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Abstract

There is increasing interest in the design of dense vertex symmetric graphs and
digraphs as models of interconnection networks for implementing parallelism. In
these systems many nodes are connected with relatively few links and short paths
between them and each node may execute, without modifications, the same com-
munication software. In this paper we give new families of dense vertex symmetric
(∆, D) digraphs, that is large digraphs with a given maximum out-degree ∆ and
diameter at most D. The digraphs are derived from a certain family of digraphs
on alphabets, proposed by Faber and Moore [8], with new construction techniques
that generalize previous results from Conway and Guy [5]. With these families
we have made important updates in the table of largest known vertex symmetric
(∆, D) digraphs.

1 Introduction

The construction of large graphs and digraphs of a given maximum degree and diameter
is an area of considerable interest for its applications to the design of large interconnec-
tion networks, particularly for the construction of massive parallel computers. Other
applications include the design of local area networks, the problem of data alignment
and the description of some cryptographic protocols. Since 1964, when Elpas [7] studied
the topological aspects of the construction of optimal large interconnection networks
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from a graph-theoretical point of view, this problem has attracted considerable atten-
tion. In this context it is known as the (∆,D)-problem. Much work has been done for
the undirected case, see [1] for a survey. Some interesting results correspond to Cayley
graphs which, as it is known, are vertex symmetric [4, 6]. Actually, most networks
related to parallel systems (hypercubes, grids, butterfly networks, ...) may be modelled
by Cayley graphs. For directed graphs there are well known results concerning bounds
[18, 2] and infinite families [3, 15, 16, 10] but the digraphs are vertex symmetric only
in some special cases.

The search for large digraphs which have the additional property of being vertex
symmetric has been considered more recently. Faber and Moore in [8], for example,
study families of digraphs on permutations and give a table of the largest known ver-
tex symmetric (∆,D) digraphs. More recently Dinneen [6] updated the table with
constructions based on Cayley graphs from linear groups and semi-direct products of
cyclic groups. The interest in vertex symmetric digraphs comes from the fact that in
the associated network each node is able to execute the same communication software
without modifications. In this way these digraphs may be considered in order to obtain
an easy implementation of parallelism.

In this paper we give new families of large vertex symmetric (∆,D) digraphs im-
proving considerably the known results. Section 2 is devoted to notation and some
previous results concerning digraphs on permutations. In Section 3 we describe some
generalizations of a result from Conway and Guy [5] that are used in Section 4 for the
construction of large vertex symmetric digraphs from certain smaller digraphs. In that
section we also study some properties of the Faber and Moore digraphs and prove a
conjecture proposed by them. Finally, we give an updated table of the largest known
vertex symmetric (∆,D) digraphs.

2 Notation and previous results

A directed graph or digraph for short, G = (V,A), consists of a non empty finite set
V of elements called vertices and a set A of ordered pairs of elements of V called arcs.
The number of vertices N = |G| = |V | is the order of the digraph. If (x, y) is an arc of
A, it is said that x is adjacent to y or that y is adjacent from x, and it is usually written
x → y . The out-degree of a vertex δ+(x) is the number of vertices adjacent from x,
the in-degree of a vertex δ−(x) is the number of vertices adjacent to x. A digraph is
regular of degree ∆ or ∆-regular if the in-degree and out-degree of all vertices equal
∆. A digraph is strongly connected if there is a (directed) path from any vertex to
every other. The distance between two vertices x and y, d(x, y), is the number of arcs
of a shortest path from x to y, and its maximum value among all pairs of vertices,
D = maxx,y∈V d(x, y), is the diameter of the digraph.
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The order of a ∆-regular digraph (∆ > 1) of diameter D is easily seen to be bounded
by

1 + ∆+∆2 + · · ·+∆D =
∆D+1 − 1

∆− 1
= N(∆,D)

This value is called the Moore bound, and it is known that, except for ∆ = 1 or D = 1,
there exists no ∆-regular digraphs with N(∆,D) vertices and diameter D [18, 2].

A digraph G is vertex symmetric if its automorphism group acts transitively on its
set of vertices. A (∆,D) digraph is a digraph with maximum degree ∆ and diameter
at most D.

The optimization problem considered in this article consists of finding vertex sym-
metric (∆,D) digraphs which, for a given diameter and maximum out-degree, have a
number of vertices as close as possible to the Moore bound.

A well known infinite family of large (∆,D)-digraphs is the Kautz digraphs [15, 16].
The Kautz digraph K(∆,D), ∆ ≥ 2, has vertices labeled with words x1x2 · · · xD where
xi belongs to an alphabet of ∆ + 1 letters and xi 6= xi+1 for 1 ≤ i ≤ D − 1. A vertex
x1x2 · · · xD is adjacent to the ∆ vertices x2 · · · xDxD+1, where xD+1 can be any letter
different from xD. Hence, the digraph K(∆,D) is ∆-regular, has ∆D +∆D−1 vertices
and diameter D. For D = 2 the Kautz digraphs are vertex symmetric.

Vertex symmetric digraphs may be easily constructed from groups. A Cayley di-
graph Cay(H,S) is the digraph generated from the group H and with generating set S.
Dinneen [6] used a computer search to find large vertex symmetric (∆,D) digraphs
based on linear groups and semi-direct products of cyclic groups.

Faber and Moore [8] give a family of large vertex symmetric digraphs which they
call Γ∆(D). These digraphs may be defined as digraphs on alphabets in the following
way: The vertices are labeled with different words of length D, x1x2 · · · xD, such that
they form a D-permutation of an alphabet of ∆ + 1 letters. The adjacencies are given
by

x1x2 · · · xD →



































x2x3x4 · · · xDxD+1, xD+1 6= x1, x2, . . . , xD
x2x3x4 · · · xDx1
x1x3x4 · · · xDx2
x1x2x4 · · · xDx3
. . .
x1x2x3 · · · xDxD−1

These digraphs have order (∆ + 1)D = (∆+1)!
(∆−D+1)! , diameter D and are ∆-regular (∆ ≥

D). These digraphs are also Hamiltonian [14]. Note that the digraphs Γ∆(2) are in fact
the Kautz digraphs K(∆, 2). In the table of large vertex symmetric (∆,D) digraphs,
the digraphs Γ∆ constitute most of the entries of its lower triangular part, that is
digraphs with ∆ > D, (D < 7).

A digraph is k-reachable if for every pair of vertices x, y ∈ V there exists a path of
exactly k arcs from x to y. See [9, 17] for more details about k-reachable digraphs. As
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an example, the Kautz digraphs of diameter D are (D + 1)-reachable. Figure 1 shows
K(2, 2). In this figure a line represents two opposite arcs.
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✉ ✉

✉

✉
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❄ ❅❅■
❅❅❘ ✻

��✠❅❅

��
��

❅❅

Figure 1: K(2, 2), a 3-reachable 2-regular vertex symmetric digraph with diameter 2.

The maximum order of a k-reachable ∆−regular digraphs is ∆k. It is easy to prove
that this bound is not attained for vertex symmetric digraphs when k > 1 and ∆ > 1.
Indeed, in order to attain it we should have Ak = J , where A is the adjacency matrix
of the digraph and J is the matrix with all entries equal to 1. Besides, as the digraph is
∆−regular the eigenvalues of A are 0 and ∆ (∆ with multiplicity one). Thus the trace
of A is ∆ and the digraph has exactly ∆ loops, which is incompatible with symmetry.

The following section presents a digraph composition technique which uses k-
reachable digraphs to construct large vertex symmetric digraphs.

3 Digraph composition

In this section we give a generalization of a theorem from Conway and Guy [5] which
is used in Section 4 for constructing families of large vertex symmetric digraphs from
the digraphs Γ∆(D).

Theorem 1. If there is a vertex symmetric ∆−regular k-reachable digraph with N
vertices then, for all n and m a multiple of n, there exists a vertex symmetric ∆-regular
digraph with mNn vertices and diameter at most kn+m− 11.

Proof: Let G = (V,A) be a digraph satisfying the hypotheses of the theorem. A new
digraph G′ = (V ′, A′) may be constructed as follows: The vertex set V ′ has elements
(α | p0p1 · · · pn−1) with α ∈ Z/mZ and pi ∈ V . The adjacencies of G′ are:

(α | p0p1 · · · pα · · · pn−1) → (α+ 1 | p0p1 · · · qα · · · pn−1)

where all the indices of the vertices of G are taken modulo n and qα is adjacent from pα
in G. We shall prove that G′ is vertex symmetric and has diameter at most kn+m−1.

• G′ is vertex symmetric:
Let φ0, φ1, . . . , φn−1 be automorphisms of G = (V,A) and let t be any element of Z/mZ.
The graph G′ is vertex symmetric since the map ψ

(α | p0p1 · · · pn−1)
ψ
7→ (α− t | φ0(pt)φ1(pt+1) · · ·φn−1(pt+n−1))

1Conway and Guy proved the case m = n.
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is an automorphism of G′. Indeed,

ψ(α | p0p1 · · · pα · · · pn−1) =

(α − t | φ0(pt)φ1(pt+1) · · · φα−t(pα) · · ·φn−1(pt+n−1)) →

(α − t+ 1 | φ0(pt)φ1(pt+1) · · ·φα−t(qα) · · · φn−1(pt+n−1)) =

ψ(α + 1 | p0p1 · · · qα · · · pn−1)

where we have used that, in G, pα → qα ⇔ φα−t(pα) → φα−t(qα).
• G′ has diameter at most kn+m− 1:

If we wish to find a path from (α | p0p1 · · · pn−1) to (β | q0q1 · · · qn−1) let us consider
ξ = β − α − kn (mod m). After ξ steps the vertex attained is (α + ξ | r0r1 · · · rn−1).
As, in G, from each ri we may reach qi with exactly k steps, by performing kn steps we
reach (α+ ξ + kn | q0q1 · · · qn−1), but α+ ξ + kn = β (mod m). So, the total number
of steps is not greater than kn+m− 1. ✷

If we replace each vertex of the Kautz digraph K(∆, 2) by two copies of K∗

2 (the
complete symmetric digraph on 2 vertices), and each arc (x, y) by the structure of
Figure 2, we obtain a vertex symmetric 2-reachable (2∆ + 1)-regular digraph with the
maximum possible order (2∆ + 1)2 − 1, [12]. Figure 3 shows the eight vertex digraph
obtained when ∆ = 1 (in this case K(1, 2) = K∗

2 ). For ∆ = 3 the resulting digraph is
5-regular and has 24 vertices, then, by Theorem 1 with m = n = 2, we obtain a new
large vertex symmetric (5, 5) digraph of order 1152.
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Figure 2: Arc replacement for K(∆, 2).
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Figure 3: A 2-reachable vertex symmetric digraph with 8 vertices.
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A modification of the above construction, that increases the degree, is also useful for
improving some values of the table. This modification is based on fixed 2-step digraphs,
that is the Cayley digraphs Cay(Z/mZ, {1, b}), see [11].

Theorem 2. If there is a vertex symmetric ∆-regular k-reachable digraph with N
vertices then, for all positive integers b, n and m a multiple of n, there exists a vertex
symmetric (∆+1)-regular digraph with mNn vertices and diameter kn+d with d being
the diameter of the fixed 2-step digraph Cay(Z/mZ, {1, b}).

Proof: The proof follows similar steps to those in Theorem 1. We give here just the
construction of the digraph. If G = (V,A) is a digraph according to the hypothesis of
the theorem the new digraph G′ = (V ′, A′) is constructed as follows. The vertex set V ′

has elements (α | p0p1 · · · pn−1) with α ∈ Z/mZ and pi ∈ V . The arcs of A′ are given
by

(α | p0p1 · · · pα · · · pn−1) →

{

(α+ 1 | p0p1 · · · qα · · · pn−1)
(α+ b | p0p1 · · · pα · · · pn−1)

where qα is adjacent from pα in G. The step b is chosen in order to minimize d. A list
of convenient values of b for each m may be found in [11]. ✷

Further generalizations would be possible by using an s-step digraph, s ≥ 3, to
describe the possible changes of α.

Another interesting generalization of the previous results is the following:

Theorem 3. Let G = (V,A) be a vertex symmetric ∆-regular k-reachable digraph
with N vertices. Let Cay(H,S) be a Cayley digraph with diameter d. If for some
subgroupK ofH there exists an element s ∈ S such thatH = K∪sK∪s2K∪· · ·∪sn−1K,
n = |H : K|, then there exists a vertex symmetric digraph with degree ∆ + |S| − 1,
order |H|Nn, and diameter kn+ d.

Proof: The new digraph, G′ = (V ′, A′) is constructed as follows: The vertex set V ′

has elements (α | p0p1 · · · pn−1) with α ∈ H and pi ∈ V . The adjacencies are

(α | p0p1 · · · pσ(αK) · · · pn−1) →

{

(αs | p0p1 · · · qσ(αK) · · · pn−1)

(αt | p0p1 · · · pσ(αK) · · · pn−1) ∀t ∈ S \ s

where qσ(αK) is adjacent from pσ(αK) in G and the map σ : {K, sK, s2K, . . . , sn−1K} →
Z/nZ is defined as σ(siK) = i. Clearly, the order of this graph is |V ′| = |H|Nn and the
digraph is regular with degree ∆+ |S| − 1. We shall prove that G′ is vertex symmetric
and has diameter kn+ d.

• G′ is vertex symmetric:
Let φ0, φ1, . . . , φn−1 be automorphisms of G = (V,A) and let u be any element of H.
The graph G′ is vertex symmetric since the map ψ,

(α | p0p1 · · · pσ(αK) · · · pn−1)
ψ
7→

(u−1α | φ0(pσ(uK))φ1(pσ(usK)) · · ·φl(pσ(αK)) · · · φn−1(pσ(usn−1K)))
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where l = σ(u−1αK) because of αK = uslK, is an automorphism of G′. Indeed,

ψ((α | p0p1 · · · pσ(αK) · · · pn−1)) =

(u−1α | φ0(pσ(uK))φ1(pσ(usK)) · · · φσ(u−1αK)(pσ(usσ(u−1αK)K)
) · · · φn−1(pσ(usn−1K))) →

(u−1αs | φ0(pσ(uK))φ1(pσ(usK)) · · · φσ(u−1αK)(qσ(usσ(u−1αK)K)
· · ·φn−1(pσ(usn−1K))) =

ψ((αs | p0p1 · · · qσ(αK) · · · pn−1))

where we have used that, in G, pi → qi ⇔ φj(pi) → φj(qi); and ψ((α |
p0p1 · · · pσ(αK) · · · pn−1)) = ψ((αt | p0p1 · · · pσ(αK) · · · pn−1)) ∀t ∈ S \ s.

• G′ has diameter at most kn+ d:
To find a path from (α | p0p1 · · · pn−1) to (β | q0q1 · · · qn−1) let us consider ξ =
α−1βs−kn. After at most d steps we attain (αξ | r0r1 · · · rn−1). As, in G, from
each ri we may attain qi with exactly k steps, by performing kn steps we reach
(αξskn | q0q1 · · · qn−1), but αξs

kn = β. So, the total number of steps is not greater than
kn + d. Moreover, if the Cayley digraph is m-reachable the new digraph is (kn +m)-
reachable.✷

4 New families of large vertex symmetric digraphs

In this section we first show that the vertex symmetric digraphs Γ∆(D) [8] are D-
reachable. We then apply the main result of Section 3 and construct new large families
of vertex symmetric digraphs. We also prove a conjecture of Faber and Moore [8]
concerning the construction of new large families of vertex symmetric digraphs from
the digraphs Γ∆(D) by removing some adjacencies. Finally, an updated version of the
table of largest known vertex symmetric (∆,D) digraphs is given.

Theorem 4. The digraphs Γ∆(D) are D-reachable for D ≥ 3.

Proof: As the digraphs are vertex symmetric it suffices to prove that the distance
from any vertex to the vertex labeled 123 · · ·D is exactly D. Let us start from vertex
x1x2 · · · xD. We consider two cases according to the fact that xD is different or not
from 1.

(a) xD 6= 1. At the first step we clearly may reach the vertex x2x3 · · · xD1 and from
it we successively reach vertices ending in 12, 123, . . ., 123 · · ·D. After exactly D steps
we reach the desired vertex.

(b) xD = 1. In this case, at the first step we go to a vertex that ends with symbol
y = xD+1 ≥ 3, y ≤ D. This is always possible because ∆ ≥ D ≥ 3. Next adjacencies
lead to vertices which successively end in 1y2, 1y23, . . . , 1y23 · · · (y−1), 123 · · · (y−1)y,
. . ., 123 · · ·D. Therefore precisely D steps are used to reach 123 · · ·D. ✷

It is now possible to apply the results of Section 2 to these digraphs. The most
interesting values correspond to use the 3-reachable digraphs Γ∆(3), ∆ ≥ 3. From
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them, and applying Theorem 1, it is possible to construct large vertex symmetric
digraphs with diameters 7 (order 2|Γ∆(3)|

2) and 11 (order 3|Γ∆(3)|
3). Considering

Γ∆(4) with ∆ ≥ 4 we obtain digraphs with diameter 9 and order 2|Γ∆(4)|
2. Theorem 2

with m = n = 3 and b = 2 (d = 1), may be applied to Γ∆(3) to obtain digraphs with
diameter 10 and order 3|Γ∆(3)|

3 .

Another way of constructing new families of large vertex symmetric (∆,D) digraphs
from the digraphs Γ∆(D) consists of removing one of their adjacencies. In [8], Faber and
Moore proved that, in this case, the diameter increases just by one. They conjectured
that the removal of more adjacencies also leads to a moderate increment of the diameter.
The following result proves this conjecture.

Let Γ∆(D,−(r − 1)), ∆ ≥ D ≥ 2r ≥ 4, be the digraph Γ∆(D) with the last r − 1
adjacencies removed. That is,

x1x2 · · · xD−rxD−r+1 · · · xD−1xD →



































x2x3x4 · · · xDxD+1, xD+1 6= x1, x2, . . . , xD
x2x3x4 · · · xDx1
x1x3x4 · · · xDx2
x1x2x4 · · · xDx3
. . .
x1x2x3 · · · xDxD−r

This digraph has degree ∆− r + 1.

Theorem 5. The digraph Γ∆(D,−(r − 1)), ∆ ≥ D ≥ 2r ≥ 4, has diameter
D + r − 1.

Proof: The digraph is vertex transitive, so it suffices to prove that from any vertex,
x1x2 · · · xD, we may reach the vertex labeled with 123 · · ·D with at most D + r − 1
steps. We divide the problem in two different cases according to the value of the last
symbol xD.

(a) xD 6= 1. In the first r− 1 steps we reach vertices ending successively in y1, y1y2,
. . ., y1y2 · · · yr−1. At this point we can reach vertices ending in the r digits y2 · · · yr−11,
y3 · · · yr−112, . . ., yr−1123 · · · (r − 1), 123 · · · r if yi ≥ r + 1 for any i, 1 ≤ i ≤ r − 1. At
each step the existence of such a yi is assured if ∆+1− r ≥ r+1, that is ∆ ≥ 2r. Next
adjacencies lead to vertices ending in 123 · · · (r + 1), . . ., 123 · · ·D. The total number
of steps performed is exactly D + r − 1.

(b) xD = 1. As in case (a), and after r − 1 steps, we reach a vertex that ends
in 1y1y2 · · · yr−1. From this vertex we can reach vertices ending in 1y1y2 · · · yr−12,
1y1y2y3 · · · yr−123, . . ., 1y1y2 · · · yr−123 · · · (r + 1) if yi ≥ r + 2 for any i, 1 ≤ i ≤ r − 1.
At each step the existence of such a yi is assured if ∆ + 1 − (r − 1) ≥ r + 2, that is
∆ ≥ 2r. From vertex 1y1y2 · · · yr−123 · · · (r + 1) it is possible to reach vertex 123 · · ·D
in D − (r + 1) more steps provided that the condition yi ≤ D for any i, 1 ≤ i ≤ r − 1,
is also satisfied. Hence another condition is D ≥ 2r. Vertex 123 · · ·D will be reached
in D + r − 2 steps. If, as in case (a), we want a path of lenght D + r − 1 we first go
to a vertex ending in 1y1y2 · · · yr such that, as before D ≥ yi ≥ r + 2, 1 ≤ i ≤ r, that
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is, D ≥ 2r + 1. So if this condition holds the digraph is also (D + r − 1)-reachable,
Theorem 4 being the particular case r = 1.

Finally to show that the diameter is not less than D + r − 1, note that if the
initial vertex ends in 1(∆ + 1), in some step digit 1 has to be placed at the rightmost
position. But, for this purpose, at least r − 1 steps are necessary. Hence the distance
from vertex x1x2 · · · 1(∆ + 1) to vertex 123 · · ·D is exactly D + r − 1.✷

Table 1 is the updated table with all the new values added. The improvements
that are a consequence of this paper are shown in boldface. One entry, N(2, 7) = 120,
was found by different means. Simulated annealing on permutation digraphs, see [?],
produced an arcsymmetric digraph (its automorphism group acts transitively on its set
of arcs) with order 6 and diameter 2. The final vertex symmetric digraph was obtained
by the line digraph technique, see [10].
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TABLE 1. LARGEST KNOWN VERTEX SYMMETRIC (∆,D)
DIGRAPHS

D 2 3 4 5 6 7 8 9 10 11

∆

2

K
6

FM
10

FM
20

Z×σZ
27

H92
72

LD
144

FM
171

FM
336

FM
504

GL
737

3

K
12

Z×σZ
27

FM
60

Z×σZ
165

Z×σZ
333

2G2

1 152

Z×σZ
1 808

Z×σZ
4 446

GL
8 736

3G3

41 472

4

K
20

Γ
60

Z×σZ
168

Z×σZ
444

Z×σZ
1 260

2G2

7 200

Z×σZ
12 090

Z×σZ
38 134

GL
105 456

3G3

648 000

5

K
30

Γ
120

Γ
360

2G2

1 152

Z×σZ
3 582

2G2

28 800

GL
50 616

2G2

259 200

GL
688 800

3G3

5 184 000

6

K
42

Γ
210

Γ
840

Γ
2 520

Z×σZ
7 644

2G2

88 200

GL
151 848

2G2

1 411 200

3G3C
5 184 000

3G3

27 783 000

7

K
56

Γ
336

Γ
1680

Γ
6 720

Γ
20 160

2G2

225 792

GL
410 640

2G2

5 644 800

3G3C
27 783 000

3G3

113 799 168

8

K
72

Γ
504

Γ
3 024

Γ
15 120

Γ
60 480

2G2

508 032

Z×σZ
680 760

2G2

18 289 152

3G3C
113 799 168

2G2

457 228 800

9

K
90

Γ
720

Γ
5 040

Γ
30 240

Γ
151 200

2G2

1 036 800

Z×σZ
1 822 176

2G2

50 803 200

3G3C
384 072 192

2G2

1 828 915 200

10

K
110

Γ
990

Γ
7920

Γ
55 400

Γ
332 640

2G2

1 960 220

Γ
6 652 800

2G2

125 452 800

3G3C
1 119 744 000

2G2

6 138 320 000

11

K
132

Γ
1 320

Γ
11 800

Γ
95 040

Γ
665 280

Γ
3 991 680

Γ
19 958 400

2G2

282 268 800

3G3C
2 910 897 000

2G2

18 065 203 200

12

K
156

Γ
1 716

Γ
17 160

Γ
154 440

Γ
1 235 520

Γ
8 648 640

Γ
51 891 840

2G2

588 931 200

3G3C
6 899 904 000

2G2

47 703 427 200

13

K
182

Γ
2 184

Γ
24 024

Γ
240 240

Γ
2 162 160

Γ
17 297 280

Γ
121 080 960

2G2

1 154 305 152

3G3C
15 159 089 098

2G2

115 430 515 200

K Kautz digraph [15, 16]
GL Digraphs built from linear groups [6]
Z×σZ Digraphs built from semi-direct products of cyclic groups [6]
Γ Digraph on permutations Γ∆(D) [8]
FM Digraph found by computer search by Faber and Moore [8]
nGn Digraph composition (Theorem 1)
nGnC Generalized digraph composition (Theorem 2)
LD Line digraph of the arc symmetric digraph H92[13]
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