori Ti , Ti+1 of the NHIM 
̃ε, have a transverse heteroclinic intersection provided
they are transversal under the scattering map Sε as submanifolds of 
̃ε:

Sε(Ti ) �
̃ε
Ti+1 ⇒ Wu

Ti
� Ws

Ti+1
.

Hence, proposition 4.1 provides a transition chain through applications of the
scattering map.

Proposition 4.1. Consider Hamiltonian (1) satisfying the hypotheses of theorem 2.1. Pick two
KAM tori T± such that |I (x±) − I±| � ε1+η for some x± ∈ T± and η > 0 (these tori exist
thanks to theorem 3.1). Then, there exists a transition chain {Ti}N(ε)

i=0 , where N(ε) = C/ε, in
such a way that

1. The transition chain is obtained through applications of the scattering map. That is,

Sε(Ti ) �
̃ε
Ti+1.

2. T0 = T−, TN(ε) = T+.

Proof. The proof of proposition 4.1 is postponed to section 4.2 and is based on the results in
the following section 4.1.

4.1. The scattering map and the transversality of heteroclinic intersections

The main result of this section is lemma 4.2, stated below, which considers a foliation FF

whose leaves are the level sets of a certain function F and provides an expression for the action
of the scattering map Sε on this foliation in terms of the Hamiltonian function Sε given in (21),
generating its deformation. Moreover, it gives criteria to establish transversality between the
foliation FF and its image under the scattering map Sε.

Lemma 4.2. Consider the foliation FF whose leaves LF
E are the level sets of a certain

function F :

LF
E = {(I, ϕ, s) ∈ (I−, I+) × T2, F (I, ϕ, s; ε) = E}, E ∈ (E1, E2).

Let Sε be the scattering map introduced in (19), and Sε = S0 + εS1 + O(ε2) its Hamiltonian
function given in (21) with S0 = −L∗, where L∗ is the reduced Poincaré function introduced in
(11). Then, Sε(L

F
E), the image sets of the leaves LF

E of FF under the scattering map Sε, satisfy

Sε(L
F
E) = L

F◦S−1
ε

E and therefore the equation F ◦ S−1
ε = E, where the expression F ◦ S−1

ε is
given by

F ◦ S−1
ε = F − ε{F, S0} +

ε2

2
({{F, S0}, S0} − {F, S1}) + O(ε3), (142)
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where {F, Si} = ∂ϕF∂ISi − ∂IF∂ϕSi is the Poisson bracket of the functions F and Si .
Moreover, the image of a leaf LF

E under the scattering map Sε intersects another leaf LF
E′ ,

for some E′, if and only if there exists x ∈ LF
E such that F ◦ Sε(x) = E′, where the expression

F ◦ Sε is given by

F ◦ Sε = F + ε{F, S0} +
ε2

2
({{F, S0}, S0} + {F, S1}) + O(ε3). (143)

Assuming that

|{F, F ◦ S−1
ε }|

|∇F |2 � Cε, (144)

where C is a constant independent of ε and E, the angle between the surfaces LF
E′ and Sε(L

F
E)

at the intersection points is bounded from below by Cε. Therefore, foliations FF and FF◦S−1
ε

intersect transversally.

Remark 4.3. For the case of a function F which is OC2(1), the scattering map increases
(decreases) the energy E by order ε, provided that the first order term {F, L∗} in (143) satisfies

{F, L∗} �≡ 0.

Remark 4.4. Using expression (142) and S0 = −L∗, the condition for the transversality of
the foliations (144) reads

|{F, {F, L∗}} + 1
2ε(−{F, {{F, L∗}, L∗}} + {F, {F, S1}}) + O(ε2)|

|∇F |2 � C. (145)

Note that if F is OC2(1) the term ε can be neglected and the condition reduces to

|{F, {F, L∗}}|
|∇F |2 � C. (146)

Also note that an equivalent condition to (144) is

|{F, F ◦ Sε}|
|∇F |2 � Cε. (147)

Proof. In section 2.3.2 we have shown that there exists a Hamiltonian function Sε generating the
deformation of the scattering map Sε and we have given its first order perturbative computation
in equation (21). Hence, taking into account that Sε = S0 + εS1 + O(ε2), it is clear that
(see [CH82] for instance) F ◦ Sε is given by

F ◦ Sε = F + ε{F, S0} +
ε2

2
({{F, S0}, S0} + {F, S1}) + O(ε3),

with S0 = −L∗. The expression for F ◦ S−1
ε follows identically.

In order to show the transversality between the foliations FF and FF◦S−1
ε

, we need to obtain
lower bounds for the angle of intersection. More precisely, the angle α between the normal
vectors to the tangent planes to the surfaces Sε(L

F
E) and LF

E′ is given by

sin(α) = |∇(F ◦ S−1
ε ) × ∇F |

|∇(F ◦ S−1
ε )||∇F | = |{F, F ◦ S−1

ε }|
|∇(F ◦ S−1

ε )||∇F | ,

where F ◦ S−1
ε is given in expression (142). From this expression one can see that sin(α) is

O(ε) and condition (144) gives the required transversality. �
As we have argued in the previous section the tori in 
̃ε have different behaviour depending

whether they are close to or far from the separatrix. Thus, the tori in the flat tori region and
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in the big gaps region far from the resonance are rather flat, whereas they are bent in the big
gaps region close to a resonance. The fact that the tori are not flat has the consequence that
the dominant effect of comparing a torus with the image under the scattering map of another
torus, will include some extra terms. For this reason, we will divide the study into three cases:
on the one hand, the flat tori region and on the other hand the resonant region with big gaps,
where we will distinguish between far from and close to the resonance.

4.1.1. The flat tori region. In lemma 4.5, we apply lemma 4.2 to the flat tori region DF.
By theorem 3.1, in one connected component of this region the invariant tori are given by the
leaves LF

E of a foliation FF , where F is of the form (89). Moreover they can be written as
a graph of the action I over the angle variables (ϕ, s): I = λE(ϕ, s; ε), where λE is given
in (90).

Lemma 4.5. Let us consider a foliation FF contained in a connected component of the flat
tori region DF, where the function F is of the form (89), so that the equation F(I, ϕ, s; ε) = E

defines a smooth surface given as a graph λE(ϕ, s; ε), with λE as in (90).
Assume that hypothesis H2′′ is fulfilled. More precisely, the reduced Poincaré function L∗

defined in (11) verifies, for any value of (I, ϕ, s) ∈ DF such that (I, ϕ−Is) ∈ H ∗
+ (respectively,

such that (I, ϕ − Is) ∈ H ∗
−), that the function

θ̃ �→ ∂L∗

∂θ̃
(I, θ̃ )

for θ̃ = ϕ − Is is positive (respectively negative) and non-constant for θ̃ on some set J ∗+
E (see

(12)). Then the foliations FF and FF◦S−1 intersect transversally.
More precisely, any surface Sε(L

F
E) intersects at some point the surface LF

E′ for any E′ > 0
(respectively E′ < 0), |E′ − E| = O(ε). The angle between the surfaces Sε(L

F
E) and LF

E′ at
the intersection can be bounded from below by Cε, where C is a constant independent of ε

and E.

Proof. We will apply lemma 4.2 with F(I, ϕ, s; ε) = I +OC2(ε1−4α) and I = λE(I, ϕ, s; ε) =
E + OC2(ε1−4α) for α < 1/26. We will see that provided hypothesis H2′′ is fulfilled, condition
(144) of lemma 4.2 is satisfied.

We first apply the scattering map to the implicit surface

LF
E = {(I, ϕ, s) ∈ DF, F (I, ϕ, s) = E},

and recall that Sε(L
F
E) intersects a leaf LF

E′ at a point (I, ϕ, s) ∈ LF
E if F ◦ Sε(I, ϕ, s; ε) = E′,

where, using expression (143), F ◦ Sε is given by

F ◦ Sε = E − ε{F, L∗} + O(ε2). (148)

with,

{F, L∗} = − ∂L∗

∂ϕ

∂F

∂I
+

∂F

∂ϕ

∂L∗

∂I

= − (1 + OC1(ε1−4α))
∂L∗

∂θ̃
+ OC1(ε1−4α)

= − ∂L∗

∂θ̃
+ OC1(ε1−4α)

with θ̃ = ϕ − Is. Evaluating on I = E + OC0(ε1−4α), equation (148) reads

(F ◦ Sε)(I, ϕ, s; ε) = E + ε
∂L∗

∂θ̃
(E, ϕ − Es) + O(ε1−4α).
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By hypothesis H2′′ in theorem 2.1 the scattering map increases (respectively decreases) the
energy by order ε, for (I, ϕ, s) ∈ DF such that (I, ϕ−Is) ∈ H ∗

+ (respectively for (I, ϕ, s) ∈ DF

such that (I, ϕ − Is) ∈ H ∗
−). In particular, the surface Sε(L

F
E) intersects all surfaces LF

E′ such
that |E′ − E| = O(ε).

Moreover, in order to see that they intersect transversally we need to check that condition
(144) is satisfied. Note that in this case, by remark 4.4, condition (146) implies (144). Thus,
we first compute

{F, {F, L∗}} =
(

∂F

∂I

)2
∂2L∗

∂ϕ2
+ OC0(ε1−4α)

= (1 + OC0(ε1−4α))2 ∂2L∗

∂θ̃2
+ OC0(ε1−4α)

= ∂2L∗

∂θ̃2
+ OC0(ε1−4α).

Since, by assumption, the function ∂L∗

∂θ̃
(E, θ̃) is non-constant for θ̃ in J ∗

E , there exists an

interval J̄E ⊂ J ∗
E where∣∣∣∣∂2L∗

∂θ̃2

∣∣∣∣ � C > 0,

and using

|∇F | = 1 + OC1(ε1−4α),

we have that condition (144) is satisfied and the angle between the surfaces Sε(L
F
E) and LF

E′

at the intersection can be bounded from below by Cε, where C is a constant independent of ε

and E. �

Remark 4.6. By theorem 3.1, two consecutive tori are, at most, at a distance of O(ε1+η), for
some η > 0, in terms of the I variable. Moreover, these tori are OC0(ε1−4α)-close to the level
sets of the action I .

Hence, we conclude that the image under the scattering map of a torus Ti in the flat tori
region, given by I = Ii + O(ε1+η), intersects transversally another torus of this region given
by I = Ii+1 + O(ε1−4α) with |Ii+1 − Ii | = O(ε):

Sε(Ti ) � Ti+1.

4.1.2. Big gaps region. In lemma 4.7 we are going to apply lemma 4.2 in one connected
component of the big gaps region DBG. By theorem 3.1, the invariant tori are given by the
leaves LF

E of a foliation FF for a certain function F of the form (96). Moreover, they can be
written as a graph of the action I over the angle variables (ϕ, s): I = λ±

E(ϕ, s; ε), with λ±
E as

in (97). Recall that in this foliation, the leaves with E > 0 are primary KAM tori whereas the
leaves with E < 0 are secondary.

The dominant terms in F and in the expressions λ±
E of these tori depend on the resonance

−l0/k0 and the distance to the separatrix, which is measured in terms of E. Thus, on the one
hand tori are bent when they approach the separatrix, that is, when E → 0, and on the other
hand tori are flatter when the size ε|(k0, l0)|−1/r of the gap decreases, which is controlled by
k0 and therefore by γ (see (112) for a definition of γ ).

In the following lemma 4.7 we consider the different cases and we prove that conditions
H2′′, H3′′ and H3′′′ ensure the existence of a transversal intersection between the foliation FF

and its image under the scattering map FF◦S−1
ε

.



Geography of resonances and Arnold diffusion 2061

Lemma 4.7. Let us consider a connected component of the big gaps region DBG defined in (84).
Recall from formula (96) together with expressions (112) and (114) that, in this component,
the function F defining the foliation is of the form

F(I, ϕ, s; ε) = y2

2
(1 + εk2

0 h̃(y; ε)) + εγ Ũ(x; ε) + OC2(|k0|3εγ/2+1+ν/2), (149)

where y and x are given in (141) in terms of (I, ϕ, s), and for some 0 � ρ < π and some range
of energies −εγ � E � L2, the equation F(I, ϕ, s; ε) = E defines two smooth surfaces LF±

E

given as graphs I = λ±
E(ϕ, s; ε), with λ±

E given in (97), such that

y = f̂ ±
E (ϕ, s; ε) = Y±(θ, E) + OC1(|k0|ε1+η), (150)

where

Y±(θ, E) = ±(1 + εb)�(θ, E) + εỸ±(�(θ, E)), (151)

for ρ � θ = k0ϕ + l0s � 2π − ρ and �(θ, E) =
√

2(E − εγ Ũ(θ; 0)) with Ũ (θ; ε) defined in

(114) and Ỹ± satisfying (120).
Assume that hypothesis H2′′ is fulfilled, more precisely, that the reduced Poincaré function

L∗ verifies, for any value of (I, ϕ, s) ∈ DBG such that (I, ϕ − Is) ∈ H ∗
+ (respectively, such

that (I, ϕ − Is) ∈ H ∗
−), that the function

θ̃ �→ ∂L∗

∂θ̃
(I, θ̃ ) (152)

for θ̃ = ϕ − Is is positive (respectively negative) and non-constant for θ̃ ∈ J ∗
I .

For |(k0, l0)| < C1ε
−1/r , where

C1 = C1(L∗, Ũ ) =
(

2MŨ

M2
L∗

)1/r

, (153)

and ML∗ = maxθ∈J ∗
−l0/k0

∣∣∣ ∂L∗

∂θ̃
(− l0

k0
, θ

k0
)

∣∣∣ and MŨ = maxθ∈J ∗
−l0/k0

|Ũ (θ; 0)|, assume hypothesis

H3′′ on (k0, l0) in theorem 2.1, which is that the function

θ →
k0Ũ

′k0,l0(θ; 0) ∂L∗

∂θ̃

(
−l0
k0

, θ
k0

)
+ 2Ũ (θ; 0) ∂2L∗

∂θ̃2

(
−l0
k0

, θ
k0

)
2 ∂2L∗

∂θ̃2

(
−l0
k0

, θ
k0

) (154)

is non-constant for θ/k0 ∈ J ∗
−l0/k0

.
For C1ε

−1/r � |(k0, l0)| � C2ε
−1/r with C1 given in (153) and

C2 = C2(L∗, Ũ ) =
(

32MŨ

M2
L∗

)1/r

, (155)

where ML∗ and MŨ are as in the previous case, we assume the following hypothesis, which is
condition H3′′′ on (k0, l0) in theorem 2.1:

There exists a constant C, independent of E and ε, and an interval J ⊂ J ∗
−l0/k0

such that
given any E, ε in this region and θ/k0 ∈ J ,∣∣∣∣ 1

2(E − εγ Ũ(θ; 0))

(
2E

∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

)
−εγ

[
k0Ũ

′k0,l0(θ; 0)
∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
+ 2Ũ (θ; 0)

∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

)]
±εk0

√
2(E − εγ Ũ(θ; 0))

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

))∣∣∣∣ � C. (156)

Then, the foliations FF and FF◦S−1
ε

intersect transversally.
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More precisely, any surface Sε(L
F,−
E ) intersects at some point the surface L

F,−
E′ for

any E′ < E (respectively E′ > E) such that |E′ − E| � C|k0|ε max(|E|1/2, εγ/2).
Analogously, any surface Sε(L

F,+
E ) intersects at some point the surface L

F,+
E′ for any E′ > E

(respectively E′ < E) such that |E′ − E| � C|k0|ε max(|E|1/2, εγ/2). (In some cases, it is
also possible that a certain surface Sε(L

F,−
E ) intersects the surface L

F,+
E′ with E′ such that

|E′ − E| � C|k0|ε max(|E|1/2, εγ/2).)
The angle between the surfaces Sε(L

F,±
E ) and L

F,±
E′ at the intersection is bounded from

below by Cε, where C is a constant independent of ε and E.

Remark 4.8. Lemma 10.16 in [DLS06a] gives a computable sufficient condition that
guarantees that hypothesis H3′′′ on (k0, l0) is verified independently of ε and E. Indeed, let

a(θ) = ∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

)
,

b(θ) = − 1

2

(
k0Ũ

′k0,l0(θ; 0)
∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
+ 2Ũ (θ; 0)

∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

))
,

c(θ) = ±
√

2

2

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

)
,

if there exist θ1, θ2 and θ3 in some interval J verifying∣∣∣∣∣∣
ã(θ1) ã(θ2) ã(θ3)

b̃(θ1) b̃(θ2) b̃(θ3)

c̃(θ1) c̃(θ2) c̃(θ3)

∣∣∣∣∣∣ �= 0, (157)

where

ã(θ) = a(θ)2,

b̃(θ) = 2a(θ)b(θ) − c(θ)2, (158)

c̃(θ) = b(θ)2 − c(θ)2Ũ (θ; 0),

then there exist a constant C and three intervals θi ∈ Ji ⊂ J , i = 1, 2, 3 such that for any
θ ∈ Ji ∣∣∣∣∣∣∣

a(θ)E + b(θ)εγ + c(θ)εk0

√
E − εγ Ũ(θ; 0)

E − εγ Ũ(θ; 0)

∣∣∣∣∣∣∣ � C,

which is hypothesis H3′′′ on (k0, l0).

Proof. We will apply lemma 4.2 to the foliation FF given by the function F in (149).
We first apply the scattering map to the implicit surface

LF
E = {(I, ϕ, s) ∈ DBG, F (I, ϕ, s; ε) = E},

and recall that Sε(L
F
E) intersects a leaf LF

E′ at a point (I, ϕ, s) ∈ LF
E if F ◦ Sε(I, ϕ, s; ε) = E′,

where, using expression (143) with S0 = −L∗, F ◦ Sε on LF
E is given by

(F ◦ Sε)(I, ϕ, s; ε) = E − ε{F, L∗} +
ε2

2
({{F, L∗}, L∗} + {F, S1}) + O(ε3). (159)

Note that the terms in expression (159) involve the derivatives of F on LF
E . Using the

expression for F in (149) and the expression of y and x in terms of (I, ϕ, s) in (141), we have
that

∂F

∂I
(I, ϕ, s; ε) = [y(1 + εk2

0 h̃(y; ε)) +
y2

2
εk2

0 h̃
′(y; ε)

+ OC1(|k0|2εγ/2+1+η)](k0 + O1(|k0|ε1−4α)),
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and using the expression of the leaf L
F,±
E as a graph of y over the angle variables (ϕ, s) given

in (150), on L
F,±
E we have

∂F

∂I
(I, ϕ, s; ε) = ±k0�(θ, E) + O(|k0|3ε|�| + k2

0ε
1+η + |�||k0|ε1−4α) (160)

and analogously on L
F,±
E we have,

∂F

∂ϕ
(I, ϕ, s; ε) = εγ k0Ũ

′k0,l0(θ, ε) + OC1(|k0|3εγ/2+1+η). (161)

Hence, on L
F,±
E we can disregard ∂F

∂ϕ
in front of ∂F

∂I
and we have,

{F, L∗} = − ∂F

∂I

∂L∗

∂ϕ
+

∂F

∂ϕ

∂L∗

∂I

= ∓ k0�(θ, E)
∂L∗

∂θ̃

(
− l0

k0
+

1

k0
�(θ, E), ϕ −

(
− l0

k0
+

1

k0
�(θ, E)

)
s

)
+ O(ξ), (162)

where

ξ = ξ(ε, |k0|, |�|) = |k0|3ε|�| + k2
0ε

1+η + |�||k0|ε1−4α + |k0|εγ . (163)

Regarding the term of order ε2 in expression (159), we see that among all the terms in
1
2ε2({{F, L∗}, L∗} + {F, S1}) there is a dominant one. To that end we note first that all the
terms that appear in the derivatives up to second order for F with respect to (I, ϕ, s) on L

F,±
E

are O(|k0||�|, k2
0ε

γ ), except

∂2F

∂I 2
= k2

0 + O(|k0|2ε1−4α). (164)

Hence, in the expression {{F, L∗}, L∗} + {F, S1} on L
F,±
E , all the terms are of order k2

0ε
�, for

some � > 0, except

∂2F

∂I 2

(
∂L∗

∂θ̃
(I, θ̃ )

)2

.

Therefore, using this feature and (162), expression (159) for F ◦ Sε on L
F,±
E , is given by

F ◦ Sε(I, ϕ, s; ε) = E ± εk0�(θ, E)
∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
+

ε2

2
k2

0

(
∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

))2

+ O(k2
0ε

2+�, |k0|εγ +1, ε|�|2) (165)

= E + εM±(θ; ε) + O(k2
0ε

2+�, ξε),

where ξ is given in (163) and

M±(θ; ε) = k0
∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)(
±
√

2(E − εγ Ũ(θ; 0)) + εk0
1

2

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

))
. (166)

Therefore, the size of the heteroclinic jumps provided by the scattering map is determined
by the size of the term M± in (166).

In order to check the transversality of the heteroclinic intersections we use condition
(144), which involves, in any case, the computation of the Poisson bracket {F, {F, L∗}} and
the gradient of F (see formula (145)).

From expressions (160) and (161) it follows that on L
F,±
E ,

|∇F(I, ϕ, s; ε)| = |k0||�(θ, E)| + O(ξ), (167)

where ξ is given in (163).
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On the other hand, the computation of {F, {F, L∗}} involves several terms. However,
using the expression for {F, L∗} obtained in (162) and the expression and estimates for the
derivatives up to second order for F with respect to (I, ϕ, s) given in (160)–(161)–(164), one
can see that the dominant terms in {F, {F, L∗}} involve(

∂F

∂I

)2
∂2L∗

∂ϕ2
− ∂F

∂ϕ

∂2F

∂I 2

∂L∗

∂ϕ

and therefore we have that on L
F,±
E ,

{F, {F, L∗}} = k2
0�(θ, E)2 ∂2L∗

∂θ̃2
(θ̃ , E) − k0ε

γ Ũ
′k0,l0(θ, ε)k2

0
∂L∗

∂θ̃
(θ̃ , E) + O(|k0||�|ξ), (168)

where ξ is given in (163).
In expression (166) there appear two quantities that can be comparable or not depending

on k0 and E. Note first that |�(·, E)| = max(E1/2, εγ/2), with 1 � γ < 2 + ν, for some ν > 0.
In consequence, when the size of the energy is big (|E| > εγ ), we have �(θ; E) = O(E1/2)

and therefore the term involving �(θ, E) in expression (166) dominates. On the other hand, if
the energy is small, that is |E| is smaller than or comparable to εγ/2, then �(θ; E) = O(εγ/2),
which by expression (112) is also O(|k0|ε1+ν/2), for some ν > 0. In this case, the dominant
term in expression (166) will depend on the size of k0.

Hence, we choose µ such that 0 < µ < γ and we distinguish two cases: the case when tori
are close to the resonance, which corresponds to small values of the energy (−εγ � E � εµ)
and the case when they are reasonably far from a resonance, which corresponds to greater
values of the energy (εµ � E � L2).

Far from the resonance: εµ � E � L2. The case far from a resonance is analogous to the
flat tori region, studied in the previous section, because in this case

�(θ, E) =
√

2(E − εγ Ũ(θ; ε)) =
√

2E

√
1 − εγ

E
Ũ(θ; ε)

=
√

2E(1 + O(εγ−µ)).

Consequently, since
√

2E �
√

2εµ/2 and εµ/2 > εγ/2 � |k0|ε1/2, expression (165) can be
written as

F ◦ Sε(I, ϕ, s; ε) = E ± εk0

√
2E

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
+ O(k0|E|1/2ε1+γ−µ, ε|E|).

Therefore, by the hypothesis H2′′ on ∂L∗

∂θ̃
(I, θ̃ ), we have that the image of L

F,±
E under the

scattering map, for E large, intersects all surfaces L
F,±
E′ such that |E′ − E| = O(ε|k0||E|1/2).

In order to prove the transversality of intersections, we need to check condition (146).
Using that the term involving �(θ, E) is the dominant one in expression (168) for {F, {F, L∗}}
and expression (167) for ∇F , condition (146) for the transversality of the intersections is∣∣∣∣∂2L∗

∂θ̃2

∣∣∣∣ � C > 0,

which is clearly satisfied by the hypothesis on H2′′ on ∂L∗

∂θ̃
(I, θ̃ ).

Close to the resonance: −εγ � E � εµ. The case close to a resonance is more technical
because the size of the energy is now comparable to the term εγ Ũ and therefore �(·, E) =
O(εγ/2). Hence, in expression (166) there appear two quantities that can be comparable or not



Geography of resonances and Arnold diffusion 2065

depending on k0. On the one hand, there is
√

2(E − εγ Ũ(θ; 0)), which is related to the size

of the gap and on the other hand there is εk0
1
2

∂L∗

∂θ̃
(− l0

k0
, θ

k0
), which is related to the size of the

heteroclinic jumps provided by the scattering map Sε. Hence we distinguish three situations
depending on k0:

i. The case when the first term
√

2(E − εγ Ũ(θ; 0)) is smaller than the second term

εk0
1
2

∂L∗

∂θ̃
(− l0

k0
, θ

k0
), say smaller than 1/2 the maximum of the second one:√
2MŨεγ/2 < 1

4ε|k0|ML∗ , (169)

where ML∗ = max
{∣∣∣ ∂L∗

∂θ̃
(− l0

k0
, θ

k0
)

∣∣∣ : θ/k0 ∈ J ∗
−l0/k0

}
and MŨ = max{|Ũ (θ; 0)| : θ/k0 ∈

J ∗
−l0/k0

}.
As εγ = ε|k0|2|(k0, l0)|−r by (112), (169) is equivalent to

MŨε|k0|2|(k0, l0)|−r < 1
32ε2k2

0M
2
L∗ ,

or |(k0, l0)|−r < ε
M2

L∗
32MŨ

, that is |(k0, l0)|r >
32MŨ

M2
L∗

ε−1, or finally

|(k0, l0)| > C2ε
−1/r ,

where C2 is the constant given in (155). In this case,∣∣∣∣±√2(E − εγ Ũ(θ; 0)) + εk0
1

2

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)∣∣∣∣ � 1

4
ε|k0|

∣∣∣∣∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)∣∣∣∣ ,
and from expression (165), we have that tori are essentially flat and this is equivalent to
the flat tori case. Hence, condition H2′′ assures that the foliations intersect transversally.

ii. The case when the second term εk0
1
2

∂L∗

∂θ̃
(− l0

k0
, θ

k0
) is smaller than the first one√

2(E − εγ Ũ(θ; 0)), say smaller than 1/2 the maximum of the first one:

1
2ε|k0|ML∗ < 1

2

√
2MŨεγ/2, (170)

where ML∗ and MŨ are as in the previous case. As before, using that εγ = ε|k0|2|(k0, l0)|−r

by (112), (170) is equivalent to
1
4ε2k2

0M
2
L∗ < 1

2MŨε|k0|2|(k0, l0)|−r ,

or |(k0, l0)|−r > ε
M2

L∗
2MŨ

, that is |(k0, l0)|r <
2MŨ

M2
L∗

ε−1, or finally

|(k0, l0)| < C1ε
−1/r ,

where C1 is the constant given in (155). In this case,∣∣∣∣±√2(E − εγ Ũ(θ; 0)) + εk0
1

2

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)∣∣∣∣ � 1

2

√
2(E − εγ Ũ(θ; 0)).

This is the case when the size of the gaps in the foliation of primary tori is bigger than the
size of the heteroclinic jumps provided by the scattering map. Hence, if we consider the
surface L

F,−
E , by hypothesis H2′′ we have that

−εk0

√
2(E − εγ Ũ(θ; 0))

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
is a negative function, and therefore by equation (165) S(L

F,−
E ) intersects surfaces L

F,−
E′

with E′ < E (respectively E′ > E) such that |E′ − E| � |k0|ε1+γ /2. An analogous result
is obtained for L

F,+
E with E′ > E (respectively E′ < E).
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iii. Finally, it remains to consider the case when

C1ε
−1/r � |(k0, l0)| � C2ε

−1/r ,

where C1 and C2 are the constants depending on L∗ and Ũ given explicitly in (153)

and (155), respectively. In this case we have that the terms
√

2(E − εγ Ũ(θ; 0)) and
1
2εk0

∂L∗

∂θ̃
(− l0

k0
, θ

k0
) in expression (166) are comparable. This case is the hardest to study

because the size of the gap is of the same order as the heteroclinic jumps. This causes
different geometries for Sε(L

F,±
E ) that could happen depending on the numerical values

of the leading coefficients.
We focus on the case ofSε(L

F,−
E ) and the function (152) positive. The case forSε(L

F,+
E ) and

the function (152) negative is analogous. Hence, by hypothesis H2′′, the main term M−
in F given in (166) can have different signs depending on the size of �(θ; ε). According
to that, we distinguish the following cases:

(a) The first case is when∣∣∣∣−√2(E − εγ Ũ(θ; 0)) + εk0
1

2

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)∣∣∣∣
C1

� ε1+�.

This case corresponds to points in L
F,−
E that are OC2(ε2+�)-close to homoclinic jumps

Sε(L
F,−
E ) � L

F,−
E . They are not good for diffusion.

(b) The second case is when∣∣∣∣−√2(E − εγ Ũ(θ; 0)) + εk0
1

2

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)∣∣∣∣
C1

> ε1+�.

This case corresponds to points in heteroclinic jumps Sε(L
F,−
E ) � L

F,−
E′ and we can

distinguish two situations that can take place.
On the one hand, if

−
√

2(E − εγ Ũ(θ; 0)) > εk0
1

2

∂L∗

∂θ̃
,

which is the case when the heteroclinic jumps are smaller than the gap, Sε(L
F,−
E )

intersects surfaces L
F,−
E′ with E′ < E and |E′ − E| � |k0|ε1+γ /2. Thus, for small

values of energy E > 0, the scattering map will connect a surface with energy E > 0
with a surface E′ < 0, which corresponds to a heteroclinic connection of a primary
tori with a secondary one.
On the other hand, when

−
√

2(E − εγ Ũ(θ; 0)) < εk0
1

2

∂L∗

∂θ̃
,

which is the case when the heteroclinic jumps are bigger than the gaps created between
the primary tori, we obtain that Sε(L

F,−
E ) will intersect the surfaces L

F,−
E′ with E′ > E

(respectively E′ < E) and |E′ −E| � |k0|ε1+γ /2. In this case the scattering map will
connect two tori with positive energy, that is, two primary tori, and cross the gap with
just one application of the scattering map.

Once we have a heteroclinic connection that crosses the separatrix loop, we can consider
Sε(L

F,+
E ), which corresponds to the upper branch of the level set F(I, ϕ, s; ε) = E, E > 0.

In this case, by hypothesis H2′′, in expression (165) the main term M+ in F given in (166)
is always positive, so Sε(L

F,+
E ) will intersect surfaces L

F,+
E′ with E′ > E (respectively

E′ < E) and |E′ − E| � |k0|ε1+γ /2.

Now, we want to check that the intersections for the cases (ii) and (iii) take place
transversally by means of condition (144). For the case described in item (ii) in this proof,
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condition (146) implies condition (144). So, using expression (168) for {F, {F, L∗}} and
expression (167) for ∇F on LF

E , we have that the condition (144) is satisfied provided that∣∣∣∣ ±1

2(E − εγ Ũ(θ; 0))

(
2E

∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

)
−εγ

[
k0Ũ

′k0,l0(θ; 0)
∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
+ 2Ũ (θ; 0)

∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

)])∣∣∣∣ � C.

By lemma 10.10 in [DLS06a], hypothesis H3′′ on (k0, l0) implies the previous condition
and therefore the angle between the surfaces Sε(L

F
E) and LF

E′ at the intersection can be bounded
from below by Cε, for some suitable constant independent of ε.

For the particular case |(k0, l0)| ∼ ε−1/r described in item (iii), we need to check condition
(145). Using expression (166) for the dominant term M± in F , it is not difficult to see that
the dominant term in the numerator of (144) involves the terms(

∂F

∂I

)2
∂2L∗

∂ϕ2
− ∂F

∂ϕ

∂2F

∂I 2

∂L∗

∂ϕ
+ ε

∂F

∂I

∂L∗

∂ϕ

∂2L∗

∂ϕ2

= (k0I + l0)
2k2

0
∂2L∗

∂θ̃2
(θ̃ , E) − εγ Ũ

′k0,l0(θ, ε)k0k
2
0
∂L∗

∂θ̃
(θ̃ , E)

+ε(k0I + l0)k
2
0
∂L∗

∂ϕ
(θ̃ , E)

∂2L∗

∂ϕ2
(θ̃ , E)

Using the expression for ∇F in (167), we have that the condition (144) is satisfied provided
that∣∣∣∣ ±1

2(E − εγ Ũ(θ; 0))

(
2E

∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

)

−εγ

[
k0Ũ

′k0,l0(θ; 0)
∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
+ 2Ũ (θ; 0)

∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

)]

±εk0

√
2(E − εγ Ũ(θ; 0))

∂L∗

∂θ̃

(
− l0

k0
,

θ

k0

)
∂2L∗

∂θ̃2

(
− l0

k0
,

θ

k0

))∣∣∣∣ � C,

for some constant C. By hypothesis H3′′′ on (k0, l0) in theorem 2.1 we know that the previous
condition is satisfied for θ/k0 ∈ J ⊂ J ∗

−l0/k0
. Consequently, the angle of intersection can be

bounded again from below by Cε, for some suitable constant independent of ε. �

Remark 4.9. By theorem 3.1 we know that the tori in a connected component of the big gaps
region are given by the expression I = λ±

E(ϕ, s; ε), for E = Ei and −εγ � Ei � L2, with λ±
E

given in (97). Moreover, they satisfy

|Ei − Ei+1| � |k0|εγ/2+1+η � |k0| max(|Ei |1/2, εγ/2)

and they are O(ε1+η)-closely spaced, in terms of the I variable.
Hence, we conclude that the image under the scattering map of a torus Ti , Sε(Ti ) in the big

gaps region, given by I = λ±
Ei

(ϕ, s; ε), intersects transversally another torus Ti+1 of this region
given by Ī = λ±

Ei+1
(I, ϕ, s; ε), with |Ei+1 − Ei | = O(εγ/2+1+η) (equivalently |I − Ī | � ε1+η):

Sε(Ti ) � Ti+1.
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4.2. Proof of proposition 4.1

The proof is just a combination of the results obtained in section 4.1.
We start with a torus T0, which is O(ε1+η)-close to the submanifold I = I−. Assume that

this torus belongs to the flat tori region with averaged energy E0. The case when T0 belongs
to a big gaps region is analogous. Then, we apply lemma 4.5 and remark 4.6 and we get that
Sε(T0) intersects transversally all primary tori with averaged energy in the mentioned interval
(E0 − Cε, E0 + Cε). We pick a primary KAM torus T1 provided by theorem 3.1 with energy
E1 in the interval and we repeat the argument until we reach a big gaps region. Assuming that
we have applied it K times, we have that the torus T0 has heteroclinic connections with all the
tori whose energy lies in the interval (E0 − KCε, E0 + KCε), or equivalently, in the interval
(I− − K∗Cε, I− + K∗Cε) in terms of action variables.

When the domain (I− −K∗Cε, I− +K∗Cε)×T2 for which the torus T0 has a heteroclinic
connection overlaps with a big gaps region [−l0/k0−Lk0 , −l0/k0 +Lk0 ]×T2 we use lemma 4.7
and remark 4.9 to show that we can cross the gap created by the resonance −l0/k0 just
connecting either a primary KAM torus with a secondary one and again with a primary one or
two primary KAM tori. Hence, we can construct a piece of chain that starts in T0 and reaches
all the way to Ti , where Ti is a primary KAM torus whose equation is I = −l0/k0 +Lk0 +O(ε)

and is contained again in the flat tori region.
Therefore, we can keep constructing a transition chain just repeating the procedure stated

before for the primary KAM torus Ti until we reach TN(ε). �

5. Example

Consider the Hamiltonian

Hε(p, q, I, ϕ, t) = ±
(

p2

2
+ cos q − 1

)
+

I 2

2
+ ε cos q g(ϕ, t), (171)

which is a generalization of the famous example introduced by Arnol’d in [Arn64]. This is the
same Hamiltonian in the example discussed in [DLS06a], except that the function g is chosen
as a periodic function with an infinite number of harmonics in the angles (ϕ, t),

g(ϕ, t) =
∑

(k,l)∈N2

ak,l cos(kϕ + lt), (172)

where, for simplicity, we have chosen g to be an even function and with an explicit formula
for its Fourier coefficients, say ak,l = ρkrl and 0 < ρ, r < 1 real numbers to be chosen small
enough. Note that

g(ϕ, t) = 1 + ρr cos(ϕ + t) − ρ cos ϕ − r cos t

(1 − 2ρ cos ϕ + ρ2)(1 − 2r cos t + r2)
.

The Hamiltonian of one degree of freedom P±(p, q) = ± (p2/2 + cos q − 1
)

is the
standard pendulum when we choose the + sign, and its separatrix for positive p is given by

q0(t) = 4 arctan e±t , p0(t) = 2/cosh t .

An important feature of the Hamiltonian (171) is that the three-dimensional NHIM


̃ = {(0, 0, I, ϕ, s) : (I, ϕ, s) ∈ R × T2}
is preserved without any deformation for any ε: p = q = 0 ⇒ ṗ = q̇ = 0. However,
in contrast with the example in [Arn64], the perturbation does not vanish on 
̃. Indeed, the
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Hamiltonian (171) restricted to 
̃ takes the form I 2/2 + εg(ϕ, t). Hence, the two-dimensional
whiskered tori

T 0
I = {(0, 0, I, ϕ, s) : (ϕ, s) ∈ T2}

are not preserved for ε �= 0, and resonances (49) take place at I = −l/k for each (k, l) ∈ N2,
gcd(k, l) = 1. Therefore, we have a dense set of gaps of size O(ε1/2√ak,l) centred at I = −l/k

and among them the ones such that
√

ak,l � ε1/2 give rise to resonances with big gaps, so the
example (171) presents the large gap problem for I < 0.

Hence, for any finite range of I , [I−, I+] ⊂ R− we will prove the existence of diffusing
orbits.

The Melnikov potential (9) of the Hamiltonian (171) is given by

L(I, ϕ, s) =
∑

(k,l)∈N2

Ak,l(I ) cos(kϕ + ls),

with

Ak,l(I ) = 2π
(kI + l)

sinh π
2 (kI + l)

ak,l . (173)

Next, we will see that for 0 < ρ < r 
 1 we can find open sets of (I, ϕ, s) ∈ [I−, I+]×T2,
such that the function τ ∈ R �→ L(I, ϕ − Iτ, s − τ) has non-degenerate critical points at
τ = τ ∗(I, ϕ, s) which verify the hypothesis H2′.

Recall that hypothesis H2′ deals with the existence of transverse intersections of the
stable and unstable manifolds of 
̃ε. Hence, the non-degenerate critical points of the function
τ �→ L(I, ϕ − Iτ, s − τ) give rise to transverse intersections.

In order to check hypothesis H2′, we will use the results in the example given in section 13
of [DLS06a] by means of the following argument. Assuming that ρ, r are small enough, the
function g(ϕ, s) is well approximated by its truncated first order trigonometric polynomial
g[�1](ϕ, s) = 1 + ρ cos ϕ + r cos s. More precisely,

g(ϕ, s) = 1 + ρ cos ϕ + r cos s + O2(ρ, r)

:= g[�1](ϕ, s) + g[>1](ϕ, s).

Hence, as long as 0 < ρ, r 
 1, if hypothesis H2′ is verified for the trigonometric polynomial
g[�1](ϕ, s), it will also be verified for the perturbation g(ϕ, s).

Note that the Fourier coefficients Ak,l(I ) are nothing else but the Fourier coefficients ak,l

multiplied by a certain function depending on I that decreases exponentially as |I | goes to
infinity. Hence, arguing as we did for the perturbationg, we approximate the function L(I, ϕ, s)

by its first order trigonometric polynomial L[�1](I, ϕ, s) = A0,0 + A1,0(I ) cos ϕ + A0,1 cos s,
that is

L(I, ϕ, s) = A0,0 + A1,0(I ) cos ϕ + A0,1 cos s + O2(ρ, r)

:= L[�1](I, ϕ, s) + L[>1](I, ϕ, s). (174)

Recall that we are looking for non-degenerate critical points of

L(τ ) := L(I, ϕ − Iτ, s − τ) =
∑

(k,l)∈N2

Ak,l(I ) cos(kϕ + ls − τ(Ik + l)), (175)

with Ak,l(I ) as in (173).
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Figure 2. Graph and level curves of the Melnikov potential L[�1](I, ϕ, s) with ρ = 1/16,
r = 1/(8α) with α = π/(2 sinh(π/2)) and I = 0. In this case, A0,0 = 4, A1,0 = 1/4 and
A0,1 = 1/2.

Using that the Melnikov function L is well approximated by L[�1], fixed (I, ϕ, s), we only
need to study the evolution of L[�1] along the straight lines

R : τ ∈ R �→ (ϕ − Iτ, s − τ) ∈ T2 (176)

on the torus.
This study has already been performed in the example in section 13 in [DLS06a], where

the reader can find more details. For simplicity of the exposition we will take 0 < ρ < αr ,
with α = π/(2 sinh(π/2)), so that, for any fixed I , we have A0,1 > A1,0(I ) > 0, but one
can see that it is enough to assume that 0 < ρ < r for the existence of diffusion. Therefore
the function (ϕ, s) �→ L[�1](I, ϕ, s) possesses exactly four non-degenerate critical points: a
maximum at (0, 0), a minimum at (π, π) and two saddles at (0, π) and (π, 0) (see figure 2).
Around the two extremum points, its level curves are closed (and indeed convex) curves which
fill out a basin ending at the level curve of one of the saddle points.

Therefore, any straight line (176) that enters into some extremum basin is tangent
to one of the convex closed level curves, giving rise to a non-degenerate extremum of
τ ∈ R �→ L[�1](I, ϕ−Is, s −τ). So, degenerate extrema of τ ∈ R �→ L[�1](I, ϕ−Is, s −τ)

can only exist for straight lines that never enter inside such extremum basins. It is clear that
this never happens for irrational values of I because it implies a dense straight line (and infinite
non-degenerate extrema for τ ∈ R �→ L[�1](I, ϕ − Is, s − τ)). On the other hand, the straight
lines with rational slopes enter inside both extremum basins at least twice, except for the
slopes I = 0, ±1. In these cases, one can check directly, using that A0,1 > A1,0(I ) > 0, that
the function τ ∈ R �→ L[�1](I, ϕ − Is, s − τ) has one non-degenerate maximum and one
non-degenerate minimum in any interval of length 2π .

When we take into account L[>1] in the Melnikov potential L in (174), it is clear that
in the compact subset [I−, I+] × T2, as long as 0 < ρ, r 
 1, the function τ ∈ R �→
L(I, ϕ−Iτ, s −τ) has non-degenerate extrema, and for every I we can find a smooth function
τ = τ ∗(I, ϕ, s) defined in an open set of (ϕ, s) ∈ T2.

Moreover, since L is periodic with respect to (ϕ, s) and non-constant with non-degenerate
extrema along any straight line, ∂ϕL∗, where L∗ is given in (11), is also periodic and non-
constant and indeed changes sign. Therefore, for every I , there exists a non-empty set JI

where ∂ϕL∗ > 0 (and a non-empty set J −
I where ∂ϕL∗ < 0), so hypothesis H2′′ is fulfilled.

Indeed the set of points where ∂ϕL∗ vanishes is a discrete set.
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Conditions H3′, H3′′ and H3′′′ can also be checked in the example (172) for any resonance
I = −l0/k0 and any M � 1, independently of ε.

Thus, if we consider I = −l0/k0 for any (k0, l0) ∈ N2, k0 �= 0 and gcd(k0, l0) = 1, the
function Uk0,l0 in hypothesis H3 on (k0, l0) has the following expression:

Uk0,l0(θ) =
M∑
t=1

atk0,t l0 cos(tθ) = ak0,l0 cos(θ) + O2(ρ
k0 , rl0), (177)

where θ = k0ϕ + l0s and M � 1 can be chosen arbitrarily.
Therefore, θ1 = 0 and θ2 = π are the unique critical points for the function Uk0,l0(θ).

Hence hypothesis H3′ on (k0, l0) is clearly verified.
Next, for I = −l0/k0 we want to check hypothesis H3′′ on (k0, l0). This condition requires

to show that the function f in (15) is not constant. To that end, we will consider two values of
θ and we will show that their images for this function are different. For instance, note that the
function f in (15) takes the same values as Uk0,l0 evaluated on its critical points θ1 and θ2 as
long as ∂2L∗

∂ϕ2 (I, θi/k0) �= 0, for i = 1, 2. Hence, hypothesis H3′′ on (k0, l0) is clearly satisfied if

the function Uk0,l0 has two extrema θi taking different values which satisfy ∂2L∗
∂ϕ2 (I, θi/k0) �= 0,

which is the case as can be checked just looking at non-degenerate extrema of the function L.
They give rise to non-degenerate extrema of the function L∗, which coincide with the ones of
the function Uk0,l0 .

Similarly, we can check hypothesis H3′′′ on (k0, l0). In this case we need to show that the
determinant (157) given in remark 4.8 does not vanish. It is clearly non-zero if we choose,
for the two first columns, the two critical points θ1 and θ2 discussed above, and for the third
column θ3 �= 0, π , such that ∂2L∗

∂ϕ2 (−l0/k0, θ3/k0) = 0, but otherwise U
′k0,l0(θ3) �= 0 and

∂L∗
∂ϕ

(−l0/k0, θ3/k0) �= 0. The existence of this point θ3 is guaranteed by the fact that if one

considers the first order trigonometric polynomial of the reduced Poincaré function L∗[�1],
one can see that its critical points are always non-degenerate.

Hence, we apply theorem 2.1 and we conclude that

Proposition 5.1. Given the Hamiltonian (171) with g as in (172), 0 < ρ < r 
 1 and
[I−, I+] ⊂ R−, for |ε| � ε∗(ρ, r) there exist orbits following the mechanism described in this
paper and such that I (0) � I−, I (T ) � I+, for some T > 0.
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Appendix A. Double Fourier series

Proposition A.1. Letf be a Cr function with respect to (J, ϕ, s, ε), r � 1 and 2π -periodic with
respect to (ϕ, s). Then its Fourier coefficients fk,l(J, ε), (k, l) ∈ Z2, satisfy, for � = 0, . . . , r∣∣fk,l

∣∣
C� � C

|f |Cr

|(k, l)|r−�
, (A.1)

where C is a constant that depends only on r and � and |(k, l)| = max(|k|, |l|).
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Proof. From the expression for the Fourier coefficients of a function f

fk,l(J ; ε) = 1

(2π)2

∫
T2

f (J, ϕ, s; ε)ei(kϕ+ls)dϕ ds,

taking into account that f is Cr in the variables (ϕ, s), we can integrate r = n+m times by parts
(n times with respect to ϕ and m times with respect to s) and express the Fourier coefficient
fk,l(J, ε), with (k, l) �= (0, 0) in the form

fk,l(J ; ε) = (−1)r
1

(2π)2

1

(ik)n(il)m

∫
T2

∂rf (J, ϕ, s; ε)

∂ϕn∂sm
ei(kϕ+ls)dϕ ds,

so that,

|fk,l|C0 � 1

|k|n|l|m
∣∣∣∣ ∂rf

∂ϕn∂sm

∣∣∣∣
C0

� n!m!|f |0,r

|k|n|l|m ,

for any 0 � n, m � r such that n + m = r , where |·|C� is the standard C� norm defined in (2)
and |·|�1,�2

is the seminorm defined in (3). Therefore,

|fk,l|C0 � r!|f |0,r

|(k, l)|r � r!|f |Cr

|(k, l)|r ,

where |(k, l)| = max(|k|, |l|).
Now, taking into account that D�fk,l(J ; ε) is the Fourier coefficient of the function

∂�f (J,ϕ,s;ε)
∂J � , which is a Cr−� function, and using the same argument as before we have that

|D�fk,l|C0 � �!(r − �)!|f |�,r−�

|(k, l)|r−�
� �!(r − �)!|f |Cr

|(k, l)|r−�
.

From the definition of | · |C� norm in (2) we have the estimate

|fk,l|C� =
�∑

i=0

|Difk,l|C0

i!
�

�∑
i=0

(r − i)!|f |Cr

|(k, l)|r−i
� C

|f |Cr

|(k, l)|r−�
,

where C is a constant that depends only on � and r , C = r! + (r − 1)! + . . . + (r − �)!, as we
wanted to see. �

We consider the truncation of its Fourier series at order M in the following way:

f (J, ϕ, s; ε) = f [�M](J, ϕ, s; ε) + f [>M](J, ϕ, s; ε),

where

f [�M](J, ϕ, s; ε) =
∑

(k, l) ∈ Z
2,|k| + |l| � M

fk,l(J ; ε)ei(kϕ+ls),

and

f [>M](J, ϕ, s; ε) =
∑

(k, l) ∈ Z
2

|k| + |l| > M

fk,l(J ; ε)ei(kϕ+ls).

Proposition A.2. Let f be of class Cr with respect to (J, ϕ, s, ε), r � 1 and 2π -periodic with
respect to (ϕ, s). The Mth order remainder f [>M] of the Fourier series of f is bounded in the
standard C� norm, for � = 0, . . . , r − 3, by∣∣f [>M]

∣∣
C� � C

|f |Cr

Mr−(�+2)
, (A.2)

where C is a constant that depends only on r and �.
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Proof. The proof is very simple and follows from the estimate (A.1) for the Fourier coefficients
of a Cr function obtained in the previous propositon. More precisely,∣∣f [>M]

∣∣
C� �

∑
(k, l) ∈ Z

2,|k| + |l| > M

∣∣fk,l

∣∣
C�

� C
∑

(k, l) ∈ Z
2,|k| + |l| > M

|f |Cr

|(k, l)|r−�

� C

∞∑
t=M+1

4t
|f |Cr

t r−�

� 4C|f |Cr

∫ ∞

M

t�−r+1dt

= 4
C

r − � − 2
|f |Cr M

�−r+2,

where C is a constant that depends only on r and �. �

Appendix B. Weighted norms

We consider functions u ∈ τM(I ×T2), where I ⊂ R, introduced in (30), and we can consider
the different types of norms introduced in this paper: the standard Cr norm introduced in (2),
the Fourier norm introduced in (31) and the Fourier norm with a weight introduced in (32).

The equivalence relations between all these norms are given in the following lemmas:

Lemma B.1. The norms |·|C� and ‖·‖C� defined in (2) and (31), respectively, are equivalent
and satisfy the following equivalence relation for u ∈ τM(I × T2) and 0 < L � 1:

L�|u|C� � ‖u‖C�,L � CM2|u|C�

where C is a constant depending on �.

Proof. The first inequality is obvious using that L � 1. For the second one, using again that
L � 1 we have

|uk,l|Cn,L =
n∑

i=0

Li |Diuk,l|C0

i!
�

n∑
i=0

|Diuk,l|C0

i!
= |uk,l|Cn ,

for 0 � n � �. Therefore, the result follows directly from the estimate (A.1) for the C� norm
of the Fourier coefficients of a Cr function u, for � = 0, . . . , r . More precisely,

‖u‖C�,L =
�∑

m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

∣∣uk,l

∣∣
Cn,L

|(k, l)|m−n

�
�∑

m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

∣∣uk,l

∣∣
Cn |(k, l)|m−n

�
�∑

m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

C̃
|u|C�

|(k, l)|�−n
|(k, l)|m−n
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�
�∑

m=0

m∑
n=0

2�
∑

(k, l) ∈ Z
2,|k| + |l| � M

C̃|u|C�

� CM2|u|C�

as we wanted to prove. �

Lemma B.2. For the seminorm |·|j,�−j defined in (2), one has that for all 0 � j � �,

Lj |u|j,�−j � ‖u‖C�,L. (B.1)

Proof. Again, It follows directly from the fact that L < 1 and therefore,

Lj |uk,l|Cn �
n∑

i=0

Li |Diuk,l|C0

i!
= |uk,l|Cn,L.

for 0 � n � j . �

Lemma B.3. For 0 < L � 1 and 0 � � � r we have that for any u ∈ τM(I × T2) and
v ∈ τN(I × T2)

‖uv‖C�,L � ‖u‖C�,L‖v‖C�,L. (B.2)

Proof. Let us define

‖u‖n,m =
∑

(k, l) ∈ Z
2,|k| + |l| � M

|uk,l|Cn,L|(k, l)|m−n,

then,

‖u‖C�,L =
�∑

m=0

m∑
n=0

2�‖u‖n,m. (B.3)

The αth Fourier coefficient of uv, where α ∈ Z2, is

(uv)α =
∑

β ∈ Z
2, |β| � N|α − β| � M

uα−βvβ.

Using the Leibniz rule for derivatives we have

|(uv)α|Cn,L =
n∑

i=0

1

i!
Li |Di(uv)α|C0

�
n∑

i=0

1

i!

∑
β ∈ Z

2, |β| � N|α − β| � M

Li |Diuα−βvβ|C0

�
n∑

i=0

1

i!

∑
β ∈ Z

2, |β| � N|α − β| � M

i∑
j=0

(
i

j

)
Li−j |Di−juα−β|C0Lj |Djvβ|C0

=
n∑

i=0

∑
β ∈ Z

2, |β| � N|α − β| � M

i∑
j=0

Li−j |Di−juα−β|C0

(i − j)!
Lj |Djvβ|C0

j !
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=
∑

β ∈ Z
2, |β| � N|α − β| � M

n∑
i=0

i∑
j=0

Li−j |Di−juα−β|C0

(i − j)!
Lj |Djvβ|C0

j !

�
∑

β ∈ Z
2, |β| � N|α − β| � M

∣∣uα−β

∣∣
Cn,L

∣∣vβ

∣∣
Cn,L

.

On the other hand, we have

|α|m−n � (|α − β| + |β|)m−n =
m−n∑
i=0

(
m − n

i

)
|α − β|i |β|m−n−i

� max

(
|α|m−n,

m−n∑
i=0

(
m − n

i

)
|α − β|m−n|β|m−n

)
= max(|α|m−n, 2m−n|α − β|m−n|β|m−n).

Hence, using these two inequalities, we have that

‖uv‖n,m =
∑

α ∈ Z
2,|α| � M + N

|(uv)α|Cn,L|α|m−n

�
∑

α ∈ Z
2,|α| � M + N

∑
β ∈ Z

2, |β| � N|α − β| � M

∣∣uα−β

∣∣
Cn,L

∣∣vβ

∣∣
Cn,L

|α|m−n

�
∑

α ∈ Z
2,|α| � M + N

|u0|Cn,L|vα|Cn,L|α|m−n + |uα|Cn,L|α|m−n|v0|Cn,L

+
∑

β ∈ Z
2, |β| � N|α − β| � M

∣∣uα−β

∣∣
Cn,L

∣∣vβ

∣∣
Cn,L

2m−n|α − β|m−n|β|m−n

� 2m−n
∑

α ∈ Z
2,|α| � M

|uα|Cn,L|α|m−n
∑

β ∈ Z
2

|β| � M

∣∣vβ

∣∣
Cn,L

|β|m−n

= 2m−n‖u‖n,m‖v‖n,m.

Going back to the definition of ‖uv‖C�,L in (B.3), we have

‖uv‖C�,L =
�∑

m=0

m∑
n=0

2�‖uv‖n,m

�
�∑

m=0

m∑
n=0

2�2m−n‖u‖n,m‖v‖n,m

�
�∑

m=0

m∑
n=0

2�2�‖u‖n,m‖v‖n,m

� ‖u‖C�,L‖v‖C�,L,

as claimed. �
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Appendix C. Faa–di Bruno formula

Let g be a Cs(U, V ) function, with U ⊂ R and g(U) ⊂ W ⊂ R and f be a Cr (W, R)

function with r, s > 0. Then f ◦ g is a Ct (U, R) function, where t = min(r, s). By a repeated
application of the chain rule, one gets

D�(f ◦ g)(x) =
�∑

k=1

∑
j1+···+jk=�

ck,j1,···,jk
Dkf (g(x))Dj1g(x) · · · Djkg(x), (C.1)

for � = 1, . . . , t , where ck,j1,···,jk
are combinatorial coefficients. The formula (C.1) is called

the Faa–di Bruno formula (see [LO99]).
From equation (C.1), it is easy to see that there exists a constant Ct depending on t such

that

|f ◦ g|Ct � Ct |f |Ct |g|tCt . (C.2)

Since we are interested in multi-valued functions, we introduce now a generalized bound.
Thus, let us consider a function g in Cs(U, V ), with U ⊂ Rn and g(U) ⊂ W ⊂ Rm and
a function f in Cr (W, R) with r, s > 0. As before, f ◦ g is a Ct (U, R) function, where
t = min(r, s). Similarly, we can get an expression for the derivatives of f ◦ g, such that for
� = 1, . . . , t ,

|f ◦ g|C� � C�

�∑
k=1

∑
j1+···+jk=�

|f |Ck |g|Cj1 · · · |g|Cjk , (C.3)

for � = 0, . . . , t , where C� is a constant depending on �. As before, we can consider the
following less precise but more compact bound:

|f ◦ g|C� � C�|f |C� |g|C�
�, (C.4)

for � = 1, . . . , t , where C� is a constant depending on �.
For some other results related to this, we refer the reader to [LO99].
In some cases, it will be more convenient to use another estimate for the |·|C� norm instead

of the one obtained in (C.4). In formula (C.3) we can separate the term corresponding to k = 1
in the following way:

|f ◦ g|C� � C�

|f |C1 |g|C� +
�∑

k=2

∑
j1+···+jk=�

|f |Ck |g|Cj1 · · · |g|Cjk

 ,

for � = 1, . . . , t and we can bound it in the |·|C� norm

|f ◦ g|C� � C�(|f |C1 |g|C� + |f |C� |g|C�−1
�), (C.5)

for � = 1, . . . , t , where C� is a constant depending on �.
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