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Abstract. We consider the problem of routing uniform communication
instances in switched optical tori that use the wavelength division multi-
plezing (or WDM) approach. A communication instance is called uniform
if it consists exactly of all pairs of nodes in the graph whose distance is
equal to one from a specified set S = {d1,d>,...,dr}. We give bounds
on the optimal load induced on an edge for any uniform instance in a
torus Ty, xrn- When k£ = 1, we prove necessary and sufficient conditions on
the value in S relative to n for the wavelength index to be equal to the
load. When k > 2, we show that for any set S, there exists an ng, such
that for all n > ng, there is an optimal wavelength assignment for the
communication instance specified by S on the torus T, x». We also show
an approximation for the wavelength index for any S and n. Finally, we
give some results for rectangular tori.

1 Introduction

Optical networks, in which data are transmitted in optical form and where the
optical form is maintained for switching, provide transmission rates that are
orders of magnitude higher than traditional electronic networks. A single optical
fiber can support simultaneous transmission of multiple channels of data, voice
and video.

Wavelength-division multiplexing is the most common approach to realize
such high-capacity networks [4, 5]. A switched optical network using the WDM
approach consists of nodes connected by point-to-point fiber-optic links, each of
which can support a fixed number of channels or wavelengths. Incoming data
streams can be redirected at switches along different outgoing links based on
wavelengths. Different data streams can use the same link at the same time as
long as they are assigned distinct wavelengths.

Two point z and y that are connected usually have one fiber-optic line for the
transmission of signals from z to y and another one for signals from y to z. Thus,
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optical networks are generally modeled by symmetric digraphs, that is, a directed
graph G with vertex set V(G) and edge set E(G) such that the edge [z,y] is in
E(G) if and only if the edge [y, z] is also in E(G). In the following, whenever we
talk about a graph, we always assume that we consider the associated symmetric
digraph where any edge between z and y is replaced by two directed edges [z, y]
and [y, z].

In a network, a request is an ordered pair of nodes (z,y) which corresponds
to a message to be sent from z to y. An instance I is a collection of requests.
Given an instance I in the network, an optical routing problem is to determine
for each request (z,y) in I a dipath from z to y in the network, and assign it
a wavelength, so that any two requests whose dipaths share a link are assigned
different wavelengths. Thus, an optical routing problem contains the related
tasks of route assignment and wavelength assignment. A routing R for a given
instance [ is a set of dipaths {P(z,y) | (z,y) € I}, where P(z,y) is a dipath from
z to y in the network. By representing a wavelength by a color, the wavelength
assignment can be seen as a coloring problem where one color is assigned to all
the edges of a path given by the route assignment. We say that the coloring of
a given set of dipaths is conflict-free if any two dipaths that share an edge are
assigned different colors. Since the cost of an optical switch is proportional to
the number of wavelengths it can handle, and the total number of wavelengths
that can be handled by a switch is limited, it is important to determine paths
and wavelengths so that the total number of required wavelengths is minimized.

Given an instance I in a graph G, and a routing R for it, there are two
parameters that are of interest. The wavelength index of the routing R, de-
noted w(G, I, R), is the minimum number of colors needed for a conflict-free
assignment of colors to dipaths in the routing R of the instance I in G. The
edge-congestion or load of the routing R for I, denoted by « (G, I, R), is the
maximum number of dipaths that share the same edge. The parameters w (G, I),
the optimal wavelength index, and = (G, I), the optimal load for the instance I
in G are the minimum values over all possible routings for the given instance I
in G. It is easy to see that w(G,I,R) > (G, I, R) for every routing R, thus
w(G,I) > w(G,I). It is known that the inequality can be strict [7]. A general
upper bound for w(G, I) as a function of 7 (G, I) was given in [1]. Determining
7 (G,I) for arbitrary networks and instances is NP-hard [3], though for some
specific networks such as trees and rings, and for specific instances, such as the
one-to-all instance, the problem can be solved efficiently. Finding w(G, I) is also
NP-hard for arbitrary G and I. In fact, it is known to be NP-hard for specific
graphs such as trees and cycles [6]. Approximation algorithms for w(G,I) have
been given for a variety of specific cases; see the survey paper [3].

In view of the NP-hardness of the general case, it is important to characterize
the instances for which the wavelength index can be determined efficiently. In this
paper, we investigate the wavelength index of uniform communication instances
on tori. We say that an instance I is uniform if there exists a set of integers
S ={dy,da,...,d} such that I consists of all pairs of nodes in G whose distance
is equal to d; for some d; in the set S. We denote such an instance as Ig. It is



easy to see that the all-to-all instance 14, consisting of all pairs of nodes of the
network, is a special case of a uniform communication instance Is where S =
{1,2,...,D¢g}, and Dg is the diameter of G. Uniform communication instances
also occur in certain systolic computations.

A torus of size m x n, denoted Ty, xn, iS a network model having the vertex
set {(4,7) : 0<i<m—1,0<j<n-—1}, where a vertex (4, 7) is connected to
vertices ((¢+1) mod m, j), (¢, (j+1) mod n), ((i—1) mod m, 5),(%, (j—1) mod n).
In the rest of the paper, all arithmetic operations involving vertices are assumed
to be done modulo n or m as appropriate. By mapping vertices into the plane,
we can visualize a torus as a graph in which vertices are organized into n rows
and m columns, vertex (i,5) belongs to ith column and jth row. Each vertex
is connected to the two vertices in the same row and adjacent columns and to
the two vertices in the same column and adjacent rows. In the torus, the rows 0
and n — 1 are adjacent, as are the columns 0 and m — 1. For a vertex v = (i, j)
we call the edges from v to the vertices (1 + 1,7), (1 — 1,7), (4,5 + 1), (4,5 — 1)
its right, left, up, and down edge respectively. The torus is square if m = n
and is rectangular otherwise. We assume without loss of generality that m > n.
The diameter of the torus T, x, is equal to [ 3] + | 5]. The diagonal Dy, of the
torus Ty xn consists of the vertices {(i,j) € Thxpn : & +Jj = k}. Similarly, let
DT ={(i,5) € Taxn : i —j = k}. The torus network is of interest because it has
been used in some highly parallel machines and it is also the underlying virtual
network in finite element representation of objects.

The all-to-all communication instance has been considered for several differ-
ent networks, including a torus [2, 11]. For a square torus, w(Tyxn, 14) = n®/8,
which is too large for the present technologies, even for small values of n. Thus,
by restricting communications among nodes to pairs of nodes whose distances
are in a set S, we can obtain instances that require a substantially smaller num-
ber of wavelengths. Some specific uniform instances were previously considered
in [9,10] for chordal rings and rings respectively, and general uniform instances
were studied in [8] for rings. The problem of wavelength assignment for uniform
instances seems to be more difficult than the all-to-all instance for tori, since a
uniform instance is an arbitrary subset of the all-to-all instance. At the same
time, it is also more complex than the same problem in [8] for rings, as there
are many more vertices at distance d from any vertex v in the torus, as well as
many more types of dipaths to each destination vertex.

As stated earlier, the task of optical routing involves both path assignment
and color assignment to dipaths. In this paper, we always use shortest path
routing and unless stated otherwise, the dipath from u to v is the reverse of the
dipath from v to u. The colors assigned to a dipath and its reverse are always
the same, and hence we speak only about the color assigned to the path between
u and v.

To find the wavelength index or an upper bound on it for a uniform instance,
we first consider some special cases. The next section presents results for uniform
communication instances when S is a singleton set. In particular, we give neces-
sary and sufficient conditions for the wavelength index to be equal to the load,



and an upper bound on the wavelength index is derived in any case. Section 3
considers I for S = {d;,d>}. Some sufficient conditions for the wavelength index
to be equal to the load are given. The main result in that section is that for any
S = {dy,d>}, an optimal wavelength assignment is always possible, provided the
torus is large enough. In Section 4 we show that the results from Section 3 can
be generalized to get an optimal solution of the general case S = {d;,da,...ds}
for a sufficiently large torus and give an approximation in any case. We also give
some results for rectangular tori. The last section gives conclusions and some
open problems.

Due to space limitations, we mostly give outlines of proofs. Detailed proofs
will appear in the full version.

2 Square tori: Single path length

First, we need to derive the value of w(T},xn, Is), since it gives a lower bound
on the wavelength index. The following theorem is stated without proof:

Theorem 1. Let T),xn be a square torus and S = {d}.

1. Ifd < | 2], then 7#(Tpxn,Is) = d°.

2. Ifd=1%, then w(Toxn, Is) = (%) = [ 4]

3. If d = D, the diameter of the torus, then m(Tnxn,Is) = 2 = [2] if n is
even and w(Tpxn,Is) =D =n—1if n is odd.

4. If D>d> |%], then ®(Tyxn,Is) =d(2|§] —d+1).

We determine when there is a routing and a wavelength assignment that uses
exactly the number of colors given by the load of the instance, a lower bound on
the wavelength index.

The paths of a routing of shortest paths in a torus can be specified using their
path-types defined as follows. A dipath has path-type (¢,5) where 0 < [i[, 7] <
| %], if it uses |i| horizontal edges and |j| vertical edges. The horizontal edges
are right edges if i is positive and left edges otherwise. Similarly, the vertical
edges are up edges if j is positive and down edges if j is negative. The following
theorem provides a necessary condition for the wavelength index to equal the
load of a uniform instance.

Theorem 2. Let Tyxn be a square torus and S = {d} where d < |3|. Then
W(Tpxn,Is) = ®(Tnxn,Is) = d?* only if d is a factor of 4n>.

Proof: Suppose w(Tyxn,Is) = ®(Tyuxn,Is) = d?. Then every color is used on
every edge of the network. Fix a color, say c¢. Let a; be the number of dipaths of
type (i,d — i), (—=i,d — 1), (i,—(d — 1)), and (=i, —(d — %), where 0 < ¢ < d, that
have been assigned the color c¢. Clearly this accounts for ia; right or left edges.
Since the color c is used on every horizontal edge, we must have X jia; = 2n2.
Similarly, since ¢ must be used on every vertical edge, L& ((d — i)a; = 2n>.
Adding these two equations, we obtain dﬂfzoai = 4n?, yielding the result. O

Next, we derive sufficient conditions for the wavelength index to equal the
load. The key idea to obtain a valid wavelength assignment is as follows: We



define a band to be a set of dipaths that are edge-disjoint and can therefore be
colored with the same color. A pattern is defined as a set of edge-disjoint bands.
We always try to find patterns that cover the edge set of the network as much as
possible. The wavelength assignment problem can be solved by finding a set of
patterns such that their union covers the entire set of dipaths of a given instance.
Furthermore, if the set of patterns is such that every pattern contains all edges
in the network, and every dipath is contained in exactly one pattern in the set,
then the wavelength index equals the load. This idea was also used in [11] to
solve the all-to-all instance for tori of even side.
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Fig. 1. Bands A(i) for n = 12 and d = 6, and three values of i. Notice that when
i = d/2 = 3, the band has width d/2 and otherwise has width d.

We define the band A (i) (where i # d/2) to be the set of dipaths from each
vertex (z,y) € Dy to the pair of vertices (x + ¢,y +d —4) and (z +d — i,y + 1)
respectively, as well as their reverses. Both of these latter vertices are in Dy 4.
Furthermore, all edges in between the diagonals Dj, and Dy, 4 are covered by
the band Ag (7). Notice that the dipaths in the band correspond to 4 different
path-types: (i,d — 1), (d —i,1),(—¢,—(d — 7)), and (—(d — %), —i), the first two
originating in Dy and the last two in Dyy4. We call these a set of companion
path-types. Next, Ak(%) is defined as the set of dipaths from (z,y) € Dy to
(z— %,y + ). The furthest intermediate vertices form the diagonal D, +4,and
all edges between the diagonals Dy and Dy 4 are covered by the band Ap(2).
The set of companion path-types corresponding to ¢ = d/2 contains only two
elements, both originating in Dy. See Figure 1 for an example. Similarly, let
By (i) (where i # £) be the set of dipaths from all vertices (z,y) € DT to the
pair of vertices (x — i,y +d — i) and (z — d + i,y + 1) respectively. Note that
both of these vertices are in D ;. By (%) is defined analogously to Ay (2). It is
straightforward to see that the width of any band A. (i) and B.(i) is d when
i # £, and the width of the bands A, (%) and B, (%) are d/2. (We use A,(i) to
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denote any band Ay (i) where 0 < k < n —1.) It is not difficult to check that
any band defined above is a set of edge-disjoint dipaths.

We define the pattern Py(i),i =0...[2]—1, as the set of bands Ao (i), Aa(3),
Asq(), “"A(L%J—nd(i)' Similarly, let P, (i) be the set of bands {Apg+m (7) :

0<m<d-1and 0 < p < [n/d]}. Finally, let Py,,(%) be the set of bands
{Angrm(i) :0<m< g —1and 0 < p < |2n/d]}. The patterns Qy(i) are
defined analogously based on the bands B, (7).

The next three theorems show that the wavelength index equals the load
when the uniform instance given by a single path length d is such that d is a
factor of n, the side of the torus.

Theorem 3. Let Tyxn a the square torus and S = {d} where d < [5]. If d is
a factor of n then w(Tyxn,Is) = ®(Thxn,Is) = d>.

Proof: Since d is a factor of n, the pattern Py (¢) contains all edges in the network,
where 0 < i < | £]. The same is true for the patterns Py (4), ..., P4_1(i), and the
corresponding patterns @, (7). Furthermore, it is easy to check that every dipath
is included in exactly one of these patterns.

Since each pattern is assigned a color, it suffices to count the number of
patterns to determine the wavelengths used. If d is odd, for each value of i,
0 <4 < |%], we need d patterns of type P,(i). The same is true for patterns of
type Q. (%) except we don’t need patterns of this type for ¢ = 0 as all dipaths
of path-type (d,0) and (0,d) have already been colored using the P, patterns.
Thus the total number of patterns is 2d[ | +d = d?. If d is even, there are dg
patterns of type Py (i) corresponding to 0 < ¢ < d/2—1, d(% —1) patterns of type
Q.(7) corresponding to 1 < ¢ < d/2 — 1, and d/2 patterns each corresponding
to each of P*(%) and Q*(%). This adds to a total of d + 2d(% —1)+d=d? as
claimed. ]

Theorem 4. Let Ty, x, be a square torus where n is even, and S = {3 }.

Then w(Thxn,Is) = ®(Taxn,Is) = (2)* — [ %].

Proof: We use the same arguments as in the previous theorems with the ex-
ception that the dipaths of path-type (n/2,0) and (0,7/2) can be colored using

[n/4] = [d/2] colors, and not d colors as in the previous theorem. O

Theorem 5. Let Ty, xn be the square torus with n® vertices and S = {d} where
d < |2]. If d is even, d/2 divides n, and n > d*/2, then wW(Thxn,Is) =
W(Tnxn7[S) = d2.

Proof: If d divides n, then the theorems above show that the wavelength index
equals the load. Otherwise, let n = kd + d/2. We use two types of patterns to
achieve the wavelength assignment. For each 0 < < %, we build a pattern with
k bands of type A.(i) and one of type A.(Z). We shift this pattern d times,
which accounts for bands of type A (i) from kd origin diagonals and of type
A.(d/2) from d origin diagonals. Repeating this for all d/2 possible values of i,
we have bands of type A, (i) from kd origin diagonals for each i, where 0 < i < ¢
and of type A,(£) from d?/2 origin diagonals.



The second type of pattern consists of one band of each type A, (i) where

0<i< %, and n_dc/l;/ 2 bands of type A*(%). By shifting this pattern d/2 times,

we claim that we can get bands of type A, (i) where 0 <4 < £ from d/2 origin
diagonals, and bands of type A, (%) from n — d?/2 origin diagonals.

By using both types of patterns as described, and using a different color for
every pattern, we assign colors to all the required dipaths from all origin vertices.
O

Theorem 6. Let T, x, be a square torus and S = {D} where D is the diameter

of the torus. Then w(Tyxn,Is) = ®(Tuxn,Is) = % = 2 if n is even and
W(Thxn, Is) = 7(Thxn,Is) = D =n—1if n is odd.
Proof: Omitted. -

Next, we give an approximation result for the case of arbitrary d < [ 3].

Theorem 7. Let T,x, be a square torus and S = {d} where d < |5]. Then
’lU(Tan, IS) S 2(%] (d + %O‘de)
d

Proof: Let d be odd. For every i, where 0 < i < | 4], we use a pattern with 2|
bands of type A, (i). This leaves a “gap” of width n mod d. We shift this pattern
d times, starting the pattern each time with the diagonal where the previous
gap started, assigning a new color each time. The remaining origin diagonals,
from which dipaths have not yet been assigned colors, are now covered with

further patterns using %"‘jd more colors. There are [4] possible values of
d

i, and symmetry considerations multiply it by 2, giving the result. A similar
argument holds when d is even. ]

It is not hard to see that the worst case for the above theorem occurs when
the gap is of size d — 1, i.e., n mod d = d — 1, yielding the following result:

Theorem 8. Let Tyxn be a square torus and S = {d} where d < |3|. Then
W(Thxn, Is) < 1.57(Thxn,Is)-

3 Square tori: Two path lengths

When the instance involves more than one path length, we can use Theorem 1
to get a general result about the load of the instance in a square torus.

Theorem 9. Let T, x, be a square torus and S = {d1,ds,---,dr} where 1 <
dy < -+ <ds < di < [2]. Then the load of Tyxn is T(Tnxn,Is) = Sr_, &
Similarly, Theorem 3 can be generalized for S containing more than one path

length.

Lemma 1. Let T),x,, be a square torus and S = {d;,ds,---,dp} where 1 < dj <
e <dy < dy <[] Ifdiln for 1 < i <k then w(Thxn, Is) = ®(Thxn,Is) =

DO



Proof: If d;|n we can apply Theorem 3 to each uniform sub-instance consist-
ing of path length d; and obtain a coloring with d? colors. Adding up all the
contributions, the result follows. ]

We will consider here the double-path case S = {di,d2} where 1 < dy <
di < [%]. We use some of the results for rings from [8]. First, we show that the
wavelength index equals the load when d; as well as dy + dy divide n, even when
ds is not a factor of n.

Lemma 2. Let Ty xn be a square torus and S = {dy,d2} where 1 < dp < di <
[2]. If (di + d2)|n and di|n then w(Tyxn, Is) = ®(Tpxn, Is) = di + d3.

Proof: We consider the case when d; and dy are both odd (the other cases
are similar). Fix a value of ¢ such that 0 < i < [‘12—2J We use a pattern that
alternates bands of type A, (i) of width d; and ds. This pattern can be shifted
dy + do times, thereby using d; + da colors to color all dipaths of type (i,d; — 1)
and (i,d> — 1) as well their companions. We repeat the same procedure for each
value of 7 in the specified range. At this point, all dipaths of length d» have been
colored. However dipaths of path-type (i,d; —i), where [ %] +1 <4 < ||, and
their companions have not been assigned colors. Since d; divides n, we can now
solve these separately, by using patterns that use only bands of width d;. Each
such pattern can be shifted d; times, thus requiring d; (| £ | — | %2 |) more colors.
Thus w(Toxn, Is) = (d1 +ds) + 2% | (dr +d) + 2% | — |2 [)(dh) = & + .
The factor 2 comes from considering the symmetric bands of type B.(%). O

Lemma 3. Let S = {d1,d2}, 1 < di < dy < |§], and let n = a(pdy) + bd
wherea>b>0,a>ds anda—b< pdy +dz, 1 <p< [%], and pdy,ds and n
are mutually co-prime. Then there is an optimal wavelength assignment in Ty xp
for all dipaths corresponding to p sets of companion path-types of length di and
1 set of companion path-types of length do.

Proof: We use similar arguments as in Lemma 2 of [8]. We give only the idea
here. We first solve the wavelength assignment problem for one set of compan-
ion path-types of length pd; and one such set of length d;. We use a pattern
alternating b bands of width dy and pd; followed by a — b bands of width d;.
It is easy to see that this pattern covers the entire edge set. We shift this pat-
tern ¢ = pdy + da — (a — b) times, thereby assigning wavelengths to dipaths of
length d; from ai origin diagonals, and dipaths of length dy from bi origin di-
agonals. As in [8], given the conditions on a and b, we can find @’ and b' such
that n = a'dy + b' d2. We use a second pattern alternating a’ bands of width
pdy and ds followed by b’ — a’ bands of width ds, and shift this j = a — b times.
Thus we can assign wavelengths to dipaths of length pd; from a'j origin diag-
onals and paths of length dy from b'j origin diagonals. It is easy to check that
ai+a'j = bi+b'j = n, and therefore, all dipaths of length pd; and dy have been
assigned. Finally, each band of width pd; is sub-divided into p bands of width
dy, one for each companion set of path-types, giving the result. ]
This brings us to the main theorem of this section:



Theorem 10. Let S = {d1,d>} wherel < dy < dy < [n/2]. Then w(Tyxn,Is) =
T (Thxn,Is) whenever one of the following holds:

1. di|n and da|n.
2. (d1 + d2)|n and dy|n.

3. n > (di[725] — 2)di[ 7251 + (di[ 3251 — 1)da where dy > 1.

Proof: The first and second statements follow from Lemmas 1 and 2. The key
idea for the third statement is that the set of path-types for dipaths of length d
and dy can always be divided into pairs of subsets such that there are at most
[ djil] sets of companion path-types of length d; and 1 of length da. We can
then apply Lemma 3 to obtain an optimal wavelength assignment. The existence
of suitable a and b required by Lemma 3 follows from the arguments in [8]. &

4 The general case

In this section, we consider the case S = {di,da,...,d;} for k > 2. Although
the previous two sections dealt mostly with the special cases S = {di} and
S = {d;,d>}, these results can be used to obtain the exact value of w(Tyxn, Is)
in many instances of the general case.

For example, if Ele d; is a factor of n then w(Tyxn,Is) = Ele d?. We can
also obtain a value for w(T,,xn, Is) that equals the load, by partitioning S into
subsets and applying the results of Section 3. In fact, as in the two path-length
case, equality between the wavelength index and the load holds for any arbitrary
instance S provided the torus is large enough. If the number of path-lengths &
is even, we simply pair the path-lengths, and use Theorem 10 to derive a value
of n such that each pair of path-lengths can be solved optimally. If instead & is
odd, then we add up two of the path-lengths and reduce to the even case.

This gives the following theorem:

Theorem 11. Let S = {dy,ds,...,dr}, 1 <dp < ...<d2 <di < [n/2]. Then
there exists an ng such that for any n > ng, w(Rp,Is) = w(Ry,Is) = Zk d?.

i=1 "

An approximation on the wavelength index can be obtained in any case. The
proof of the following theorem is based on Theorem 8.

Theorem 12. Let S = {d;,ds,...,dr} where 1 < dj < ... < dy < dy < [n/2].
Then w(Typxn,Is) < 37 (Thxn,Is)/2.

Clearly, the process of decomposition of S into sub-instances of size 1 or 2 and
obtaining a solution for Is by putting together solutions for the sub-instances
can be done also in cases when neither one of the two theorems of this section
applies to the entire set S.

Next, we consider a rectangular torus T;, x,. As mentioned in the introduc-
tion, we assume that m > n. Many of the results from the previous sections can
be generalized to rectangular tori. Using similar arguments as in the case of a
square torus, we obtain the following theorem:



Theorem 13. Let T,,xn be a rectangular torus with n rows and m columns,
m >mn, and S = {d}. Ifd|m, d|n, and d < n/2, then w(Txn;Is) = 7(Tmxn,Is)-
Otherwise, if d divides neither n nor m, then w(Txn,Is) < 27 (Tmxn, Is)-

5 Conclusions and Open Problems

In the previous sections we gave exact solutions to find the wavelength index for
some uniform instances and derived an approximation of the wavelength index
for any uniform instance. The techniques used and results obtained for uniform
instances on tori could also be used for deriving results in non-uniform cases.
There remain some open problems: For a single path length S = {d}, the
sufficient and necessary conditions we give for w(Ty,xn, Is) = ®(Tnxn, Ls) do not
match. Can the necessary condition d|4n? be improved? For the two path length
case S = {di,ds»}, is it possible to substantially lower the bound in Theorem
10, part 3, on the dimension of the torus for which w (T xn, Is) = ®(Tuxn, Is)?
Finally, the case of a rectangular tori should be investigated in more detail.
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