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Abstract

We review some widely studied models and firing dynamics for neuronal sys-
tems, both at the single cell and network level, and dynamical systems tech-
niques to study them. In particular, we focus on two topics in mathematical
neuroscience that have attracted the attention of mathematicians for decades:
single-cell excitability and bursting. We review the mathematical framework for
three types of excitability and onset of repetitive firing behavior in single-neuron
models and their relation with Hodgkin’s classification in 1948 of repetitive firing
properties. We discuss the mathematical dissection of bursting oscillations using
fast/slow analysis and demonstrate the approach using single-cell and mean-field
network models. Finally, we illustrate the properties of Type III excitability in
which case repetitive firing for constant or slow inputs is absent. Rather, firing
is in response only to rapid enough changes in the stimulus. Our case study in-
volves neuronal computations for sound localization for which neurons in the
auditory brain stem perform extraordinarily precise coincidence detection with
submillisecond temporal resolution. © 2013 Wiley Periodicals, Inc.

1 Introduction
Fundamental notions of neuronal responsiveness to stimuli rest on the concepts

of excitability and threshold. In the classical view, a neuron that has a stable resting
potential, i.e., an equilibrium in phase space, can be perturbed with a brief stimu-
lus. If the stimulus amplitude is below a critical value (threshold) the response is
weak; the voltage returns more or less directly to the resting potential. If it is large
enough the neuron will respond with a characteristic large-amplitude, transient ex-
cursion from rest (the action potential, AP, or spike) (Figure 1.1 A). This property
is known as excitability. The threshold value will depend on whether the stimulus
is suddenly turned on or ramped up slowly. The superthreshold membrane poten-
tial or action potential has a brief regenerative phase with duration of a millisecond
or so followed by a recovery or relative refractory phase (several milliseconds),
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FIGURE 1.1. A: Excitability in response to a brief current pulse (dura-
tion, 1 ms) for the Hodgkin-Huxley (HH) model. Weak pulse (Iapp =
5 �A=cm2) gives subthreshold response. Large enough pulse (Iapp = 20
�A=cm2) elicits a single spike, with response-amplitude nearly indepen-
dent of input strength (if Iapp exceeds critical value). B: Repetitive firing
in the HH model in response to steady current for Iapp with values in a
certain range. Firing frequency increases with Iapp. Time bar, 10 ms.
(Adapted from [4, figs. 1 and 5] with permission from Elsevier.)

during which a second AP can be evoked but only if the stimulus is sufficiently
above the threshold.

Many types of neurons can fire repetitively for a long-duration stimulus (Fig-
ure 1.1 B); i.e., the state of such neurons has a limit cycle or stable periodic orbit.
Here, again, there is a threshold value for the minimal steady stimulus that leads to
repetitive firing. In a seminal paper [27], Hodgkin identified three classes of repeti-
tive firing behaviors based on experimental observations from responses of various
axon types to steady inputs. Two of them, Classes I and II, could show repetitive
firing for sustained inputs; but not Class III, for which only one spike or a few are
generated at the onset of a step current.

Some neurons may undergo transitions from resting to tonic spiking resulting in
a dynamic behavior known as bursting (bursts of AP interleaved by silent phases)
(Figure 3.1 A). Bursting can be an intrinsic property of individual neurons (spik-
ing modulated by intrinsic slow negative-feedback conductances) or a property
emerging from the neuronal network (with activity modulated, for example, by
slow coupling mechanisms such as slow synaptic inhibition or slow depression of
excitatory synapses). In both situations, the bursting behavior emerges from the
interactions of variables that evolve on very different timescales, these dynamics
can be dissected mathematically using slow-fast analysis.

In this presentation we will review the mathematical framework for understand-
ing generic transitions to repetitive activity in single-neuron models, as developed
in [4, 51]: the Type I (saddle-node-homoclinic) and Type II (Hopf bifurcation)
emergence of limit cycles, which relate to Hodgkin’s Classes I and II. We will fur-
ther summarize the mathematical treatment of burst-patterned repetitive activity.
The fast/slow analysis (first developed in [50]) will be illustrated with idealized
Hodgkin-Huxley-like (HH-like) models for single cells. Then we will demonstrate
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the generality of the approach with a case study for a network’s bursting activity,
as described with a firing rate (mean-field) model. The effects of noise on active
and silent phase durations will be considered for an idealized slow wave model for
bursting. Finally, we will cover cellular Type III excitability in which repetitive
activity is not found for steady inputs. For a time-varying input a neuron may fire
once if the input rises fast enough. This “differentiation-like” behavior is compati-
ble with Hodgkin’s Class III and is known as phasic firing. Our case study will be
in the context of sound localization for which phasic firing is a significant dynam-
ical feature of the neurons that perform coincidence detection (as for inputs from
the two ears) with extraordinary, submillisecond, temporal precision.

2 Firing Properties and Excitability
Excitability implies the concept of a firing threshold, which separates the sensi-

tivity of a quiescent neuron (the neuron is in a state that has just one stable fixed
point) to brief external stimuli. Weak stimuli lead to small changes in voltage and
direct return to the steady state (subthreshold). Strong stimuli are boosted by auto-
catalytic/regenerative currents and lead to large voltage responses (spikes) before
returning to rest (superthreshold). Since stimuli can have arbitrary time courses, a
common definition of threshold is frequently ascribed to the neuron, by saying that
the neuron has a threshold voltage, VT, and it “fires” when the membrane potential
just exceeds VT. There is growing appreciation, however, that firing is a multi-
conditional event that depends on V as well as on dV=dt and other factors, e.g.,
[3, 63]. In some neuronal systems this transient spike response can be turned into
a sustained one (the neuron is in a state that has a limit cycle) when a steady input
is applied.

In a foundational paper, Hodgkin identified different qualitative features asso-
ciated with an axon’s repetitive firing properties, the onset of repetitive firing, and
the near-threshold behavior [27]. By comparing responsiveness of different axons
to steady inputs, Hodgkin proposed three classes of excitability. Classes I and II
showed repetitive firing, while Class III could not exhibit sustained spiking activity.

Some 40 years later Rinzel and Ermentrout [51] described the mathematical
framework for identifying two of these three classes. They demonstrated, using
concepts from dynamical systems theory, that the onsets to repetitive firing for
Classes I and II correspond to different types of bifurcations from steady state to
periodic behavior of neuronal excitability models in the case of a point neuron or
space-clamped model. These onsets are generic and therefore can be classified
generally; they refer to the onsets according to their mathematical descriptions as
Types I and II, respectively. Next, we review the mathematical framework for
Types I and II and we discuss Type III excitability, where no bifurcations occur, in
Section 4.



EXCITABILITY, OSCILLATIONS, AND COINCIDENCE DETECTION 1467

2.1 Exemplar Two-Variable Morris-Lecar Model
The differences between excitability types I and II can be easily demonstrated

with a two-variable biophysically meaningful model that has become widely used
as a prototype for the dynamics of relatively simple Hodgkin-Huxley-like neuron
models [29]. The so-called Morris-Lecar (ML) model was developed to describe
the behavior of an electrically excitable barnacle muscle [42]. It takes the following
form:

C
dV

dt
D �Iion.V;w/C Iapp

D �.xgCam1.V /.V �ECa/C xgKw.V �EK/

C xgL.V �EL//C Iapp;

dw

dt
D �.w1.V / � w/=�w.V /;

(2.1)

where the regenerative inward current is a fast-activating calcium current (instan-
taneous activation, m D m1.V /) and the slower negative feedback process is a
potassium current with gating variable w.t/, analogous to the HH potassium cur-
rent but with w.t/ as the fraction of open channels rather than w4 as in the HH
model. Note also that the inward current is noninactivating (there is no h-variable
as in HH). A major advantage of this model is that it can be analyzed with phase
plane methods [4, 29, 51]. It exhibits in different parameter regimes the two generic
types of bifurcation that we identify with Hodgkin’s classification scheme. We
stress that although we focus our description of excitability types on a particular
model, this classification is very general. Indeed, there is a wide range of possible
biophysical mechanisms of excitability that can fit in one of the excitability types.

2.2 Onset of Repetitive Firing, Type II
The dynamical mechanism for this onset type is a Hopf bifurcation, also found

in the HH model. Consider first a geometrical viewpoint. The V � w phase plane
of the ML model (Figure 2.1 A, left) has the classic features of excitability. In this
case, the stimulus strength Iapp is below the threshold for eliciting repetitive firing.
Here, the rest state (VR, wR) (intersection of the nullclines, the fixed point) is a
global attractor, and the trajectory is for initial conditions that lead to a single AP.
For larger Iapp (Figure 2.1 A, middle) we see the limit cycle of repetitive firing,
which occurs over a range of Iapp values (Figure 2.1 B, left). For Iapp very large
(Figure 2.1 A, right) the model no longer fires repetitively (the limit cycle disap-
pears), the fixed point becomes stable again, corresponding to the physiological
state of “nerve block.” In this case, the two V -gated currents are in a dynamically
stable, steady state, balanced at a high membrane potential.

We can appreciate from the phase plane portrait that, ifw is much slower than V ,
the fixed point is unstable when it lies on the middle branch of the V -nullcline
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FIGURE 2.1. Onset of repetitive firing for Morris-Lecar with one steady
state (Type II). A: Nullclines for different values of Iapp (60, 160, and 260
�A=cm2), corresponding to excitable, oscillatory, and nerve block states
of the system. B: Bifurcation diagram, voltage vs. Iapp. Destabilization
of steady state by Hopf bifurcation. Thin solid curves, stable steady state;
thin dashed curves, unstable steady state; thick solid curves, maximum
and minimum V of the stable limit cycle; thick dashed curves, maximum
and minimum V of the unstable limit cycle. Shaded area corresponds to
range of Iapp where system is bistable. C: Frequency vs. current curve
for stable limit cycles in B. (Adapted from [4, fig. 12] with permission
from Elsevier.)

(Figure 2.1 A, middle). That is, if w is very slow compared to V , then the flow will
be horizontal everywhere except just near the V -nullcline. Hence, if we imagine
that the initial condition is very near to but not at the fixed point, the trajectory
would immediately shoot away from it, moving horizontally either rightward or
leftward. If w is not very slow, then the condition for instability would depend on
how slow w is.

By linear stability analysis we find the eigenvalues of the Jacobian for the lin-
earization of ML about (VR, wR). From this we obtain an inequality for the condi-
tion of instability (real part of the eigenvalues greater than 0):

�
1

C

@Iinst

@V

ˇ̌̌̌
.VR;wR/

>
�

�w
;

where Iinst is the instantaneous current-voltage relation of the ML membrane:

Iinst D xgCam1.V /.V �ECa/C xgKw.V �EK/C xgL.V �EL/:
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This result may be interpreted as follows: Instability only happens if .VR; wR/

is on the middle branch of the V -nullcline (negative resistance for Iinst), and the
timescale of negative feedback or recovery is sufficiently slow (�w large enough).
The instability occurs by way of a Hopf bifurcation, and there is a nonzero mini-
mum firing frequency at the onset of repetitive firing (Figure 2.1 C). We called this
Type II excitability, corresponding to Hodgkin’s Class II axons.

The HH model also has Type II excitability, and the bifurcation is subcritical as
well as for ML. As a consequence, these systems show bistable behavior for Iapp
just below the critical value for the destabilization: the rest state .VR; wR/ is stable
and coexists with the stable limit cycle of repetitive firing over the Iapp-interval
indicated by the shading in Figure 2.1 B. This characterization of bistability for the
HH model leads to a prediction of bistability for the squid giant axon. The predic-
tion was confirmed experimentally by showing that repetitive firing in response to
just superthreshold Iapp could be terminated by a brief superimposed pulse of cur-
rent [24]. This bistability suggests that there are two different threshold values for
repetitive firing: one if Iapp is gradually increased from 0 and a lower Iapp-value
for abrupt (step) turn-on. We re-emphasize that this mathematical result implies
that for Type II excitability one cannot, by finely adjusting Iapp, induce the neu-
ron model to fire at arbitrarily low rates. Among the neurons that show Type II
behavior are so-called fast-spiking inhibitory neurons in the cortex [61].

2.3 Onset of Repetitive Firing, Type I
In contrast, some neurons, e.g., excitatory pyramidal neurons in the cortex [61],

can fire at very low rates for steady inputs, a feature that fits into Hodgkin’s Class I
[27]. We illustrate this case for the ML model (Figure 2.2) with parameter val-
ues that differ from those we used in the preceding subsection. Mathematically,
this type of onset behavior corresponds to a saddle node bifurcation as Iapp passes
through a critical value, Iapp-HC. Associated with this saddle node, a homoclinic
orbit appears (Figure 2.2 A1, A2). The transition involves an invariant “circle” in
the phase space: a pair of heteroclinic orbits that emerge from the saddle point
that become the closed cycle of repetitive firing as Iapp increases through the value
Iapp-HC. The AP time course for Iapp just above criticality shows a long interspike
interval with the membrane potential hovering near the “ghost” of the saddle node
fixed point (Figure 2.2 B); the system moves very slow in this part of the trajectory.
The firing frequency as a function of Iapp has the generic behavior of such Type I
excitability, proportional to the square root of Iapp - Iapp-HC (Figure 2.2 D). The bi-
furcation diagram in Figure 2.2 C summarizes the solution structure. It also shows
a key signature of Type I excitability: the steady state current-voltage relation is
not monotonic but must be N-shaped (shown, rotated, as the thin S-shaped curve
in Figure 2.2 C). This model also shows nerve block for large Iapp.
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FIGURE 2.2. Onset of repetitive firing for Morris-Lecar via saddle-
node-homoclinic bifurcation (Type I, excitability). A1: Schematic of
V �w phase plane with steady states (filled circles, stable steady states;
open circles, unstable), nullclines (dotted curves), and trajectories going
in and out of the saddle point (solid curves). The curves are slightly
modified from the actual computed ones for easier viewing; in particu-
lar, actual trajectories would not have extrema away from nullclines. A2:
Schematic of change in phase plane with change of Iapp; unstable man-
ifolds of saddle create a “circle” with saddle and node for Iapp below
threshold for repetitive firing and limit cycle for Iapp above threshold.
B: Time course of voltage for Iapp = 40 �A=cm2. C: Bifurcation dia-
gram. Notation as in Figure 2.1 B. D: Frequency vs. current relation for
periodic orbits as represented in C. Dashed portion corresponds to un-
stable periodic orbit. (Adapted from [4, fig. 14] with permission from
Elsevier.)

2.4 Is There a Threshold Voltage?
The application of dynamical systems concepts to neuronal excitability was pi-

oneered by FitzHugh [19, 20]. He developed a two-variable model that we now
call the FitzHugh-Nagumo (FHN) model (in recognition of the near simultaneous
but separate work by Nagumo that included implementing a similar model in an
electronic circuit [44]). The phase plane analysis by FitzHugh revealed some basic
qualitative features of excitability (associated with Type II).
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Consider the response to an initial voltage displacement, say �V , from the rest
point .VR; wR/ (imagine it from Figure 2.1 A). By incrementally increasing �V
we would find a continuous gradation of the response’s peak voltage as a function
of �V . That is, there is not a discontinuous jump in the peak voltage at some
critical stimulus value; the response curve is not discontinuous; the response is not
strictly all-or-none. If the recovery process is made slower (say, by decreasing �,
the “temperature factor”) the response curve will be steepened. The same is true of
the HH model [28]. This insight led to a prediction for an experiment on the squid
giant axon that was confirmed as the temperature was raised [16]. In contrast, for
Type I excitability there is a true threshold phenomenon. The stable manifold of
the saddle point (Figure 2.2 A1, A2) provides a separatrix that distinguishes sub-
from superthreshold responses.

This type of “true” threshold behavior is partial justification for the widely used
and highly idealized leaky integrate-and-fire (LIF) neuron model. The classical
LIF model embodies a threshold voltage, VT, and a passive leak current for the
subthreshold regime (V < VT) along with a reset condition (say, V is set to VR)
when V reaches threshold. The model yields a spike time but does not describe the
dynamics of spike generation and recovery. It is pseudo–Type I, allowing arbitrar-
ily low firing rates for constant input (for review, see [9]). Various enhancements of
the LIF model have included replacing the leakage-only subthreshold current with
a nonlinear current that allows, among other features, for saddle node behavior,
e.g., [8]. Some renditions of LIF (the so-called resonate-and-fire models) include
a second variable that corresponds to a dynamic recovery-type process, enabling
the subthreshold dynamics to show damped oscillatory behavior. Izhikevich has
tuned the two-variable version (parameter values, including reset conditions for
both variables) so that a variety of firing patterns can be produced (see, e.g., [30]).

2.5 Classification and Reality
While Hodgkin’s classification was based on experimental observations of iso-

lated axons, the mathematical description [51] was given for a noisefree space-
clamped model. Taking a step toward reality, we could ask about extending the
classification to models that account for the cable properties of neuronal dendrites
and axons. Rinzel and Keener demonstrated the analogue of Type II excitability
for a two-variable FHN-like model in a uniform “axon” cable with stimulation at
one end by constant Iapp [52]. The mathematical treatment of stability appeared as
a Schrödinger eigenvalue problem.

Going further, we could consider the effects of heterogeneous properties of the
membrane. Voltage-gated currents are not distributed uniformly over a neuron’s
dendrites, axon, and soma membrane; there will generally be different types of cur-
rents in different substructures. For example, the dendritic membrane in isolation
could behave as Type II while the soma/axon membrane could be Type I. The onset
behavior could depend on the input location, say, whether the synaptic input was
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delivered to the distal dendrites or near to the soma [54]. Also, the dendro-somatic-
axonal architecture can affect the onset behavior and the input-output properties of
the neuron [37, 46].

In models of neuronal networks the transmission of spikes from neuron to neu-
ron is usually idealized with time of transmission fixed, say, to 0 or some activity-
independent constant value. But we should ask whether the axon, as the output line
of the neuron, faithfully transmits or reshapes spike timing information. A preced-
ing spike leaves a wake of post-spike recovery, which can affect the propagation
speed locally. That is, propagation along the axon cable is subject to the disper-
sion properties of the membrane, which can influence the spike time patterning
that is transmitted. For example, a Type II axon shows resonant properties and is
capable of locking interspike times, during transmission, into multiples of the res-
onant period [41]. Could propagation in Type II axons favorably prepare interspike
intervals if the target neurons, say, have resonant properties as well?

Noise is ubiquitous in the nervous system and its effects should not be over-
looked. It may serve a useful function in some situations, as in stochastic resonance
[43]. With regard to repetitive firing and our care in classifying onset behavior, we
expect that noise would smear out the frequency-versus-Iapp curve. The frequency
(spikes per second) should actually be interpreted as spike probability per unit time
in the presence of noise. In both cases, Types I and II, the spike probability would
be a smooth function of Iapp, decreasing to 0 with an exponential-like foot as Iapp
decreases, rather than as in Figure 2.1 C and Figure 2.2 D.

Does this mean we could not distinguish Types I and II or that the distinction is
not meaningful? Well, there may be only slight differences in the mean probability,
but one can expect differences between Type I and II behaviors for the CVs and
autocorrelations. This has been demonstrated experimentally for some neurons in
the cortex. Inhibitory neurons (so-called fast-spiking interneurons) are identified
as Type II, and regular spiking excitatory neurons are Type I. Neurons in vivo con-
stantly receive background synaptic inputs that in some cases may lead to changes
in the membrane excitability [48]. Of tantalizing interest is whether and how these
differences in intrinsic properties influence the behavior or computational abilities
of a network.

3 Bursting Oscillations
Some neuronal systems show spontaneous activity with multiple timescale dy-

namic patterning, in particular rhythmic bursting (Figure 3.1 A). Rhythmic bursting
consists of periods of repetitive firing interleaved by quiescent phases. Individual
neurons can be bursting pacemakers: spontaneously or conditionally, when stim-
ulated with steady input or activating substances. Network burstlike rhythms can
arise that depend on both coupling dynamics and intrinsic cellular properties even
if no cells in the network are spontaneous bursters [11]. Biophysically, the bursting
behavior is generated by a negative feedback that acts at a slower timescale than the
spike generation process. This negative feedback might be intrinsic to the cell or
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due to the network interaction. It turns on slowly during active phases, eventually
terminating a burst, and recovers slowly during a silent phase, allowing the system
to initiate the next burst of spikes.

3.1 Fast-Slow Analysis of Bursting Dynamics
A mathematical framework for understanding the mechanisms for cellular burst-

ing behavior was introduced by Rinzel [50] and extended by others; see [18, 29].
The approach exploits the timescale differences between the fast processes that
generate the spikes (milliseconds timescale) and the slow dynamics that regulate
the times of initiation and termination of the bursts (maybe seconds timescale).
If the vector X.t/ denotes the fast variables associated with spike generation and
Y.t/ denotes the variables for the slow processes, we write the model equations,
generally, as

PX D F.X; Y /;(3.1)
PY D "G.X; Y /;(3.2)

where, to indicate the relative timescales, 0 < "� 1.
The analysis of the system can be conducted in two steps:

Description of the fast subsytem: We consider the slow variables Y as param-
eters and describe the spike-generating fast subsystem (3.1) for X as a
function of Y . This description involves finding invariant objects (steady
states, periodic orbits, and their periods, etc.) as well as transitions between
these solutions (bifurcations) of the fast subsystem (3.1) as a function of Y :

0 D F.Xss; Y / H) Xss D Xss.Y /

or

PXosc D F.Xosc; Y / H) XY
osc.t/ D X

Y
osc.t C T /; T D T .Y /:

Notice that if Y is one-dimensional (there is only one slow variable),
then the results can be summarized in a bifurcation diagram such as the
ones in Figure 2.1 B and Figure 2.2 C, with Y as the bifurcation param-
eter. When Y is multidimensional it simply adds more dimensions to the
bifurcation diagram and visualization can become harder.

Overlay with slow dynamics: To describe the full system, we overlay the slow
dynamics (3.2) on the fast subsystem (3.1) behavior. As Y evolves slowly
in time according to (3.2), X is tracking its stable states. Therefore, we
must understand the direction of change of Y at each part of the bifurcation
diagram for X .

When the full burst dynamics is projected onto the .Y; V /-plane, it coin-
cides with portions of the bifurcation diagram. The results of this analysis
allow one to make phenomenological descriptions of the bursting behavior
and predict effects of parameter changes on behavior.
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CB

FIGURE 3.1. Square wave burster: Morris-Lecar model with IK�Ca

current and slow calcium dynamics. A: Bursting time course. Ca

is playing the role of a slow variable, accumulating during the burst
and slowly decaying during the silent phase. This slow modulation
(timescale of hundreds of milliseconds) is entered into the original equa-
tion through the IK-Ca term: IK-Ca D gK-Ca.1 � ´/.V � EK/ where
´ D Ca0=.Ca C Ca0/. B: Bifurcation diagram with ´ as a parame-
ter. Arrows show direction of change of ´ during the firing and during
the silent phase. C: Bistability in the fast subsystem with ´ frozen at
some value within the burst cycle. (Adapted from [4, figs. 15 and 16]
with permission from Elsevier.)

3.2 Bursting Oscillations, Cell Level
We will illustrate the fast/slow dissection method for one type of bursting, so-

called square wave bursting (Figure 3.1). For our purposes here, we utilize a mod-
ified ML model that incorporates a third variable for slow negative feedback. The
model idealizes a mechanism that has appeared in many models of bursting neu-
rons: a potassium current IK-Ca that is activated by increases in intracellular cal-
cium concentration, call it Ca.t/. The dynamics of Ca are slow because calcium
is highly buffered inside the cell so that only a small fraction, f , of the calcium
that enters during an AP in the ML model remains free and able to activate IK-Ca.
The dynamics for Ca.t/ are described by the balance equation

d Ca

dt
D f .�˛ � ICa � k � Ca/

where ICa is the calcium current from equation (2.1) (with a minus sign to indicate
that calcium current is inward), ˛ is proportional to the ratio of surface area to
volume, and k is the removal rate of calcium from the cytoplasm.

Notice that in this example, the fast variables X in (3.1)–(3.2) correspond to
the spike generation variables V � w in the ML model, while the slow variable
Y in (3.1–3.2) corresponds to the variable Ca, describing the calcium evolution.
The time course of bursting (Figure 3.1 A) shows that during the active phase of
spiking, the cell model is depolarized and spiking. Ca.t/ increases a small amount
with each spike, thereby incrementally activating the negative feedback current
IK-Ca.
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When Ca and IK-Ca are large enough, the burst terminates and V falls abruptly.
During the silent phase, the calcium current is not activated and Ca is slowly “re-
moved”; IK-Ca decreases, allowing the membrane potential to increase slowly until
a critical level is reached when the next burst starts suddenly. The abrupt starts
and stops to the active and silent phases lead to the identifier: square wave burst-
ing. They reflect an underlying bistability in the fast subsystem: V � w in this
case. This bistability is revealed in the bifurcation diagram (Figure 3.1 B) with
Ca treated as a parameter, expressed here in terms of ´ D Ca0=.Ca C Ca0/, the
gating variable for IK-Ca (see the caption of Figure 3.1).

For an operating range of Ca the fast subsystem has two attractors: a low-V
steady state and a limit cycle at high-V (about 40 mV peak-to-peak amplitude).
The low-V state corresponds to slowly increasing V during the silent phase, and
the limit cycle in the high-V state corresponds to repetitive spiking during the ac-
tive state. This bifurcation diagram somewhat resembles that in Figure 2.2 C except
here the limit cycle branch terminates on the saddle branch but away from the sad-
dle node; this is the mathematical essence of the bistability that underlies square
wave bursting. A key feature that underlies the bursting behavior is that Ca de-
creases during the silent phase and increases on average during the active phase. If
the calcium removal were faster, say if parameter k were increased enough, burst-
ing would give way to continuous spiking, while if k were decreased sufficiently,
bursting would not occur and the system would sit stably on the lower branch.

We note that the IK-Ca mechanism was introduced first for square wave burst-
ing in the context of electrical activity of pancreatic beta cells—the cells that are
responsible for the release of insulin [14, 33]. An early interpretation was that the
removal rate k of calcium increased with glucose so that low glucose meant no
electrical activity and high glucose meant bursting or continuous spiking.

The dynamical mechanism for square wave bursting can be implemented with a
variety of biophysical mechanisms. The bursting neurons that are involved in the
neural circuit that drives repetitive muscle activity for respiration have their square
wave pattern driven by divisive slow negative feedback (slow inactivation of a per-
sistent sodium current INaP-h) rather than subtractive as with the IK-Ca mechanism
[10].

3.3 Bursting Oscillations, Network Level
The general mathematical structure that underlies cellular bursting can also ac-

count for repetitive episodic events in models for neuronal ensembles. Let us con-
sider the spontaneous episodic activity recorded from the developing spinal cord of
the chick (Figure 3.2) for which dynamical models have been developed [59, 60].
There are not enough experimental data available to justify development of a de-
tailed, mechanistic model, a cell-based network model with HH-like cell units.
So we opted for using a mean-field-like approach. We do not describe individ-
ual APs but rather the firing rate or mean activity of neurons, a.t/, averaged over
neurons and over the timescale of a few spikes. This treatment implicitly assumes
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FIGURE 3.2. Spontaneous population activity of a network of neurons
in a segment of an embryonic chick spinal cord, excised and recorded in
vitro. Recordings are with a large suction electrode that provides the av-
eraged output of the motoneuron population. (Adapted from [60, fig. 1]
with permission from the author.)

that spiking is asynchronous and independent, not precisely timed or correlated
across neurons. The responses show temporal organization on multiple timescales:
episodes of 1 minute or so duration and faster cycles (1- to 2-second frequency)
within an episode. Note the “interval” from one episode to the next is very long,
2 to 10 minutes (see Figure 3.2).

Various experimental observations are incorporated into the model formulation.
Bursting at the individual cell level is not seen. The rhythm persists even if excita-
tory neurotransmission is blocked. If all synaptic coupling is blocked, the rhythm
stops. The reversal potential for synaptic currents activated by inhibitory trans-
mitters is very depolarized (near or above spike threshold) during this period of
development; these synapses are functionally excitatory. Just after an episode the
system shows a slow recovery (relative refractoriness) with weak responsiveness to
applied stimuli that gradually grows until a new episode can be triggered or occurs
spontaneously.

The model assumes that
(1) all synapses are functionally excitatory;
(2) cells can fire steadily but are not intrinsically bursting if driven with steady

input;
(3) network depression reflects multiple timescales of slow negative feedback.

The recurrent excitatory coupling provides the regenerative effects for cycling and
episode activity. The negative feedback can be modeled as synaptic depression, one
fast (say, timescale in seconds) and one slow (timescale in minutes). The dynamics
for activity, a.t/, take the general form

�a Pa D a1.input/ � a:

Here, a1 is the input-output relation of a neuron, taken to be an increasing sig-
moidal function (scaled so the maximum is 1). �a is an effective time constant
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(say, 100 ms or so), reflecting integration time within a cell and recruitment time
for excitation to spread in the network. In our case, because of recurrent excitatory
synaptic coupling the “input” is proportional to a.t/. The synaptic coupling suffers
depression, both fast and slow, represented by factors d.t/ and s.t/, respectively.

Our three-variable model takes the form

�a PaC a D a1.n � s � d � a/;

�d
Pd C d D d1.a/;

�s Ps C s D s1.a/;

(3.3)

where �a < �d � �s; d1 and s1 decrease sigmoidally with a from 1 to 0,
and these functions represent the activity-driven, steady synaptic depression for a
presynaptic firing rate a; n is an adjustable constant for the overall synaptic ef-
ficacy, say as affected by a drug application. Note, this mean-field model is not
derived from a detailed description but is rather ad hoc. It is only for mean activity.
The development of statistical dynamics descriptions of networks is an ongoing
and active area of research; see, e.g., [7].

The model’s behavior is analogous to that for the cellular burster in the preceding
section and is understood by a fast/slow analysis. Here, the fast variables X in
(3.1)–(3.2) correspond to the variables a and d in (3.3) and are responsible for fast
oscillations during an episode (the equivalent of the spike generator variables in the
ML model for cellular bursting). The slow variable Y in (3.1)–(3.2) corresponds
to the variable s in (3.3), which controls the very slow depression of excitatory
synapses (the equivalent of the Ca variable in the ML cellular burster). If s is
large (excitatory synapses are active), rapid oscillations occur. On the contrary,
if s is small (excitatory synapses are depressed or partially inactivated) the system
is silent. For intermediate values of s the fast subsystem a � d shows bistability
between a steady state of low activity and an “upper” oscillation that corresponds
to cycling during an episode (Figure 3.3 A; compare with Figure 3.1 B). The full
system shows alternating phases of high-activity episodes and relatively quiescent
phases (Figure 3.3 B). The variable s for slow synaptic depression decreases during
an episode and recovers between episodes; see [59, 60] for specific examples and
comparison with experiments.

In one study, combining theory and experiment, we suggested a specific bio-
physical mechanism for slow depression of the synaptic coupling [38]. If excitatory
neurotransmitters are blocked then gaba-activated synaptic currents with chloride
as the primary ionic component mediate the coupling. During the strong firing
(and synaptic activity) of an active phase, we predict a slow decrease in intracellu-
lar chloride concentration that is restored by pumps during the silent phase. These
changes in concentration affect the reversal potential for synaptic coupling, Vsyn,
making it oscillate across the spike threshold to initiate and terminate episodes,
providing a mechanism for rhythmic episodic behavior. The estimated slow pump
rates are compatible with the long silent phases in this system.
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FIGURE 3.3. Fast/slow treatment of model (3.3) for episodic activity
in developing chick spinal cord. A: Bifurcation diagram of the a � d
subsystem with s as a parameter. There is an S-shaped curve of the
steady states (solid, stable; dashed, unstable), periodic orbits are shown
with minimal and maximal a values (thick curve). Bursting solution of
the full system is overlayed on top. B: Time courses of a and s of the
same solution as in A. Time is in arbitrary units here; activity, a.t/, is
relative to a maximum. (Adapted from [4, fig. 22] with permission from
Elsevier; see also [60]).

In the model (3.3) the slow negative feedback was divisive, acting directly on
the regenerative mechanism—the depression variables d and s multiply the term
that models recurrent excitation. Alternatively, we could use a subtractive negative
feedback; for example, we would replace the argument n � s �d �a of a1 in (3.3) by
n � d � a � � , where � represents a slow drift of the neuron’s firing threshold. Such
a mechanism is referred to as spike frequency adaptation, an effective increased
threshold during prolonged firing. Both mechanisms were considered and con-
trasted in [59, 60]. It is of general interest to characterize the dynamic properties
of subtractive and divisive feedback mechanisms and to suggest an experimental
approach to distinguish between these mechanisms.

3.4 Square Wave Burster as a Relaxation Oscillator;
Effects of Resetting and of Noise

The square wave burster is a kind of relaxation oscillator, like the Van der Pol os-
cillator [62] except that instead of its “upper state” being a slowly evolving pseudo–
steady state, it comprises a fast oscillation. For many of the square wave bursters
we may convert the upper state of firing to a steady state by speeding up the re-
covery processes for spike/cycle generation. In the ML burster if w were faster or
for the spinal cord model if d were faster, the oscillation branch (thick curve in
Figure 3.1 B or Figure 3.3 A) would disappear and the upper state would be a sta-
ble steady state. In this case the models could exhibit slow pacemaker oscillations
without spikes or cycles during the active phase.
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FIGURE 3.4. Relationship between episode duration and interval pre-
ceding the episode. (A) Time course of activity generated by the s-model
for different intervals between a spontaneous episode and a triggered
(stim) episode. (B) Plot of episode duration against preceding inter-
val for the model; a, b, c correspond to the time courses shown in A.
(C) Time course of activity generated by a spinal cord obtained from a
10-day-old chick embryo. Stimulations (stim) were applied at different
time intervals after a spontaneous episode. Traces were high-pass fil-
tered at 0.01 Hz. (D) Plot of episode duration against preceding interval
for evoked (black circles) and spontaneous (gray circles) episodes; d, e, f
correspond to the records shown in C. (Adapted from [59, figs. 2 and 3]
with permission from the author.)

This analogy with a relaxation oscillator and the underlying bistability in the fast
subsystem leads to a prediction for the resetting effects of brief stimuli. For exam-
ple, we predict from Figure 3.3 A that we could prematurely initiate an episode
with a large enough, brief stimulus during the silent interval and, moreover, that
the next episode would be shorter (Figure 3.4 A). This shortening is because the
network would still be partially depressed so the episode would terminate sooner.
Hence, there should be a correlation between the silent interval and the next episode
duration by systematically varying the time of the perturbing stimulus. The pre-
diction was confirmed for the model and in the experiments in which brief stimuli
activated a nerve bundle that provided input to the cord segment that was being
monitored (Figure 3.4 B, C, D). The data for the experimental case also includes
transitions to the active phase that occur spontaneously, probably reflecting the
effects of neuronal noise in the system.

These predictions and results provide strong evidence for (1) the underlying
bistability and (2) the occurrence of episode termination at a critical state during



1480 J. RINZEL AND G. HUGUET

the evolving episode (i.e., the disappearance of a stable upper state in the fast sub-
system). For perturbations that would prematurely terminate an episode and induce
a quiescent interval, the model predicts a correlation as well. Although experimen-
tal means were unavailable for terminating an episode on command, interestingly
there was very little correlation between the duration of an episode and the next
quiescent interval for spontaneous transitions in the cord. This suggests that some-
how noise had a different effect on transitions from silent to active phase than from
active to silent phase.

We explored further the dynamics and statistics of forced switching by consider-
ing the effects of noise on a slow-wave, two-variable version of the cellular burster
from the respiratory pacemaker [36]. For this model, with analysis for the distribu-
tions from simulations of transition points, we were able to account for values of
the slow variable at which jumps between phases occurred (Figure 3.5). The anal-
ysis involves viewing the fast subsystem as a slowly evolving, bistable system and
applying Kramers’ rate theory [25, 35] for the transitions in a double-well poten-
tial. This step is coupled with a survival analysis to obtain estimates for the silent
and active phase durations (Figure 3.5).

Finally, these pieces were put together in order to estimate the correlations be-
tween durations of successive phases. We found in the model significantly larger
correlations of durations for silent-to-next-active phases than for active-to-next-
silent phases. In this model, the slow negative feedback involved slow inactivation
of a fast inward current. In contrast, when we changed the model by formulating
the feedback as a slowly activating outward current, we found very little correlation
for either type of succession. A number of studies are pointing toward different ef-
fects of negative feedback when it is implemented as a divisive mechanism rather
than as a subtractive mechanism [58]. There is room for further study in this area.
Maybe the statistical properties of the alternations can lead to testable predictions
about the underlying biophysical mechanisms. Also, we should be circumspect
about drawing predictions for the bursting system when our treatment has been for
the system without spikes.

Our treatment about the effects of noise on the slow-wave model relates to the
mathematics of large deviation theory. Analyses of other two-variable systems with
relaxation dynamics have shown that noise can lead to alternations even if there is
a stable steady state on one or both of the attracting branches in the fast subsystem
[17]. Interestingly, the noise-induced alternations can become very regular if the
noise amplitude and slow speed of migration on the branches are matched in a limit
as both become very small.

4 Sound Localization, a Case Study for Type III Excitability
In this section we focus on Type III excitability. As opposed to Types I and II

discussed in Section 2, Type III neurons cannot exhibit sustained firing for steady
currents. Instead they fire once at the onset of a steady input. This behavior fits into
Hodgkin’s Class III [27] and is also known as “phasic” firing, in contrast to “tonic”
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FIGURE 3.5. Noise-induced transitions in fast-slow dynamics of a
model for a bursting pacemaker in a respiratory brain stem network.
The bursting model is reduced to a two-variable slow-wave oscillator
by precluding spikes during the active phase (AP). The slow negative
feedback is due to slow inactivation, gating variable h (0 � h � 1),
of a persistent sodium current. Noise is included as an additive current
source (Ornstein-Uhlenbeck noise) in the model’s current balance equa-
tion. (a) and (b): Time courses of V and h, and trajectories in the V � h
phase plane. The h-values at the transitions fluctuate around the mean,
which is indicated by dashed horizontal lines and dots; histograms (la-
beled �) for h-values in (b) for transitions were obtained from simulation.
(c) and (d): Probability density functions for transitions and silent-phase
(SP) durations obtained from simulation and analysis. Good agreement
of analysis (solid curves) with simulation is seen in (c); modest discrep-
ancies in (d) between the simulation (histogram of SP durations) and the
analysis (solid curves) are discussed in [36, appendix]. (Adapted from
[36, fig. 3] with permission from Springer.)

or repetitive firing. Phasic firing underlies the functional description of these units
as differentiators or slope detectors. They can encode the occurrence and time
of rapid change in the stimulus. Impressive Type III excitability is displayed by
neurons in the auditory brain stem, especially those in the medial superior olive
(MSO).

Next, we discuss the neurophysiological profile of these neurons and the bio-
physical mechanisms that underlie their ability to perform precise timing com-
putations, as well as the functional implications for sound localization. We then
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present a mathematical formulation for Type III excitability and discuss how the
model shows highly precise coincidence-detection properties as compared with a
tonic version of it.

4.1 Sound Localization, Neurophysiology, and Computation
The neural computation for sound localization of low-frequency inputs (less

than a few kilohertz for mammals) utilizes timing information based on interau-
ral time differences (ITDs), the difference in arrival times of a sound at the two
ears. A long-standing conceptual model [31] proposes how to use ITDs, with delay
lines and coincidence-detecting units, to pinpoint a sound source (Figure 4.1 A).
Anatomical substrates and neuronal firing characteristics that fit nicely with this
concept have been found for the barn owl and in part for mammals [13] (see [2, 23]
for a review and references). According to Jeffress, excitatory inputs from opposite
sides (ears) converge, with an ordered range of conduction times, onto an array of
cells that are well-designed for detecting temporal coincidence, with precision that
can be tens of microseconds (Figure 4.1 A).

The first bilateral convergence of precisely phase-locked inputs occurs in the
auditory brain stem at the medial superior olive (MSO) in mammals and nucleus
laminaris in birds. ITD sensitivity is represented by a tuning curve, spike rate
versus ITD (say, for pure tone input), and the mapping between azimuth position
and ITD value at a tuning curve’s peak defines a place code, as hypothesized by
Jeffress and as found in the barn owl (Figure 4.1 B). Recent studies report that
tuning curves for the gerbil have their peaks outside the physiological range (the
range of possible interaural time differences determined by the animal’s head size)
and hypothesize that ITD is encoded by the slope of the tuning curve rather than
the peak [6, 26] (Figure 4.1 C).

Here, we will describe our experimental and modeling results, primarily for the
gerbil, to demonstrate how Type III excitability arises and contributes to ITD tuning
sensitivity and temporal precision.

4.2 Biophysical Properties Enable Fast Neuronal Signal Processing
The biophysical properties of MSO neurons and their inputs enable them to

“compute” ITD with high temporal precision [12]. Synaptic inputs and spike-
generating mechanisms are very fast (1 to 2 ms) [2]. The neurons have bipolar
architecture, each set of dendrites receiving inputs from only one ear. They, like
many other neurons in the auditory brain stem, fire phasically, only once or a few
times, at the onset of an adequate depolarizing step current and then remain qui-
escent independently of the strength of the current (Figure 4.2 A). They are slope
detectors: they do not fire for slowly varying inputs, but they can encode the occur-
rence and time of rapid changes in the input (Figure 4.2 B). The sensitivity for ITD
is an individual cell property. There appears to be no recurrent synaptic interactions
between these MSO neurons.
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FIGURE 4.1. A: Schematic diagram of the Jeffress conceptual model
[31] for sound localization: a place code based on delay lines and co-
incidence detector neurons (illustration by C. Carr, adapted from [34,
fig. 7] with permission from the author). B, C: ITD tuning curves for
pure tone inputs: extracellular recordings of spike frequency versus ITD
from the barn owl (B) and gerbil (C). For the barn owl, tuning curves are
narrow compared to the physiological ITD range (i.e., ITDs encountered
naturally),˙ 250–280 �s, and their different peak positions corresponds
to the place map. For the gerbil, ITD-tuning curves are broad, and their
peaks can lie outside the physiological range (˙120 �s, shaded in (C)).
See discussion for slope codes. (Adapted from [2, fig. 1] with permission
from Elsevier.)

BA

C D

FIGURE 4.2. The firing properties of MSO neurons. A: In response to a
step current injection, MSO neurons showed only a single spike when the
stimulus exceeded the threshold (phasic firing). B: Neurons did not fire
in response to a slow triangular current-ramp stimulus, whereas faster
stimuli evoked single spikes. C: After an application of DTX (a drug that
blocks IKLT), the cells fired tonically and responded with spikes to a slow
current-ramp stimulus (D). (Adapted from [56, fig. 1] with permission
from the author.)
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Of particular significance, the phasic behavior is attributed primarily to a low-
threshold voltage-gated potassium current (IKLT). It is partially activated at rest
and contributes to giving the cell a very short membrane time constant (< 1 mil-
lisecond) for fast integration. But also very important are the voltage-dependent
dynamics of IKLT. The current is recruitable at voltages below the activation range
for the spike-generating INa and with a rapid timescale, 1 ms or so. These proper-
ties effectively give the cell a dynamic threshold. Depolarizing inputs must be fast
enough to outrace the opposing influence of this potassium current. Inputs that are
significantly slower than IKLT will not lead to a spike.

Such empirical observations have led to hypotheses that IKLT underlies a high
quality of phase locking, coincidence detection, and temporal processing generally;
it is found in various neuron types in the auditory brain stem (octopus cells, bushy
cells) [45, 53], as well as in other brain areas [22]. Pharmacological block of IKLT
converts some cells from phasic to tonic behavior and diminishes phase-locking
ability; see Figure 4.2 C and D.

4.3 Phasic Firing, Type III Excitability, Reduced Model
An HH-like model for phasic firing was developed for bushy cells in the auditory

brain stem, the so-called Rothman-Manis model or RM03 [53]; it has been adapted
and tuned to gerbil MSO neurons [39]. The model involves several ionic currents
with seven or more gating variables:

(4.1) Cm
dV

dt
D �INa � IKHT � IKLT � Ih � Ilk C I.t/:

The model exhibits phasic firing with input-slope sensitivity (Figure 4.3), precise
phase locking, ITD sensitivity, and a narrow temporal integration window (e.g.,
[40, 53, 56]). When the conductance gKLT for IKLT is frozen at its resting level
in RM03, the model can fire tonically. As a dynamical system, RM03 has a sta-
ble steady state for each value of the input current I , while in the case of frozen
gKLT the model shows Type II excitability with repetitive firing arising via a Hopf
bifurcation (behaviors like those shown in Figure 4.4 A and B).

For our purposes it is convenient to consider a reduced two-variable model [40],
in which we have frozen the slow-gating variables at rest, treated INa activation
as instantaneous, and combined (in the spirit of Rinzel for the HH model [49])
inactivation h for INa and activation w for IKLT into one dynamic variable, U . The
reduced model (V � U model) is given by the following system of differential
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FIGURE 4.3. Slope sensitivity of the RM03 model for ramps. Right:
Voltage time courses of the RM03 phasic model in response to ramp
stimulus with different slopes (left). (Adapted from [21, fig. 2] with
permission from PLoS.)

equations:

Cm
dV

dt
D2
h
�xgNam

3
1.V /

�a
b
U
�
.V �ENa/

� xgKLTa
4.1 � U/4´0.V �EK/

� xgKHT.0:85n0
2
C 0:15p0/.V �EK/

� xglk.V �Elk/ � xghr0.V �Eh/
i
C I.t/;

dU

dt
D3

U1.V / � U

�U .V /
:

(4.2)

The steady state function U1 is given by

U1.V / D
bŒh1.V /C b.a � w1.V //�

a.1C b2/
;

where a D 0:9, b D .a � w0/=h0, and �U .V / D min.�w.V /; �h.V //. Membrane
capacitance is Cm D 12 pF; maximal channel conductances are xgNa D 1000 nS,
xgKHT D 150 nS, xgKLT D 200 nS, xgh D 20 nS, and xglk D 2 nS, and reversal
potentials are ENa D 55 mV, EK D �70 mV, xEh D �43 mV, and Elk D �65 mV.
Values for the gating variables, fixed at rest, are w0 D 0:511, h0 D 0:445, r0 D
0:147, ´0 D 0:662, n0 D 0:0077, and p0 D 0:0011.

This reduced V � U model retains Type III excitability and many of the firing
properties of the full RM03 model.

The V � U model fires phasically (Figure 4.4 A inset) and, correspondingly,
the steady state is stable for any input current I (Figure 4.4 A). As for RM03, the
V � U model converts to tonic mode when gKLT is frozen at its resting value (i.e.,
freezing U in the expression .1 � U/4) (Figure 4.4 B and inset). It switches from
Type III to Type II excitability, with Hopf bifurcation to repetitive firing. Note,



1486 J. RINZEL AND G. HUGUET

FIGURE 4.4. Dynamic response properties and phase plane analysis of
the V � U reduction of RM03 model. A and B: Bifurcation diagrams
of the phasic V � U model (A) and the tonic V � U model with gKLT
frozen (B). Stable steady state (black solid) destabilizes at I = 287 pA
when gKLT is frozen. Subcritical Hopf bifurcation leads to periodic or-
bits that stabilize for large amplitude and correspond to repetitive firing
for I in the range of 287 to 396 pA (red bold line). Compare to Fig-
ure 2.1 B. C and D: Phase-plane portraits for the phasic V � U model
(C) and the tonic V �U model (D) for different values of I . Steady state
remains on the left branch for all I for the phasic model but migrates
to the middle branch as I increases for the tonic model, corresponding
to Hopf bifurcation and repetitive firing (panel B). For an increasing I ,
the phasic model will fire only if the V -nullcline falls fast enough (I
increases fast enough); the tonic model will fire as long as I increases
enough, regardless of speed. (Adapted from [40, fig. 4] with permission
from the authors.)

the frozen-gKLT model (V �U or RM03) retains the same VR and membrane time
constant as in the (unfrozen) V �U model, underscoring the significance for firing
due to the dynamic, not just static, properties of gKLT.

With this reduction of RM03 to a two-variable model, we can gain insight with
phase plane methods. The V -nullcline here, as is typical for excitable systems, is
“cubic” shaped (Figure 4.4 C, D); the U -nullcline (green) is monotonic decreasing.
In either the phasic or tonic model, for I D 0, the nullclines intersect on the V -
nullcline’s left branch, corresponding to a stable rest state. As I increases, the
V -nullcline moves downward and the “left hump” is greatly reduced; the value of
UR falls. This means less INa is available and, for the phasic mode, more gKLT is
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active at rest. This increased conductance severely limits the growth in VR with I
for the phasic model.

A key geometrical feature is that for any I -value the rest point for the phasic
model remains on the left branch (Figure 4.4 C) and therefore is stable. On the
other hand, the rest point for the tonic model drifts onto the middle branch of the
V -nullcline (Figure 4.4 D) with increasing I , consistent with the onset of repetitive
firing. This insight provides us with a handle for the understanding and design of
other models with Type III excitability. As an aside, we note that while the HH-
model has Type II excitability, the squid axon typically fires in a phasic manner; a
significant factor in modifying the HH-model to render it Type III is an adjustment
in the potassium conductance (see [15]) so that it activates at lower V -values as
does gKLT.

From the phase plane we see that the phasic model can spike in response to an
increasing I.t/ only if the V -nullcline drops sufficiently faster than the phase point,
allowing a spike upstroke. The parametric dependence of the V -nullcline on I
is weaker in the phasic case (see the values of I for the positions shown) so that
dI=dt must be larger to elicit a spike. This property reveals geometrically the slope
sensitivity; for more elaboration on this, see [40]. Of course, the tonic model will
fire eventually even without this dynamic effect, since the steady state destabilizes
for large enough I . Hence, for Type III excitability the voltage threshold for firing
is not fixed but strongly depends on the rate of rise. This behavior has been modeled
with LIF models with a dynamic threshold [40, 47].

4.4 ITD Tuning
An idealization of the binaural synaptic input to an MSO neuron for a pure tone

of frequency ! is given by a sum of two half-wave rectified sinusoids, with a phase
difference �P:

I.t/ D A.Œsin.2�!t/�C C Œsin.2�!t C 2��P/�
C/C ��.t/;

where Œ ��C D max. �; 0/. The rectification is due to the biomechanical properties of
transduction in the cochlea. White noise �.t/ (strength � ) is added to mimic the jit-
ter in arrival times of impulses that drive the excitatory synapses. By varying�P we
generate the model’s IPD (interaural phase difference) tuning curve (Figure 4.5).
In this example the maximum firing rate occurs for �P D 0, corresponding to a
neuron tuned to an input centered in azimuth.

For small phase differences the model fires once on each cycle but with much
lower firing probability for antiphase inputs. Notice that the amplitude of the input
is less for the tonic model to get 1:1 firing at IPD D 0. Since it does not recruit
additional potassium current, its resistance remains high until V reaches the acti-
vation level for INa and therefore less input current is needed for firing. Notice
two features: the ITD tuning is sharper for the phasic case (the tuning curve’s half-
width is much less), and the tonic model fires with nearly equiprobability for �P
in the troughs. That is, the tonic model elicits a lot more false positives. Another



1488 J. RINZEL AND G. HUGUET

Fi
ri

n
g
 r

a
te

 (
sp

ik
e
s/

cy
cl

e
)

Fi
ri

n
g
 r

a
te

 (
sp

ik
e
s/

cy
cl

e
)

Phasic Tonic

FIGURE 4.5. “Interaural” phase tuning curves (firing rate versus IPD,
�P) for the phasic (left) and tonic (right) V � U model for 100 Hz in-
put. Different curves correspond to different noise levels � (in pA). The
sinusoidal amplitude is 600 and 300 pA for the phasic and tonic model,
respectively. (Adapted from [40, fig. 5] with permission from the au-
thors.)

feature (not shown here) is that the phasic model tends to fire on the rising slope of
the input (say, for small IPD), while the tonic model fires typically near the peak of
input. From a dynamical systems viewpoint one might wonder if the deterministic
problem of phase locking to this type of input, say two sinusoids shifted in phase,
has any special features, and if one could expose the differences between Type III
and Types I and II.

5 Discussion
We summarized features of excitability that are found in neurons, networks, and

models of neuronal systems. We presented the mathematical framework for under-
standing generic transitions to repetitive activity in neuron models as developed by
Rinzel and Ermentrout (1989), and the associated dynamical features as originally
described empirically by Hodgkin (1948) for neurons; these are the Type I (saddle
node on an invariant circle) and Type II (Hopf bifurcation) emergence of limit cy-
cles. We also covered the case of so-called Type III excitability in which repetitive
activity is not found for steady or slowly varying inputs and only a spike or a few
are elicited for a step input. These dynamical properties and classifications have
been referred to in functional/computational terms as integrators, resonators, and
differentiators, respectively.

For Type III excitability, we presented a cellular example in the context of sound
localization for which phasic firing is a significant dynamical feature of the neurons
that detect ITDs with extraordinary temporal precision. For systems with Type III
excitability, the input’s rate of change rather than amplitude is being detected, al-
lowing such systems to perform temporally sharp coincidence detection. For the
MSO case, even though action potentials and postsynaptic potentials are brief with
durations of a millisecond or so, the responsiveness depends more on the timing of
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convergent, bilateral inputs and temporal alignment of their rising slopes than on
summation of their amplitude or temporal duration, leading to coincidence detec-
tion with submillisecond sensitivity. The neurons act as differentiators rather than
integrators. The firing behavior seems not amenable to a mathematical explanation
via bifurcation theory, and the time course and transient nature of an input becomes
important to consider. The Type III case deserves further mathematical treatment.

Our presentation of sound localization focused on the phasic firing property,
Type III excitability. There are various other interesting dynamical properties of
MSO neurons and of the neuronal computations they perform that we did not cover
here but are worth mentioning.

(1) Although the model does not respond to slow inputs, say 20 Hz sinusoidal
input, it does so in the presence of noise. While it seems that this suggests a sto-
chastic resonance mechanism, the firings here occur typically on the rising phase
of the stimulus rather than near the peak amplitude as one would expect in the clas-
sical case [43]. This sensitivity to rising phase is consistent with slope detection;
we refer to the phenomenon as slope-based stochastic resonance [21].

(2) bipolar, and moreover the dendrites (in the case of the barn owl) vary in
length and correlate with the place map (see Figure 4.1 A): preferred tuning for
higher-frequency sounds correlates with shorter dendrites. These features moti-
vated our theoretical treatment and conclusions that distributing bilateral inputs on
opposite dendrites led to improved ITD sensitivity and decreased the chance of
false positives (less chance of firing in antiphase troughs) [1].

(3) Recently we combined modeling and in vitro experiments for the gerbil
to address how the soma-dendritic distribution of IKLT affects temporal precision
[39]. Sodium spikes have not been reported in MSO dendrites and are barely de-
tectable in the soma; it has been suggested that the V -dependence of inactivation
for somatic (and dendritic) INa disfavors spiking in the soma [55, 57]. Neverthe-
less, IKLT in dendrites can affect the signaling of subthreshold synaptic potentials
in the dendrites. We showed that the IKLT recruited by such potential transients
affects their shape, notably cutting down their “tails.” In contrast to the classical
case of passive dendrites where synaptic potentials widen as they propagate toward
the soma, we found that potential half-widths are maintained and that the resultant
somatic half-widths are nearly independent of input site. This voltage-dependent
sharpening seems well suited to preserving timing information.

(4) In the gerbil tuning curves are positioned asymmetrically (Figure 4.1 C). We
proposed that the temporal slope sensitivity endowed by IKLT could underlie this
positioning based on our modeling and experimental finding (in vitro) that synap-
tic potentials are slower rising from the contralateral side [32]. Our model also
accounts for the observations (in vivo) that inhibition shapes the tuning curve [6].
A nice application of information theory was developed in [26] about a population
coding strategy that could account for when the place code or slope code is more
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appropriate (Figure 4.1); here, “slope” refers to an aspect of the tuning curve, not
to the temporal aspect of inputs.

The dynamical features and classifications that we have reviewed may natu-
rally extend to network contexts, with perhaps the simplest architecture being ran-
dom, sparse connectivity without spatial or feature-distributed properties. Mean
field models, as dynamical systems, can have generic properties of excitability and
rhythm generation as we presented; see, for example, the analysis in [5]. The clas-
sifications, Types I, II, and III, should carry over. Among other interesting issues
in moving to the circuit level are how cellular features contribute to network ex-
citability and integrative properties. For example, it would be surprising if rhythmic
network properties were not enhanced by cellular properties like, say, for gamma
oscillations the properties of fast-spiking interneurons as resonators.

Many of the insights that we have obtained about neuronal dynamics could be
made transparent by way of geometrical analysis. We have exploited reduced two-
variable models to employ phase plane methods and exploited timescale differ-
ences to carry out fast/slow analysis. Some of the qualitative insights have been
further supported with computations on less idealized models, models that imple-
ment more quantitative biophysical instantiations of particular neurons. A general
take-home message is that, qualitatively, excitability depends on a fast regenera-
tive process (like sodium current activation for an action potential’s upstroke) and
a slower negative feedback process to restore the resting state and/or to enable re-
covery and prepare the system for the next cycle, in the case of oscillations. In the
case of Type III excitability an essential feature is the presence of a subthreshold
dynamic negative feedback, an intrinsic dynamic process (not necessarily slow)
that can filter slow inputs and preclude firing.

Neuronal systems are inherently dynamic: at the cellular level, for spike gener-
ation and patterns of spiking in response to changing and noisy inputs from many
synapses; at the circuit level, for ensemble activity that may involve synchroniza-
tion and waves or more complex patterning; at the system level, for coding, percep-
tion, and cognitive functions such as decision making. Some basic insights have
emerged from the development and study of linear or nearly linear models for neu-
ronal systems (cable theory for dendritic integration, lateral inhibition for sensory
processing representation of information, feature detectors in the visual system for
feed-forward architectures). But nonlinearities (thresholds, saturation, amplifica-
tions, etc.), complex architectures (feedback loops, delays, nonlocal and sparse
coupling, etc.), stochastic effects, and plasticity of connections present challenges
for mathematical and computational approaches. The combination of developing
idealized models and applying the qualitative findings to specific neuronal systems,
sometimes with more quantitative models, has proven worthwhile as we seek the-
ories to understand computations by neuronal systems. What are the neuronal
systems trying to compute and by what mechanisms do they compute?
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