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A new operation on digraphs: the Manhattan
product ⋆
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Abstract. We give a formal definition of a new product of bipartite digraphs, the
Manhattan product, and we study some of its main properties. It is shown that if
all the factors of the above product are (directed) cycles, then the digraph obtained
is a Manhattan street network. To this respect, it is proved that many properties of
these networks, such as high symmetries and the presence of Hamiltonian cycles, are
shared by the Manhattan product of some digraphs. Moreover, we prove that the
Manhattan product of two Manhattan streets networks is also a Manhattan street
network. Also, some necessary conditions for the Manhattan product of two Cayley
digraphs to be again a Cayley digraph are given.

Key words: Digraph, Product, Cayley Digraph, Hamiltonian Cycle, Manhattan
Street Network.

1 Introduction

The 2-dimensional Manhattan street network M2 was introduced simultane-
ously, in different contexts, by Morillo et al. [6] and Maxemchuk [5] as an
unidirectional regular mesh structure resembling locally the topology of the
avenues and streets of Manhattan (or l’Eixample in downtown Barcelona). In
fact, M2 has a natural embedding in the torus and it has been extensively
studied in the literature as a model of interconnection networks.

Before outlining the contents of the paper, recall that a digraph G = (V,A)
consists of a set of vertices V , together with a set of arcs A, which are ordered
pairs of vertices, A ⊂ V × V = {(u, v) : u, v ∈ V }. An arc (u, v) is usually
depicted as an arrow with tail u (initial vertex) and head v (end vertex), that
is, u → v. The in-degree δ−(u) (respectively, out-degree δ+(u)) of a vertex u
is the number of arcs with tail (respectively, head) u. Then, G is δ-regular
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when δ−(u) = δ+(u) = δ for every vertex u ∈ V . Given a digraph G =
(V,A), its converse digraph G = (V,A) is obtained from G by reversing all
the orientations of the arcs in A, that is, (u, v) ∈ A if and only if (v, u) ∈ A.
The standard definitions and basic results about graphs and digraphs not
defined here can be found in [1,2,7].

In this paper, we first recall the definition and some of the properties of
the Manhattan street network (where the Manhattan product takes its name
from). Afterwards, we introduce the Manhattan product of (bipartite) di-
graphs. It is shown that when all the factors are (directed) cycles, then the
digraph obtained is just the Manhattan street network. Moreover, we prove
that the Manhattan product of two Manhattan streets networks is also a
Manhattan street network. In fact, many properties of these networks, such
as high symmetries and the presence of Hamiltonian cycles, are shared by the
Manhattan product of some digraphs. We also investigate when the Manhat-
tan product of two Cayley digraph is again a Cayley digraph and characterize
the corresponding group.

2 Manhattan street networks

In this section, we recall the definition and some basic properties of a class
of toroidal directed networks, commonly known as Manhattan street net-
works [3,4].

Given n even positive integers N1, N2, . . . , Nn, the n-dimensional Man-
hattan street network Mn = M(N1, N2, . . . , Nn) is a digraph with vertex set
V (Mn) = ZN1 × ZN2 × · · · × ZNn . Thus, each of its vertices is represented by
an n-vector u = (u1, u2, . . . , un), with 0 ≤ ui ≤ Ni − 1, i = 1, 2, . . . , n. The
arc set A(Mn) is defined by the following adjacencies (here called i-arcs):

(u1, . . . , ui, . . . , un) → (u1, . . . , ui + (−1)
P

j 6=i uj , . . . , un) (1 ≤ i ≤ n). (1)

Therefore, Mn is an n-regular digraph on N =
∏n

i=1Ni vertices.
The properties of Mn are the following:

• Homomorphism: There exist an homomorphism from Mn to the symmetric
digraph of the hypercube Q∗

n, so that Mn is both a bipartite and 2n-partite
digraph.

• Vertex-symmetry: The n-dimensional Manhattan street network Mn is a
vertex-symmetric digraph.

• Line digraph: For any N1, N2, the 2-dimensional Manhattan street network
M2(N1, N2) is a line digraph.

• Diameter: For Ni > 4, the diameter of the n-dimensional Manhattan street
network Mn = M(N1, N2, . . . , Nn), i = 1, 2, . . . , n, is
(a)D(Mn) = 1

2

∑n
i=1Ni + 1, if Ni ≡ 0 (mod 4) for any 1 ≤ i ≤ n;

(b)D(Mn) = 1
2

∑n
i=1Ni, otherwise.
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Fig. 1. The Manhattan product Cay(Z6, {1, 3}) ‖≡K∗
2 (undirected lines stand for pairs

of arcs in opposite directions).

• Hamiltonicity: The n-dimensional Manhattan street network Mn is Hamil-
tonian.

3 The Manhattan product and its basic properties

In this section, we present an operation on (bipartite) digraphs which, as a
particular case, gives rise to a Manhattan street network. With this aim, let
Gi = (Vi, Ai) be n bipartite digraphs with independent sets Vi = Vi0 ∪ Vi1,
Ni = |Vi|, i = 1, 2, . . . , n. Let π be the characteristic function of Vi1 ⊂ Vi for
any i, that is,

π(u) =
{

0 if u ∈ Vi0,
1 if u ∈ Vi1.

Then, the Manhattan product Mn = G1 ‖≡G2 ‖≡ · · · ‖≡Gn is the digraph with
vertex set V (Mn) = V1×V2×· · ·×Vn, and each vertex (u1, u2, . . . , ui, . . . , un)
is adjacent to vertices (u1, u2, . . . , vi, . . . , un), 1 ≤ i ≤ n, when

• vi ∈ Γ+(ui) if
∑

j 6=i π(uj) is even,
• vi ∈ Γ−(ui) if

∑
j 6=i π(uj) is odd,

where Γ+(ui) and Γ−(ui) denote the sets of vertices adjacent from ui and to
ui, respectively.

Fig. 1 shows an example of the Manhattan product of the circulant digraph
on six vertices and steps 1 and 3 (in other words, the Cayley digraph on Z6

with generating set {1,3}) by the symmetric complete digraph on two vertices,
K∗

2 = Cay(Z2, {1}).
Thus, if every Gi is δi-regular, then Mn is a δ-regular digraph, with δ =∑n

i=1 δi, on N =
∏n

i=1Ni vertices.
Some of the basic properties of the Manhattan product, which are a gener-

alization of the properties of the Manhattan street networks given in [3], are
presented in the next proposition.
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Proposition 1. The Manhattan product H = G1 ‖≡G2 ‖≡ · · · ‖≡Gn satisfies the
following properties:

(a)The Manhattan product holds the associative and commutative properties.
(b)There exists an homomorphism from H to the symmetric digraph of the

hypercube Q∗
n. Therefore, H is a bipartite and 2n-partite digraph.

(c)For any n−k fixed vertices xi ∈ Vi, i = k+1, k+2, . . . , n, the subdigraph of
H induced by the vertices (u1, u2, . . . , uk, xk+1, xk+2, . . . , xn) is either the
Manhattan product Hk = G1 ‖≡G2 ‖≡ · · · ‖≡Gk or its converse Hk, depending
on if α :=

∑n
i=k+1 π(xi) is even or odd, respectively.

(d)If each Gi, i = 1, 2, . . . , n, is isomorphic to its converse, then H also is.

As an example of a Manhattan product satisfying the Proposition 1(d),
see again Fig. 1.

4 The Manhattan product and the Manhattan street networks

In this section, we show the relationship between the digraphs obtained by
the Manhattan product and the Manhattan street networks.

Proposition 2. The Manhattan product of directed cycles with even orders is
a Manhattan street network. More precisely, if Gi = CNi, Ni even, then

CN1 ‖≡CN2 ‖≡ · · · ‖≡CNn = M(N1, N2, . . . , Nn).

Proof. Each cycle CNi has set of vertices Vi = ZNi , and adjacencies Γ+(ui) =
{ui +1 (mod Ni)} and Γ−(ui) = {ui−1 (mod Ni)}, such that Vi0 and Vi1 are
the sets of even and odd vertices, respectively. Thus, the set of vertices in the
Manhattan product of directed cycles is ZN1×ZN2×· · ·×ZNn and each vertex
(u1, u2, . . . , ui, . . . , un) is adjacent to the vertices (u1, u2, . . . , vi, . . . , un), for
1 ≤ i ≤ n, when

• vi =ui +1 if and only if
∑

j 6=i π(uj) is even and, then,
∑

j 6=i uj is also even,
• vi =ui − 1 if and only if

∑
j 6=i π(uj) is odd and, then,

∑
j 6=i uj is also odd,

which corresponds to the definition of the Manhattan street network.

Another expected result of the Manhattan product is the following:

Proposition 3. The Manhattan product of two Manhattan street networks is
a Manhattan street network. More precisely, if M1 = M(N1

1 , N
1
2 , . . . , N

1
n1

)
and M2 = M(N2

1 , N
2
2 , . . . , N

2
n2

), then

M1 ‖≡M2 = M,

where M = M(N1
1 , N

1
2 , . . . , N

1
n1
, N2

1 , N
2
2 , . . . , N

2
n2

).
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The result of the above proposition can be seen as a corollary of the Propo-
sition 2 and the associative property. Indeed,

M1 ‖≡M2 = M(N1
1 , N

1
2 , . . . , N

1
n1

) ‖≡M(N2
1 , N

2
2 , . . . , N

2
n2

)
= (C1

N1
‖≡C1

N2
‖≡ · · · ‖≡C1

Nn1
) ‖≡ (C2

N1
‖≡C2

N2
‖≡ · · · ‖≡C2

Nn2
)

= C1
N1
‖≡C1

N2
‖≡ · · · ‖≡C1

Nn1
‖≡C2

N1
‖≡C2

N2
‖≡ · · · ‖≡C2

Nn2

= M(N1
1 , N

1
2 , . . . , N

1
n1
, N2

1 , N
2
2 , . . . , N

2
n2

) = M.

5 Symmetries

Here we study the symmetries of the digraphs obtained by the Manhattan
product.

Proposition 4. Let Gi be vertex-symmetric digraphs such that they are iso-
morphic to their converses, i = 1, 2, . . . , n. Then, the Manhattan product
H = G1 ‖≡G2 ‖≡ · · · ‖≡Gn is vertex-symmetric.

6 Cayley digraphs and the Manhattan product

In this section, we investigate when the Manhattan product of Cayley digraphs
is again a Cayley digraph. This generalizes the case studied of Manhattan
street networks [3,4], where the factors of the product are directed cycles (see
Proposition 2), that is, Cayley digraphs of the cyclic groups. Because of the
associative property of the Manhattan product (see Proposition 1(a)), we only
need to study the case of two factors.

Theorem 1. Let G1 = Cay(Γ1, ∆1) be a bipartite Cayley digraph of the group
Γ1 with generating set ∆1 = {a1, a2, . . . , ap} and set of generating relations
R1, such that there exists a group automorphism ψ1 satisfying ψ1(ai) = a−1

i ,
for i = 1, 2, . . . , p. Let G2 = Cay(Γ2, ∆2) be the bipartite Cayley digraph of
the group Γ2 with generating set ∆2 = {b1, b2, . . . , bq} and set of generat-
ing relations R2, such that there exists a group automorphism ψ2 satisfying
ψ2(bj) = b−1

j , for j = 1, 2, . . . , q. Then, the Manhattan product H = G1 ‖≡G2

is the Cayley digraph of the group

Γ = 〈α1, α2, . . . , αp, β1, β2, . . . , βq |R′1, R′2, (αiβj)2 =(αiβ
−1
j )2 =1, i 6= j〉, (2)

where R′1 is the same set of generating relations as R1 changing ai by αi (and
similarly for R′2, changing bj by βj).

This result can be compared with the well-known following one [7]: If G1

andG2 are, respectively, Cayley digraphs of the groups Γ1 =〈a1, a2, . . . , ap |R1〉
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Fig. 2. The direct product Cay(Z6, {1, 3})2K∗
2 (undirected lines stand for pairs of

arcs in opposite directions).

and Γ2 = 〈b1, b2, . . . , bq |R2〉, then its direct product G12G2 is the Cayley di-
graph of the group

Γ=Γ1×Γ2=〈α1, α2, . . . , αp, β1, β2, . . . , βq|R′1, R′2, αiβj=βjαi, 1≤ i≤p, 1≤j≤q〉,

with the same notation as above. Fig. 2 illustrates an example of direct product
of Cayley digraphs, which can be compared with the Manhattan product of
the same digraphs shown in Fig. 1.

7 An alternative definition

The results of the preceding section, specifically the structure of the color-
preserving automorphisms, suggest to study some alternative definitions of
the Manhattan product of digraphs when they satisfy some conditions. More
precisely, if each of the factors Gi of the Manhattan product has an involutive
automorphism from Gi to Gi, we have the following result:

Proposition 5. Let ψi be an involutive automorphism from Gi to Gi, for
i = 1, 2, . . . , n. Then, the Manhattan product H = G1 ‖≡G2 ‖≡ . . . ‖≡Gn is the
digraph with vertex set V (Mn) = ZN1 × ZN2 × · · · × ZNn and the following
adjacencies (i = 1, 2, . . . , n):

(u1, u2, . . . , ui, . . . , un)  
(
ψ1(u1), ψ2(u2), . . . , vi, . . . , ψn(un)

)
,

where vi ∈ Γ+(ui).

Proof. For the sake of simplicity, we write the adjacencies of the first definition
and the alternative one, respectively, as (i = 1, 2, . . . , n):

(u1, u2, . . . , ui, . . . , un) → (
u1, u2, . . . , Γ

(−1)
P

j 6=i π(uj)

(ui), . . . , un

)
, (3)

(u1, u2, . . . , ui, . . . , un)  
(
ψ1(u1), ψ2(u2), . . . , Γ+(ui), . . . , ψn(un)

)
, (4)
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where Γ+1 ≡ Γ+ and Γ−1 ≡ Γ−.
The isomorphism from the first definition to the alternative one is

Φ(u1, . . . , ui, . . . , un)

=
(
ψ

P
j 6=1 π(uj)

1 (u1), . . . , ψ
P

j 6=i π(uj)

i (ui), . . . , ψ
P

j 6=n π(uj)
n (un)

)
.

Indeed, let us see that this mapping preserves the adjacencies. First, by (3),
we have

Φ
(
Γ+(u1, . . . , ui, . . . , un)

)
=
(
ψ

P
j 6=1 π(uj)+1

1 (u1), . . . ,

ψ
P

j 6=1 π(uj)

i

(
Γ (−1)

P
j 6=i π(uj)

(ui)
)
, . . . , ψ

P
j 6=1 π(uj)+1

n (u1)
)
.(5)

Whereas, by (4), we have

Γ+
(
Φ(u1, . . . , ui, . . . , un)

)
=
(
ψ

P
j 6=1 π(uj)+1

1 (u1), . . . , Γ+
(
ψ

P
j 6=i π(uj)

i (ui)
)
, . . . , ψ

P
j 6=n π(uj)+1

n (un)
)
.(6)

To check that the i-th entry in (5) and (6) represents the same set, we distin-
guish two cases:

• If
∑

j 6=i π(uj) = α is an even number, then ψα
i = Id (as ψi is involutive)

and Id
(
Γ+(ui)

)
= Γ+

(
Id(ui)

)
.

• If
∑

j 6=i π(uj) = β is an odd number, then ψβ
i = ψi and ψi

(
Γ−(ui)

)
=

Γ+
(
ψi(ui)

)
(as ψi is an automorphism from Gi to Gi) .

In the case of the Manhattan street network Mn, Gi = Ci (Proposition 2).
Then, a simple way of choosing the involutive automorphisms is the following:
ψi(ui) = −ui(mod Ni). In fact, it is readily checked that any isomorphism
from Ci to Ci is involutive. That gives the following definition of Mn [3,4]:
The Manhattan street network Mn = Mn(M1, . . . ,Mn) is the digraph with
vertex set ZN1 × ZN2 × · · · × ZNn and the adjacencies

(u1, u2, . . . , ui, . . . , un)  (−u1,−u2, . . . , ui+1, . . . ,−un) (1 ≤ i ≤ n).
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