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Complex Networks:
Deterministic Models.
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Abstract. The recent discovery that many networks associated with complex sys-
tems belong to a new category known as scale-free small-world has led to a surge
in the number of new models for these systems. Many studies are based on proba-
bilistic and statistical methods which capture well some of the basic properties of
the networks. More recently, a deterministic approach has proven useful to com-
plement and enhance the probabilistic and simulation techniques. In this paper,
after a short introduction to the main concepts and models, we survey recent
deterministic models.
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1. Introduction

Recent research shows that many networks associated with complex systems, like the
World Wide Web, the Internet, telephone networks, transportation systems (including
the power distribution network), and biological and social networks, belong to a class of
networks known as small-world scale-free networks [4,35,41,42,57,52]. These networks
exhibit both strong local clustering (nodes have many mutual neighbors) and a small
average path length and diameter (maximum distance between any two nodes). Another
important common characteristic is that the number of links attached to the nodes usu-
ally obeys a power-law distribution (is scale-free). Moreover, introducing a new measur-
ing technique, it has recently been discovered that many real networks are self-similar,
see [70]. Along these observational studies, researchers have developed different models
and techniques -borrowed in some cases from statistical physics, computer science and
graph theory- which should help us to understand and predict the behavior and charac-
teristics of the systems. The origin of the interest in these studies may be found in the
papers by Watts and Strogatz on small-world networks [75] and Barabási and Albert on
scale-free networks [9]. Since then the study of complex networks has received a consid-
erable boost as an interdisciplinary subject. Several excellent general reviews and books
are available, and therefore in this paper we refer to them for the reader who would like
to obtain more information on the topic, see references [74,71,3,31,11,58,73,8,20,32,67].

1Correspondence to: Francesc Comellas, Dep. Matemàtica Aplicada IV, EPSC, Universitat
Politècnica de Catalunya, Avda. Canal Oĺımpic s/n, 08860 Castelldefels, Barcelona, Catalonia, Spain



276 F. Comellas / Complex Networks: Deterministic Models

To describe these complex networks several models have been proposed and anal-
ysed through simulations and considering probabilistic methods. The first, which trig-
gered a sharp interest in the studies of the different properties of small-world, was the
simple computational method to produce small-world netkorks proposed by Watts and
Strogatz in their often cited paper [75]. Shortly after, Barabási and Albert [9,12] in-
troduced a network model which uses two main mechanisms to produce a power-law
distribution for the degrees: growth and preferential attachment. Dorogovtsev, Mendes,
and Samukhin [33] use a “master-equation” to obtain an exact solution for a class of
growing network models, Krapivsky, Redner, and Leyvraz [48] examined the effect of
a nonlinear preferential attachment on network dynamics and topology. Models that
incorporate aging and cost and capacity constraints were studied by Amaral et al. [6]
to explain deviations from the power-law behavior in several real-life networks. Doro-
govtsev and Mendes [28] also considered the evolution of networks with aging of sites.
Bianconi and Barabási [16] introduced a model addressing the competitive aspect of
many real networks such as the WWW. Additionally, in real systems microscopic events
affect the network evolution, including the addition or rewiring of new edges or the
removal of vertices or edges. Albert and Barabási [2] discussed a model that incorpo-
rates new edges between existing vertices and the rewiring of old edges. Dorogovtsev
and Mendes [29] considered a class of undirected models in which new edges are added
between old vertices and existing edges can be removed. It is now well established that
preferential attachment can explain the power-law characteristic of networks, but some
other alternative mechanisms affecting the evolution of growing networks can also lead
to the observed scale-free topologies. Kleinberg et al. [46] and Kumar et al. [49,50]
suggested certain copying mechanisms in an attempt to explain the power-law degree
distribution of the World Wide Web. Chung et al. [26] also introduced a duplication
model for biological networks. Krapivsky and Render [47] use an edge redirection mech-
anism which is equivalent to the model of Kumar et al [49,50]. All of these models have
been studied intensively. Barthélémy and Amaral studied the origins of the small-world
behavior in Ref. [15]. Barrat and Weigt addressed analytically as well as numerically
the structure properties of the Watts-Strogatz model [13]. Amaral et al. investigated
the statistical characteristics of many real-life networks [6]. Latora and Marchiori intro-
duced the concept of efficiency of a network and found that small-world networks are
both globally and locally efficient [51]. References [65,56,66,61] deal with the percolation
properties of the networks and in particular the spread of information and disease along
the shortest path in the graph or the spanning trees. More recently, researchers have
also focused their attention on other aspects characterising properties of small-world
scale-free networks [62,53,39,38,19,36,17,44].

While most of the models referenced above are stochastically produced and anal-
ysed, small-world scale-free networks can be created also by deterministic methods.
Deterministic models have the strong advantage that it is often possible to compute
analytically their properties, which may be compared with experimental data from
real and simulated networks. Deterministic networks can be created by various tech-
niques: modification of some regular graphs [23], addition and product of graphs [25],
and other mathematical methods, like those which appear in [84]. Another important
technique producing families of deterministic small-world scale-free networks is based
on recursive techniques. Recursive and general scale-free constructions are given in
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[12,25,43,27,68,63]. Recursive methods based on the existence of cliques in a given net-
work have appeared in [22,84,7,34,80,81,79].

After a short introduction to the basic definitions and models on probabilistic con-
structions, we present a review of recent deterministic models, mainly graph construc-
tions which share the property that the graphs contain many complete subgraphs. Al-
though with different names (hierarchical, pseudo-fractal, Apollonian, geometrical, re-
cursive cliques) they all consider the same principle: the successive addition of vertices,
each one connected to all the vertices of a subgraph isomorphic to a clique or complete
graph. The rule used to add vertices produce different final networks sharing many ba-
sic properties: they are small-world, scale-free, with high clustering, and small average
distance.

2. Basic properties of complex networks

Many measures and parameters have been considered and studied to analyze complex
networks. The use of certain subsets is in most cases sufficient to capture the rough
structure of a given network. Recent research focuses on three main concepts, namely the
mean distance of the network (average path length) -and in some cases the diameter-,
the clustering coefficient and the degree distribution.

Although the interest in the analysis of networks has always been present in the
scientific community through the work in social sciences, the paper from Watts and
Strogatz [75] extended this interest to other scientists. In their work they produce
networks with a small average path length, similar to that of a random graph, and
a relatively large clustering coefficient, as occurs in many structured networks, and
show that real networks like the WWW, a power grid, and the neuronal network of
the worm C. Elegans have a similar relation. A few months later, Barabási and Albert
[9] discovered that many of these networks have a degree distribution that follows a
power law (are scale-free), and introduced a model to produce that distribution. In this
section we provide a short introduction to these concepts.

First we give the following definitions, see also [76].
A network is represented by a graph G = (V,E) with vertex (node) set V = V (G),

and edge (link) set E = E(G). The order of the graph, n = |V |, is the number of
vertices or nodes of it. The degree of a vertex i, which we denote ki, is the number of
edges incident to i and the degree of a graph G is ∆ = maxi∈V ki. A graph is ∆-regular
if the degree of all its vertices is ∆.

A complete graph Kd (also referred in the literature as a d-clique) is a graph with
d vertices, where there are no loops or multiple edges and every vertex is joined to
every other by an edge. Generally speaking, two graphs are said to be isomorphic if the
vertices and edges of one graph match up with vertices and edges of the other, and the
edge matching is consistent with the vertex matching.

The basic family of graphs considered by Watts and Strogats (and other studies)
are known as circulant graphs. They considered the particular case Cn,∆, ∆ even, which
has n nodes labelled with the integers modulo n, and ∆ links per node such that each
node i is adjacent to the nodes i± 1, i± 2, · · · , i± ∆

2 (mod n).
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Diameter and mean distance

In a graph the distance between two vertices i and j, d(i, j), is defined as the number
of edges along the shortest path between i and j. The maximum distance between any
pair of vertices, D = maxi,j∈V d(i, j), is the diameter of the graph. The mean distance

of the graph is defined to be
1

n(n− 1)

∑
i,j∈V

d(i, j). In some probabilistic models the

average path length (APL) of the network is introduced as the average value of d(i, j),
with i and j chosen uniformly at random. In a social network, for example, the APL is
associated with the average number of acquitances existing in the shortest chain which
connects any two persons of the network. Note that all these definitions only make sense
if we require that the graph is connected.

As Watts and Strogatz noticed in [75], the average path length of most real complex
networks is relatively small, even when the networks are sparse (they have many fewer
edges than a complete graph with the same number of nodes). Some authors call this
the small-world effect, and hence the name small-world networks. However, random
networks also have a small diameter (and mean distance) [18] and they are different
from real networks. For this reason it is perhaps better to refer to small-world networks
as those networks that also have a relatively large clustering with respect to a similar
random network.

Clustering coefficient

Clustering measures the “connectedness” of a graph and is another of the parameters
used to characterize small-world networks. For example, in a friendship network, it’s
very likely that two of your friends are also friends with each other, reflecting the
clustering nature of this social network.

The clustering coefficient was introduced to quantify this concept. First, for each
node i of a graph G, Ci is defined as the fraction of the ki(ki−1)

2 possible edges among
the neighbours of i that are present in G. More precisely, εi is the number of edges
connecting the ki vertices adjacent to the vertex i, the clustering coefficient of the vertex
is Ci = 2εi

ki(ki−1) . Then the clustering coefficient of G, denoted CG, is the average over
all nodes i ∈ V (G) of Ci.

Obviously, the clustering coefficient varies between 0 and 1. A value near 0 means
that most of the vertices connected to any given vertex i are not connected to each
other. Conversely, a value near 1 means that those neighbours tend to be connected to
one another.

Degree Distribution

One simple and important characteristic of a given vertex is its degree. The degree ki

of a vertex gives the total number of its connections. The average of ki over all i is
called the average degree of the network, and is denoted by < k >. The spread of vertex
degrees over a graph can be characterized by a distribution function P (k), which gives
the probability that a randomly selected vertex has degree k.

A structured graph, for example a circulant graph Cn,∆, which is regular will have
a degree distribution containing a single sharp spike (delta distribution). In a random
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network (in the Erdős-Rényi model) the degree sequence will obey the well known Pois-
son distribution with a peak value in < k > and exponential declines. (The probability
of finding vertices with k edges is negligible for k � < k >.) In the past few years,
many observational results showed that for most real large-scale networks the degree
distribution deviates significantly from the Poisson distribution and in many instances
the degree distribution can be better described by a power law, P (k) ∝ k−γ . Because
these power-laws are free of any characteristic scale, such a network with a power-law
degree distribution is called a scale-free network.

3. Complex Network Models

3.1. Watts-Strogatz small-world graphs

Watts and Strogatz suggest a simple method for constructing graphs with the small
world property [75]. The method is as follows. Start with a circulant graph Cn,∆, then
choose vertex 0 and the edge that connects it to 1. With probability p, reconnect this
edge to a vertex chosen uniformly at random over the entire set of vertices (without
duplicating any edge); otherwise do not change it. The process is repeated for all the
remaining vertices in succession (1, . . . , n) considering each vertex in turn until one lap is
completed. Next, do the same process with the edges connecting i to i+2, i = 0, 1, . . . , n,
as before, randomly rewire each of these edges with probability p, and continue this
process, circulating around the ring and proceeding outward to more distant neighbours,
i + 2, i + 3, · · · , i + ∆/2, after each lap, until each edge in the original graph Cn,∆ has
been considered once. Therefore the rewiring process stops after ∆/2 laps. With this
process, for p = 0, the original graph is unchanged whereas for p = 1 when all edges
are rewired randomly (in that case we obtain a random graph which has a Gaussian
degree distribution). Intermediate values for p lead to different states of disorder. With
p around 0.01 small-world graphs are obtained with a large clustering coefficient, similar
to the starting graph, and a small average path length and diameter, as in a random
graph [18]. (See Fig. 2.)

Watts and Strogatz realized that their model captures some aspects of many real
networks, namely, they have a low average path length and diameter, in relation to
a random network with a similar order and size, while they have a relatively high
clustering (the clustering coefficient of a random network is almost zero), see Table 1.

Table 1. Values of parameters for some real small-world scale-free networks, see [75].

Network order APL < k > Clustering γ

WWW 153,127 3.1 35.21 0.11 1.94 [1]

Internet (domain) [35] 3,015 3.52 4.75 0.18 2.1

Power grid 4,014 18.7 2.67 0.08 4

Silwood Pk food web [55] 154 3.40 4.75 0.15 4.75

C. Elegans 282 2.65 14 0.28 -

Movie actors 225,226 3.65 61 0.79 2.3
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3.2. Barabási-Albert scale-free graphs.

To explain the origin of the power-law degree distribution of real networks, Barabási and
Albert proposed and analyzed a simple graph model (BA) based on two main concepts
growth and preferential attachment. In this model a graph is dynamically formed by
a continuous addition of new vertices. Each new vertex is joined to several existing
vertices selected proportionally to their degree.

The generation algorithm of a BA scale-free graph is as follows:
Growth: Start with a small number, m0, of vertices. At each step, a new vertex is

introduced and is connected to m < m0 already existing vertives.
Preferential attachment: The probability that the new vertex will be connected to

an existing vertex i depends on its degree ki according to P (ki) = ki/
∑

j∈V kj .
Considering these two rules, they proved analytically that the graph evolves into a

scale-invariant state: The shape of the degree distribution does not change over the time
and it is described by a power law P (k) ∝ k−γ , with γ = 3. This means that scale-free
graphs have a few nodes with a high degree (called hubs). The analytical results can
be contrasted easily with numerical simulations and compared with a random network
produced according to the Erdős-Rényi method (start with a given number of vertices
and add edges connected at random), see Fig. 1. The BA model does not allow, however,
the analytical computations of the average path length and the clustering coefficient.
It is, therefore, a minimal model capturing the mechanisms responsible for the power
law degree distribution, but with some evident limitations when compared to some
real-world networks (as it does not explain their relatively high clustering).

k

P(k)

<k>

P(k)

k1                               100                             10000

Figure 1. A Gaussian distribution of degrees for an Erdős-Rényi random network and a power law
distribution obtained with preferential attachment [9].

The BA model has allowed a thorough study of some important properties of real
world networks. One of them, robustness to the random failure of nodes [4], is a result
of the networks tend to stay connected, maintaining an small APL, when a node is
deleted at random (this is because the probability of deleting a hub is small). However,
they are particularly vulnerable to targeted attacks addressed to remove hubs.

Other models have been proposed to overcome some of the limitations of the BA
model and to produce scale-free networks with a small average path length and relatively
high clustering, see the references given in the introduction.
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(a) (b)

(c) (d)

Figure 2. (a) C(16, 4), a circulant graph. (b) Random graph. (c) Small-world graph. (d) Scale-free
graph.

4. Deterministic small-world scale-free graphs

In contrast to the random models of Watts and Strogatz and Barabási and Albert, and
many other modifications and variations, it is possible to produce small-world scale-
free graphs deterministically. The deterministic model very often allows a complete
analytical study of the relevant parameters of the graphs and can be contrasted with
the random model.

As most real life networks are clustered, this characteristic can be reproduced in
the deterministic model by considering complete graphs (or cliques). This is one of the
reasons why many deterministic models are based on complete graphs.

In this section we will introduce several deterministic models and compare, in some
cases, with their randomized versions.

4.1. Deterministic WS small-world graphs

In [23], small-world networks were constructed by choosing h nodes of Cn,∆ to be
hubs and then using a graph with a very small diameter (star graph, complete graph,
optimal double loop, etc.) of order h to interconnect the hubs. In this way, the clustering
parameter of the final graph is high and very near to that of the original graph while the
diameter is reduced considerably. This deterministic construction allows an analytical
computation of all its main characteristics which can be compared with the numerical
simulation, see Fig. 3.



282 F. Comellas / Complex Networks: Deterministic Models

0.0001 0.001 0.01 0.1 1
0.0

0.2

0.4

0.6

0.8

1.0

clustering deterministic

clustering numerical

diameter deterministic

diameter numerical

p

Figure 3. Comparison of the values of the diameter and clustering obtained according to the simulation
model of the Watts and Strogatz [75] with those from the deterministic model introduced in [23].

4.2. Small-world scale-free networks from graph products and sums

Two simple deterministic construction techniques for small-world networks were intro-
duced in [25]. The first method uses a replacement of vertices of a graph by clustered
graphs (graph product). If the original graph has a low diameter and we use cliques to
replace the vertices, a graph with low diameter and high clustering is obtained.

In a second construction a small-world network is obtained by connecting the nodes
of a network of diameter d to a complete network of any size, which may be different
from node to node. In this case the resulting network has diameter d+2, high clustering
and nodes may have a different number of neighbors. This technique is very flexible as
it allows different final degree distributions, including scale-free networks.

4.3. Hierachical networks

In [12], Barabási et al. introduced a simple hierarchical family of networks and showed it
had a small-world scale-free nature. In [40] the authors compute some other properties
of this family of graphs (like the spectrum.) The model is generalized in [68] and further
studied in [63]. Hierachical graphs have been used to model metabolic networks in [69].
Several authors claim that a signature for a hierarchical network is that other than the
small-world scale-free characteristics the clustering of the vertices of the graph follows
Ci ∝ 1/ki. Hierarchical networks can be constructed starting from a complete graph Kn

and connecting to a selected root node n− 1 replicas of Kn. Next, n− 1 replicas of the
new whole structure are added, to the root. At this step the graph will have n3 vertices.
The process continues until we reach the desired graph size. There are many variations
for these hierarchical networks, depending on the initial graph , the introduction of
extra edges among the different copies of the complete subgraphs, etc. However, given
the starting graph, they have no parameters to adjust and the main characteristics
become fixed. In [14] a general model is considered and a labeling system introduced to
allow the study of routing and other communication properties of hierachical networks.
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(a)

)c()b(

Figure 4. Recursive construction of an hierarchical network based on K4, from [14].

4.4. Deterministic recursive clique-trees

While in the hierarchical models the deletion of some edges leads to the decomposition of
the graph into different complete graphs, another construction, also based on complete
graphs, intermixes them producing a more complex structure.

A generic recursive d−clique-tree is a graph theoretical construction which starts at
t = 0 with a complete graph K(d, 0) = Kd. For any step t ≥ 1, the clique-tree K(d, t)
is constructed from K(d, t−1) by selecting one or more existing d-cliques in K(d, t−1)
and adding, for each clique, a new vertex connected to all the vertices of the clique. See
Fig. 5. Note that a recursive clique-tree is a graph which contains numerous cycles and
hence it is not a tree in the strict sense.

Kd Kd

Kd

Kd

K(d,t-1) K(d,t)

Figure 5. Iterative construction of a deterministic clique-tree graph.

Several modifications of this general construction have been considered and are
discussed next. Different networks are assocaited to the choice of the value d. Authors
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have considered d = 2, d = 3 and the general case d (d ∈ N, d ≥ 2). It is also important
the way to select the existing d-cliques which will be joined to a new vertex: If we
select all the cliques (even those that have been used before) we have complete recursive
clique-trees [22] which include, as a particular case, pseudo-fractal networks [27] (when
d = 2). If we just select cliques which have never been used before we obtain (for any
d ≥ 3) high dimensional Apollonian networks [34,81], which include for d = 3 Apollonian
networks [7,34]. Table 2 summarizes these deterministic constructions.

Table 2. Deterministic recursive clique-tree constructions.

Adding at the same time a vertex Adding at the same time a vertex
to each d-clique with repetition to each d-clique without repetition

Case Pseudofractal scale-free Deterministic SW network
d = 2 Dorogotsev, Goltsev, Mendes Zhang, Rong, Guo

Phys.Rev.E 65 (2002) 066122 Physica A cond-mat/0503637

Case Apollonian network
d = 3 Andrade, Herrmann, Andrade, Silva

Phys.Rev.Lett. 94 (2005) 018702
Doye, Massen
Phys. Rev. E 71 (2005) 016128.

General case Recursive clique-trees High dimensional Apollonian network
d = 2 . . .∞ Comellas, Fertin, Raspaud Zhang, Comellas, Fertin, Rong
(includes Phys.Rev.E 69 (2004) 037104. J. Phys. A. 39 (2006) 1811
cases d=2,3) (introduced by Doye and Massen,

Phys. Rev. E 71 (2005) 016128.)

4.5. Random recursive clique-trees

The same clique-based principles used for the deterministic constructions can be used
to produce graphs generated randomly. Interestingly, the final graphs differ in several
values of the parameters. In some cases the discrepancy can be explained by a biased
choice of the substructures selected in the process of growing the random graph, see [24].

If we select randomly a clique (allowing even those that have been used before),
we have, for generic d, random recursive clique-trees studied in the Appendix of this
survey. If we select randomly a clique (avoiding repetitions), we have, for generic d, high
dimensional random Apollonian networks [80]. which include, as the particular case
d = 3 random Apollonian networks [82].

We note that it is possible, for random constructions, to introduce a parameter
to control part of the structural properties of the growing network. By tuning this
parameter, one can allow the introduction at each step of one vertex attached to one
clique or different vertices attached to different cliques up to the deterministic case. For
d = 2, avoiding clique repetitions, this has been studied in [80]. A similar study could
easily be done for the general case.

Finally, the next table compares the values of the (asymptotical) degree distribution
(scale-free in most cases, in which case we give the γ exponent) of Apollonian graphs [7],
random Apollonian graphs [82], their high dimensional versions [81,80] (they include
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Table 3. Random recursive clique-tree constructions.

Adding a single vertex to a Adding a single vertex to a
random clique with repetition random clique without repetition

Case Random SW network
d = 2 Ozik, Hunt, Ott

Phys.Rev.E 69 (2004) 02618

Case Random Apollonian network
d = 3 Zhou, Yan, Wang

Phys.Rev.E 71 (2005) 046141

General case Random recursive clique-tree HD random Apollonian network
d = 2 . . .∞ see Appendix Zhang, Comellas, Rong
(includes Physica A. cond-mat/0502591
cases d=2,3)

as particular cases the former two families of graphs). We also present the random
versions of the pseudo fractal scale-free graphs (introduced by Dorogovtsev, Goltsev and
Mendes [27], their generalization, complete recursive clique-trees [22] and the so-called
deterministic and random small-world graphs from [77,78]. We observe that these last
two cases do not produce scale-free networks.

Table 4. Comparison of deterministic and random Apollonian graphs and recursive clique-trees.

Graph family P (k) or γ-exponent Clustering

Deterministic SW [78] 2−
k
2 0.69 = ln 2

Random SW [77] 3
4
( 2
3
)−k 0.65( = 3

2
ln 3− 1)

Apollonian [7,34] 2.58(= 1 + ln 3
ln 2

) 0.83

Random Apollonian [82] 3N−5
N

≈ 3 0.74( = 46
3
− 36 ln 3

2
)

High-Dim. Apollonian [81] 1 +
ln(d+1)

ln d
(2 to 2.58) 0.83 to 1

High-Dim. Random Apollonian [80] 2d−1
d−1

2 to 3 0.74 to 1

Pseudo fractal scale-free [27] 1 + ln 3
ln 2

= 2.58 0.80(= 4
5
)

Random pseudo fractal scale-free 5
2

= 2.5

Determ. recursive clique-trees [22] 1 +
ln(d+1)

ln d
(2 to 2.58) 0.80 to 1

Random rec. clique-trees [see Appendix] 2d−1
d−1

(2 to 3) 0.74 to 1
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APPENDIX: Deterministic vs random recursive clique-trees.

In this appendix we compute analytically the order, size and degree distribution of
deterministic recursive clique-trees and their random variations.

5.1. Deterministic recursive clique-trees

The results for the values of the order, size, clustering, degree distribution and diameter
of recursive clique-trees appeared in [22]. In this section we provide an alternative
simpler method for the calculation of some of these parameters.

We denote a deterministic recursive d-clique-tree network after t iterations by
K(d, t), d ≥ 2, t ≥ 0. Then this deterministic recursive clique-tree network at step t
is constructed as follows: For t = 0, K(d, 0) is the complete graph Kd (or d-clique),
and K(d, 0) has d vertices and d(d − 1)/2 edges. For t ≥ 1, K(d, t) is obtained from
K(d, t− 1) by adding, for each of its existing subgraphs isomorphic to a d-clique, a new
vertex and joining it to all the vertices of this subgraph (see Fig. 5). Then, at t = 1, we
add one new vertex and d new edges to the graph, creating d new d-cliques. Therefore,
at t = 2 we add d + 1 new vertices, each of them connected to all the vertices of one of
the d + 1 cliques Kd and we introduce d(d + 1) new edges, and so on.

Note that the addition of each new vertex leads to d new d-cliques and d new
edges. So the number of new vertices and edges at step ti is Lv(ti) = (d + 1)ti−1

and Le(ti) = d(d + 1)ti−1, respectively. Therefore, a deterministic recursive clique-tree
K(d, t) is a growing network, whose number of vertices increases exponentially with
time.

Thus we can easily see that at step t, the network K(d, t) has

Nt = d +
t∑

ti=1

Lv(ti) =
(d + 1)t − 1

d
+ d (1)

vertices and total number of edges is:

|E|t =
d(d− 1)

2
+

t∑
ti=1

Le(ti) =
d(d− 1)

2
+ (d + 1)t − 1 (2)

Table 5. Number of new edges added to K(d, t) at each step and the total number of Kd’s at this step.

Step New edges Number of Kd

0
d(d−1)

2
1

1 d d + 1

2 d(d + 1) d(d + 1) + (d + 1) = (d + 1)2

3 d(d + 1)2 d(d + 1)2 + (d + 1)2 = (d + 1)3

· · · · · · · · ·
i d(d + 1)i−1 (d + 1)i

i+1 d(d + 1)i d(d + 1)i + (d + 1)i = (d + 1)i+1

· · · · · · · · ·

The average degree kt is then
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kt =
2|E|t
Nt

=
2d(d + 1)t + d3 − d2 − 2d

(d + 1)t + d2 − 1
. (3)

For large t it is approximately 2d. We can see when t is large enough the resulting
networks are sparse graphs as for many real-world networks whose vertices have a lot
less connections than the maximum possible.

We see that the dimension d is a tunable parameter controlling all the relevant
characteristics of the network.

When a new vertex i is added to the graph at step ti (ti ≥ 1), it has degree d and
forms d new d-cliques. From the iterative algorithm, we can see that each new neighbor
of i generated d − 1 new d-cliques with i as one vertex of them. In the next iteration,
these d-cliques add to the already existing cliques and introduce new vertices that are
connected to the vertex i. Let ki(t) be the degree of i at step t (t > ti + 1). Then,

∆ki(t) = ki(t)− ki(t− 1) = d∆ki(t− 1) (4)

combining the initial condition ki(ti) = d and ∆ki(ti + 1) = d, we obtain

∆ki(t) = dt−ti (5)

and the degree of vertex i becomes

ki(t) =
t∑

tm=ti

∆ki(tm) =d

(
dt−ti − 1

d− 1
+ 1

)
. (6)

The distribution of all vertices and their degrees at step t is given in Table 6.

Table 6. Distribution of vertices and their degrees for K(d, t) at step t.

Num. vert. Degree

d + 1 d +
∑t−1

j=1
dj

d + 1 d +
∑t−2

j=1
dj

· · · · · ·
(d + 1)t−2 2d

(d + 1)t−1 d

Therefore, the degree spectrum of the graph is discrete and some values of the
degree are absent. To relate the exponent of this discrete degree distribution to the
standard γ exponent as defined for continuous degree distribution, we use a cumulative
distribution Pcum(k) ≡

∑
k′≥k N(k′, t)/Nt ∼ k1−γ . Here k and k′ are points of the

discrete degree spectrum. The analytic computation details are given as follows.
For a degree k

k = d

(
dt−l − 1
d− 1

+ 1
)

,

there are dl−1 vertices with this exact degree, all of which were introduced at step l.
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All vertices introduced at step l or earlier have this or a higher degree. So we have

∑
k′≥k

N(k′, t) = d +
l∑

s=1

Lv(s) =
(d + 1)l − 1

d
+ d.

As the total number of vertices at step t is given in Eq. (1) we have[
d(

dt−l − 1
d− 1

+ 1)
]1−γ

=
(d+1)l−1

d + d
(d+1)t−1

d + d

=
(d + 1)l + d2 − 1
(d + 1)t + d2 − 1

(7)

Therefore, for large t we obtain

(dt−l)1−γ = (d + 1)l−t

and

γ ≈ 1 +
ln(d + 1)

ln d
(8)

so that 2 < γ < 2.58496.
Notice that when t gets large, the maximal degree of a vertex is roughly equal to

dt−1 ∼ N
ln d/ ln(d+1)
t = N

1/(γ−1)
t .

5.2. Random recursive clique-trees

In this section we study the random version of the construction of the last section.
A random recursive d-clique-tree network after t iterations is denoted by R(d, t),

d ≥ 2, t ≥ 0 and it is constructed as follows: For t = 0, R(d, 0) is the complete graph Kd

(or d-clique), and it has d vertices and d(d− 1)/2 edges. For t ≥ 1, R(d, t) is obtained
from R(d, t− 1) by adding to one randomly selected subgraph isomorphic to a d-clique
a new vertex and joining it to all the vertices of this subgraph. This construction
differs from the deterministic complete clique-tree of the last subsection in what at each
iteration step only one vertex is added (and joined to a randomly selected clique). The
selection of cliques which have been used before is allowed.

Since the network size is incremented by one with each step, we use the step value t
to represent a vertex created at this step. We can see easily that at step t, the network
has of N = d + t vertices.

We can compute the degree distribution as follows: First note that, after a new
vertex is added, its degree is d and the number of d-cliques that can be chosen in the
following step increases by d. If the degree of a vertex increases by 1, then this vertex
belongs to d − 1 more cliques which could be chosen at any following step. When a
vertex i attains degree ki the number of Kd to which it belongs is:

d + (ki − d)(d− 1) = ki(d− 1)− d2 + 2d
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Table 7. Distribution of vertices and number of Kd’s for the random recursive clique tree R(d, t) at
each step t.

Step (i) Num. vertices Number of Kd

0 d 1

1 d + 1 (d + 1)

2 d + 2 (d + 1) + d

3 d + 3 (d + 1) + d + d

· · · · · · · · ·
t d + t (d + 1) + d + · · ·+ d =

= td + 1

The first term is the degree of the vertex when it is introduced to the network (equal to
the number of Kd to which it belongs). The second is the increase of degree up to when
it reaches degree ki times d − 1 (the number of cliques introduced at each increase of
degree by one unit). Note that after t steps the number of (d + 1)-cliques available for
selection is td + 1.

If we consider k to be continuous, we can write for a vertex i

∂ki

∂t
=

ki(d− 1)− d2 + 2d

td + 1
. (9)

The solution of this equation, with the initial condition that vertex i was added to the
network at ti with degree ki(ti) = d, is

ki(t) =
d(d− 2)
(d− 1)

+
d

(d− 1)

(
dt + 1
dti + 1

) (d−1)
d

(10)

The probability that a vertex has a degree ki(t) smaller than k, P (ki(t) < k), is

P (ki(t) < k) = P

ti >
(dt + 1)

(
d

d−1

) d
d−1

d
(
k − d(d−2)

(d−1)

) d
d−1

− 1
d

 . (11)

Assuming that we add the vertices to the network at equal intervals, the probability
density of ti is

Pi(ti) =
1

d + t
. (12)

Substituting this into Eq. (3) we obtain that

P

ti >
(dt + 1)

(
d

d−1

) d
d−1

d
(
k − d(d−2)

(d−1)

) d
d−1

− 1
d

 = (13)
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= 1− P

ti ≤
(dt + 1)

(
d

d−1

) d
d−1

d
(
k − d(d−2)

(d−1)

) d
d−1

− 1
d

 =

= 1−
(dt + 1)

(
d

d−1

) d
d−1

(d + t)d
(
k − d(d−2)

(d−1)

) d
d−1

+
1

(d + t)d
.

Thus the degree distribution is

P (k) =
∂P (ki(t) < k)

∂k
=

(dt + 1)d
d

d−1

(d + t)
((d− 1)k − d(d− 2))

1−2d
d−1 . (14)

For large t

P (k) = d
2d−1
d−1 ((d− 1)k − (d(d− 2))

1−2d
d−1 (15)

and if k � d then P (k) ∼ k−γ with a degree exponent γ(d) = 2d−1
d−1 .

When d = 2 one has γ(2) = 3, while as d goes to infinity γ(∞) = 2.
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