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Abstract

The number of spanning trees of a graph is an important invariant re-
lated to topological and dynamic properties of the graph, such as its
reliability, communication aspects, synchronization, and so on. How-
ever, the practical enumeration of spanning trees and the study of their
properties remain a challenge, particularly for large networks. In this
paper, we study the number and degree distribution of the spanning
trees in the Hanoi graph. We first establish recursion relations between
the number of spanning trees and other spanning subgraphs of the
Hanoi graph, from which we find an exact analytical expression for the
number of spanning trees of the n-disc Hanoi graph. This result allows
the calculation of the spanning tree entropy which is then compared
with those for other graphs with the same average degree. Then, we
introduce a vertex labeling which allows to find, for each vertex of the
graph, its degree distribution among all possible spanning trees.

Keywords: Spanning trees, Tower of Hanoi graph, Degree distribution,
Fractal geometry

1. Introduction

The problem of finding the number of spanning trees of a finite
graph is a relevant and long standing question. It has been considered
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in different areas of mathematics [1], physics [2], and computer sci-
ence [3], since its introduction by Kirchhoff in 1847 [4]. This graph in-
variant is a parameter that characterizes the reliability of a network [5,
6, 7] and is related to its optimal synchronization [8] and the study of
random walks [9]. It is also of interest in theoretical chemistry, see
for example [10]. The number of spanning trees of a graph can be
computed, as shown in many basic texts on graph theory [11], from
Kirchhoff’s matrix-tree theorem [12] and it is given by the product of
all nonzero eigenvalues of the Laplacian matrix of the graph. Although
this result can be applied to any graph, the calculation of the number
of spanning trees from the matrix theorem is analytically and compu-
tationally demanding, in particular for large networks. Not surpris-
ingly, recent work has been devoted to finding alternative methods to
produce closed-form expressions for the number of spanning trees for
particular graphs such as grid graphs [13], lattices [14, 15, 16, 17], the
small-world Farey graph [18, 19, 20], the Sierpiński gasket [21, 22], self-
similar lattices [23, 24], etc.

Most of the previous work focused on counting spanning trees on
various graphs [1]. However, the number of spanning trees is an inte-
grated, coarse characteristic of a graph. Once the number of spanning
trees is determined, the next step is to explore and understand the
geometrical structure of spanning trees. In this context, it is of great
interest to compute the probability distribution of different coordina-
tion numbers at a given vertex among all the spanning trees [25], which
encodes useful information about the role the vertex plays in the whole
network. Due to the computational complexity of the calculation, this
geometrical feature of spanning trees has been studied only for very
few graphs, such as the Zd lattice [26], the square lattice [27], and the
Sierpiński graph [28]. It is non-trivial to study this geometrical struc-
ture for other graphs.

In this paper, we study the number and structure of spanning trees
of the Hanoi graph. This graph, which is also known as the Tower of
Hanoi graph [29], comes from the well known Tower of Hanoi puzzle,
as the graph is associated to the allowed moves in this puzzle. There
exist an abundant literature on the properties of the Hanoi graph, which
includes the study of shortest paths, average distance, planarity, Hamil-
tonian walks, group of symmetries, average eccentricity, to name a few,
see [29] and references therein. In [24], Teufl and Wagner obtained the
number of spanning trees of different self-similar lattices, including the
Hanoi graph. Here, based on the self-similarity of the Hanoi graph, we
enumerate its spanning trees and compute for each vertex of the graph
its degree distribution among all spanning trees.
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2. The Hanoi graph

The Hanoi graph is derived from the Tower of Hanoi puzzle with n

discs [29]. We can consider each legal distribution of the n discs on the
three peg, a state, as a vertex of the Hanoi graph, and an edge is defined
if one state can be transformed into another by moving one disc. If we
label the three pegs 0, 1 and 2, any legal distribution of the n discs can
be written as the vector/sequence ˛1˛2 : : : ˛n where ˛i (1 � i � n) gives
the location of the .n C 1 � i/th largest disc. We will denote as Hn the
Hanoi graph of n discs. Fig. 1 shows H1, H2 and H3.

Figure 1: Hanoi graphs H1, H2 and H3.

Note thatHnC1.n � 1/ can be obtained from three copies ofHn joined
by three edges, each one connecting a pair of vertices from two different
replicas of Hn, as shown in Fig. 2. From the construction rule, we find
that the number of vertices or order of Hn is 3n while the number of
edges is 3

2
.3n � 1/.

Figure 2: Construction rules for the Hanoi graph. HnC1 is obtained by connecting three
graphs Hn labeled here by H 1

n , H 2
n and H 3

n .
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In the next section will make use of this recursive construction to
find the number of spanning trees of Hn at any iteration step n.

3. The number of spanning trees in Hn

If we denote by Vn and En the number of vertices and edges of Hn,
then a spanning subgraph of Hn is a graph with the same vertex set as
Hn and a number of edges E 0n such that E 0n < En. A spanning tree of Hn

is a spanning subgraph that is a tree and thus E 0n D Vn � 1.
In this section we calculate the number of spanning trees of the

Hanoi graph Hn. We adapt the decimation method described in [30,
31, 32], which has also been successfully used to find the number
of spanning trees of the Sierpiński gasket [22], the Apollonian net-
work [33], and some fractal lattices [16]. This decimation method is
in fact the standard renormalization group a pproach [34] in statistical
physics, which applies to many enumeration problems on self-similar
graphs [35]. We make use of the particular structure of the Hanoi graph
to obtain a set of recursive equations for the number of spanning trees
and spanning subgraphs, which then can be solved by induction.

Let Sn denote the set of spanning trees of Hn. Let Pn (Rn, Tn) de-
note the set of spanning subgraphs of Hn, each of which consists of
two trees with the outmost vertex 22 : : : 2 (00 : : : 0, 11 : : : 1) belonging to
one tree while the other two outmost vertices being in the second tree.
And let Ln denote the set of spanning subgraphs of Hn, each of which
contains three trees with every outmost vertex in a different tree. These
five types of spanning subgraphs are illustrated schematically in Fig. 3,
where we use only the three outmost vertices to represent the graph
because the edges joining the subgraphs to which they belong provide
all the information needed to obtain the Hanoi graph at the next itera-
tion. Let sn, pn, rn, tn, and ln denote the cardinality of sets Sn, Pn, Rn, Tn,
and Ln, respectively.

Figure 3: Illustration for the five types of spanning subgraphs derived from Hn. Two
outmost vertices joined by a solid line are in one tree while two outmost vertices belong
to different trees if they are connected by a dashed line.
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Lemma 3.1. The five classes of subgraphs Sn, Pn, Rn, Tn and Ln form a
complete set because each one can be constructed iteratively from the
classes of subgraphs Sn�1, Pn�1, Rn�1, Tn�1 and Ln�1.

We do not prove this Lemma here, since we will enumerate each case.
However the proof follows from the fact that Hn can be constructed
from three Hn�1 by joining their outmost vertices and each of the five
subgraphs are associated with different ways to produce the spanning
trees.

Next we will establish a recursive relationship among the five param-
eters sn, pn, rn, tn and ln. We notice that the equation pn D rn D tn holds
as a result of symmetry, thus, in some places of the following text, we
will use pn instead of rn and tn.

Lemma 3.2. For the Hanoi graph Hn with n � 1,

snC1 D 3s
3
n C 6s

2
npn ; (1)

pnC1 D s
3
n C 7s

2
npn C 7snp

2
n C s

2
nln ; (2)

lnC1 D s
3
n C 12s

2
npn C 3s

2
nln C 36snp

2
n C 12snpnln C 14l

3
n : (3)

Proof. This lemma can be proved graphically. Fig. 4 shows a graph-
ical representation of Eq. (1). Fig. 5 provides a case enumeration for
pnC1. Fig. 6 and Fig. 7 give the enumeration detail of all configurations
that contribute to lnC1. �

Figure 4: Illustration of the configurations needed to find snC1.

Lemma 3.3. For the Hanoi graph Hn with n � 1, snln D 3p2
n.

Proof. By induction. For n D 1, using the initial conditions s1 D 3,
p1 D 1 and l1 D 1, the result is true. Let us assume that for n D k, the
lemma is true. For n D k C 1, using Lemma 3.2, we have that

skC1lkC1 � 3p
2
kC1 D .3s

3
k C 6s

2
kpk/.s

3
k C 12s

2
kpk C 3s

2
klk C 36skp

2
k C 12skpklk

C 14p3
k/ � 3.s

3
k C 7s

2
kpk C 7skp

2
k C s

2
klk/

2

D 3s2
k.s

2
k C 4skpk C 7p

2
k � sklk/.sklk � 3p

2
k/ :

By induction hypothesis sklk � 3p2
k
D 0, we obtain the result. �
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Figure 5: Illustration of the configurations needed to find pnC1.

Lemma 3.4. For the Hanoi graph Hn with n � 1, snC1

s3
n

D
5n

3n�1 .

Proof. From Eq. (1), we have

snC1

s3
n

D
3s3

n C 6s
2
npn

s3
n

D 3C 6
pn

sn
;

which can be rewritten as

pn

sn
D
1

6

�
snC1

s3
n

� 3

�
:

Using Eq. (2) and Lemma 3.3, we obtain

pnC1

s3
n

D 1C 7
pn

sn
C 10

�
pn

sn

�2

D 1C 7

�
1

6

�
snC1

s3
n

� 3

��
C 10

�
1

6

�
snC1

s3
n

� 3

��2

D �
snC1

2s3
n

C
5s2

nC1

18s6
n

;

which leads to

pnC1

snC1

D
pnC1

s3
n

s3
n

snC1

D

 
�
snC1

2s3
n

C
5s2

nC1

18s6
n

!
s3

n

snC1

D �
1

2
C
5snC1

18s3
n

:

According to Eq. (1), we have snC2 D 3s
3
nC1 C 6s

2
nC1pnC1 and

snC2

s3
nC1

D 3C 6
pnC1

snC1

D 3C 6

�
�
1

2
C
5snC1

18s3
n

�
D
5snC1

3s3
n

;
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Figure 6: Spanning subgraphs of HnC1 that contribute to the term s3
nC12s2

npnC3s2
nlnC

12snpnln C 14p3
n of lnC1.

which, together with the initial condition s2

s3
1

D 5 yields

snC1

s3
n

D
5n

3n�1
:

�
We now give one of the main results of this paper.

Theorem 3.5. For the Hanoi graph Hn, with n � 1, the number of span-
ning trees sn and spanning subgraphs pn and ln is

sn D 3
1
4 3nC 1

2 n� 1
4 � 5

1
4 3n� 1

2 n� 1
4 ; (4)

pn D
1

6
�
5n � 3n

5n
� 3

1
4 3n� 1

2 nC 3
4 � 5

1
4 3nC 1

2 n� 1
4 ; (5)

ln D
1

4
� .3n
� 5n/

2
� 3

1
4 3n� 3

2 nC 3
4 � 5

1
4 3n� 1

2 n� 1
4 : (6)

Proof. From Lemma 3.4, we have snC1 D
5n

3n�1 s
3
n, which with initial

condition s1 D 3 gives Eq. (4).
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Figure 7: Spanning subgraphs of HnC1 that contribute to the term 36snp2
n of lnC1.

From the proof of Lemma 3.4 we know that pn D
snC1�3s3

n

6s2
n

. Inserting

the expressions for snC1 and sn in Eq. (4) into this formula leads to pn.

Lemma 3.3 gives ln D
3p2

n

sn
. Using the obtained results for sn and pn,

we arrive at ln. �
Note that Eq. (4) was previously obtained [23] by using a different

method.
After finding an explicit expression for the number of spanning trees

of Hn, we now calculate its spanning tree entropy which is defined as:

h D lim
Vn!1

sn

Vn

(7)

where Vn denotes the number of vertices, see [36].
Thus, for the Hanoi graph we obtain h D 1

4
.ln 3C ln 5/ ' 0:677.

We can compare this asymptotic value of the entropy of the span-
ning trees of Hn with those of other graphs with the same average de-
gree. For example, the value for the honeycomb lattice is 0.807 [14]
and the 4-8-8 (bathroom tile) and 3-12-12 lattices have entropy values
0.787 and 0.721, respectively [15]. Thus, the asymptotic value for the
Hanoi graph is the lowest reported for graphs with average degree 3.
This reflects the fact that the number of spanning trees in Hn, although
growing exponentially, does so at a lower rate than lattices with the
same average degree.
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4. The degree distribution for a vertex of the spanning trees

In this section, we compute the probabilities of different coordi-
nation numbers at a given vertex on a random spanning tree on the
Hanoi graph Hn. We note that, by using similar techniques, it has
been possible to obtain more results for the closely related Siperpiński
graphs [28, 37]. In the previous calculation, each vertex of Hn corre-
sponds to a state/configuration of all n disks and thus is labeled by an
n-tuple α D ˛1˛2 � � �˛n.

In what follows for the convenience of description, we provide an
alternative way of labeling vertices in Hn, by assigning to each vertex
a sequence α D ˛1˛2 � � �˛e, where 1 � e � n and ˛i 2 f0; 1; 2g. The new
labeling method is as follows, see Fig. 8. For n D 1, H1 is a triangle, we
label the three vertices by 0, 1 and 2. When n D 2, H2 contains three
replicas of H1, denoted by H 1

1 , H 2
1 , and H 3

1 . On the topmost copy H 1
1 ,

we put a prefix 0 on the label of each node in H1. Similarly, we add a
prefix 1 (or 2) to the labeling of vertices on the leftmost (or rightmost)
copy H 2

1 (or H 3
1 ). If a vertex’s label ends with several identical digits, we

just keep it once. For example, we use 010 to replace 0100. For n � 3, we
label the vertices in Hn by adding prefixes to three replicas of Hn�1 in
the same way, and delete repetitive suffix.

Figure 8: An illustration for a new labeling of vertices in H3.

In this way, all vertices in Hn are labeled by sequences of three digits
0, 1, and 2, with different length ranging from 1 to n, and each vertex
has a unique labeling. For example, for all n, the three outmost vertices
of Hn have labels of 0, 1, and 2, while the other six outmost vertices
of H 1

n�1, H 2
n�1, and H 3

n�1 forming Hn, each has a label consisting of two
digits, which are called connecting vertices hereafter.
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After labeling the vertices in Hn, we are now in a position to study
the probability distribution of degree for a vertex on all spanning trees.
For this purpose, we introduce some quantities.

Definition 4.1. Consider a vertex α in Hn. We define sn;i .α/ as the num-
ber of spanning trees in which the degree of the node α is i . Then the
probability that among all spanning tree the degree of vertex α is i is de-
fined by Sn;i .α/ D sn;i .α/=sn. Similarly, we define rn;i .α/ .tn;i .α/, pn;i .α//
as the number of spanning subgraphs consisting of two trees such that
one outmost vertex 0 .1, 2/ is in one tree while the other two outmost
vertices 1 and 2 .0 and 2, 0 and 1/ are in the other tree, and the degree
of α is i . Define the probabilities Rn;i .α/ D rn;i .α/=rn, Tn;i .α/ D tn;i .α/=tn
Pn;i .α/ D pn;i .α/=pn. Finally, we define ln;i .α/ as the number of spanning
subgraphs containing three trees such that the three outmost vertices 0,
1 and 2 belongs to a different tree, and the degree of α is i . Define the
probability Ln;i .α/ D ln;i .α/=ln.

In the following text, we will first determine Sn;i .α/ for the three
outmost vertices in in Hn, then we will compute Sn;i .α/ for the six con-
necting vertices, and finally we will calculate Sn;i .α/ for an arbitrary
vertex α.

For the three outmost vertices 0, 1, and 2, each has a degree of 2,
and thus sn;3.0/ D pn;3.0/ D ln;3.0/ D 0. In addition, by symmetry we have
sn;i .0/ D sn;i .1/ D sn;i .2/, pn;i .0/ D pn;i .1/ for i D 1; 2, and ln;i .0/ D ln;i .1/ D

ln;i .2/ for i D 0; 1; 2. Hence, for the outmost vertices, we only need to
find Sn;i .0/ for i D 1; 2.

4.1. Determination of Sn;i .0/ with i D 1; 2
For the graph Hn, associated with the Tower of Hanoi puzzle with n

disc, we have the following result.

Theorem 4.2. For the Hanoi graph Hn with n � 1,

Sn;1.0/ D
5

7
�
5

7

�
1

15

�n

; (8)

Sn;2.0/ D
2

7
C
5

7

�
1

15

�n

: (9)

Pn;1.0/ D
5

7
C

9 � 5n C 5 � 3n

7 � 15n � .5n � 3n/
; (10)

Pn;2.0/ D
2

7
�

9 � 5n C 5 � 3n

7 � 15n � .5n � 3n/
; (11)

Pn;0.2/ D
5 � .15n � 1/

7 � 5n � .5n � 3n/
; (12)

Pn;1.2/ D
5

7
�
12

7

�
1

15

�n

�
3 � .15n � 1/

7 � 5n � .5n � 3n/
; (13)
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Pn;2.2/ D
2

7
C
12

7

�
1

15

�n

�
2 � .15n � 1/

7 � 5n � .5n � 3n/
; (14)

Ln;0.0/ D
10 � 3n

21 � .5n � 3n/
C

18 � 5n C 10 � 3n

21 � 5n � .5n � 3n/2
; (15)

Ln;1.0/ D
5

7
C
9

7

�
1

15

�n

�
2 � .15n � 1/

7 � 5n � .5n � 3n/
�

8 � 3n

3 � 5n � .5n � 3n/2
; (16)

Ln;2.0/ D
2

7
�
9

7

�
1

15

�n

�
4 � .15n C 6/

21 � 5n � .5n � 3n/
C

4 � 3n

3 � 5n � .5n � 3n/2
: (17)

In order to prove Theorem 4.2 and other main results, we shall first
give the following lemma.

Lemma 4.3. For the Tower of Hanoi graph Hn with n � 1,

sn;1.0/ D

�
5

7
�
5

7

�
1

15

�n�
� 3

1
4 3nC 1

2 n� 1
4 � 5

1
4 3n� 1

2 n� 1
4 ; (18)

sn;2.0/ D

�
2

7
C
5

7

�
1

15

�n�
� 3

1
4 3nC 1

2 n� 1
4 � 5

1
4 3n� 1

2 n� 1
4 ; (19)

pn;1.0/ D

�
5

14

5n � 3n

5n
C
9 � 5n C 5 � 3n

14 � 75n

�
� 3

1
4 3n� 1

2 n� 1
4 � 5

1
4 3nC 1

2 n� 1
4 ; (20)

pn;2.0/ D

�
1

7

5n � 3n

5n
�
9 � 5n C 5 � 3n

14 � 75n

�
� 3

1
4 3n� 1

2 n� 1
4 � 5

1
4 3nC 1

2 n� 1
4 ; (21)

pn;0.2/ D
1

14

�
1 �

1

15n

�
� 3

1
4 3nC 1

2 n� 1
4 � 5

1
4 3n� 1

2 nC 3
4 ; (22)

pn;1.2/ D
5

14

�
1 �

8 � 3n

5 � 5n
�

12

5 � 15n
C

3

25n

�
� 3

1
4 3n� 1

2 n� 1
4 � 5

1
4 3nC 1

2 n� 1
4 ; (23)

pn;2.2/ D
12

7

�
1 �

2 � 3n

5n
C

6

15n
�

5

25n

�
� 3

1
4 3n� 1

2 n� 1
4 � 5

1
4 3nC 1

2 n� 1
4 ; (24)

ln;0.0/ D
5

14

�
5n � 3n

5n
C

9

5 � 15n
C

1

25n

�
� 3

1
4 3n� 1

2 n� 1
4 � 5

1
4 3nC 1

2 n� 1
4 ; (25)

ln;1.0/ D
15

28

�
1 �

12 � 3n

5 � 5n
C

7 � 9n

5 � 25n
C

9

5 � 15n
�

16

5 � 25n

�
3

1
4 3n� 3

2 n� 1
4 �5

1
4 3nC 3

2 n� 1
4 ; (26)

ln;2.0/ D
3

14

�
1�

8 � 3n

3 � 5n
C

5 � 9n

3 � 25n
�

9

2 � 15n
C

5

25n
C

25 � 3n

6 � 125n

�
3

1
4 3n� 3

2 n� 1
4 �5

1
4 3nC 3

2 n� 1
4 :

(27)
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Proof. Based on Figs. 4, 5, 6, and 7, we can establish the following
recursive relations

snC1;i .0/ D 3sn;i .0/s
2
n C 2pn;i .0/s

2
n C 4sn;i .0/snpn ; (28)

pnC1;i .0/ D sn;i .0/s
2
nCpn;i .0/s

2
nC6sn;i .0/snpnC4pn;i .0/snpnC3sn;i .0/p

2
nCsn;i .0/pnln ;

(29)

pnC1;i .2/ D sn;i .0/s
2
n C 2pn;i .0/s

2
n C 3pn;i .2/s

2
n C ln;i .0/s

2
nC

2sn;i .0/snpn C 2pn;i .0/snpn C 4pn;i .2/snpn C sn;i .0/p
2
n ; (30)

lnC1;i .0/ D sn;i .0/s
2
n C 2pn;i .0/s

2
n C 2pn;i .2/s

2
n C ln;i .0/s

2
nC

8sn;i .0/snpn C 12pn;i .0/snpn C 12pn;i .2/snpnC

4ln;i .0/snpn C 12sn;i .0/p
2
n C 8pn;i .0/p

2
n C 6pn;i .2/p

2
nC

2sn;i .0/snln C 2pn;i .0/snln C 2pn;i .2/snln C 4sn;i .0/pnln : (31)

Using the initial conditions s1;1.0/ D 2, s1;2.0/ D 1, p1;1.0/ D 1, p1;2.0/ D 0,
p1;0.2/ D 1, p1;1.2/ D p1;2.2/ D 0, l1;0.0/ D 1, and l1;1.0/ D l1;2.0/ D 0, the
above recursive relations are solved to obtain Lemma 4.3. �

From Eqs. (4-6) and Eqs. (18-27), we can prove Theorem 4.2.

4.2. Determination of Sn;i .α/ with α being connecting vertices

We proceed to calculate Sn;i .α/ with i D 1; 2; 3, where α are the six
connecting vertices, the length of whose labels is two. By definition,
the six connecting vertices are 01, 10, 02, 20, 12, 21. We obtain that
Sn;i .01/ D Sn;i .02/ D Sn;i .10/ D Sn;i .12/ D Sn;i .20/ D Sn;i .21/. Since con-
necting vertices only exist in Hn for n � 2, we only need to determine
SnC1;1.01/ for n � 1. Thus,

Theorem 4.4. For the Tower of Hanoi graph Hn and n � 1,

SnC1;1.01/ D
1

14
51�2n

� .15n
� 1/ ; (32)

SnC1;2.01/ D
1

42

�
30C 6 � 51�2n

� 32Cn
� 5�n

� 23 � 5�n
�
; (33)

SnC1;3.01/ D
1

42

�
12 � 3 � 51�2n

� 2 � 31Cn
� 5�n

C 23 � 5�n
�
; (34)

PnC1;1.01/ D
3 � 51�2n .5n � 3n/ .15n � 1/

14 .5nC1 � 3nC1/
; (35)
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PnC1;2.01/ D
7
�

9
5

�n
C 5 � 31�n � 2 � 3n � 19 � 5�n � 3 � 5nC1

7 � 3nC1 � 7 � 5nC1
; (36)

PnC1;3.01/ D
49 � 31�n � 28 � 3nC1 C 3n53�2n � 56 � 51�n C 42 � 5n C 2 � 52�n9n

14
�
5nC1 � 3nC1

� ; (37)

PnC1;1.02/ D
3 � 51�2n .3 � 5n � 3n/ .15n � 1/

14 .5nC1 � 3nC1/
; (38)

PnC1;2.02/ D
19 � 31�n C 19 � 3nC1 C 2 � 3nC151�2n � 113 � 5�n � 2 � 5nC2 � 5�n9nC1

14
�
3nC1 � 5nC1

� ;

(39)

PnC1;3.02/ D
75�n

�
106 � 3n5nC1 � 125 � 9n � 453 � 25n � 2 � 5nC227n C 184 � 225n � 86 � 375n

�
14
�
3nC1 � 5nC1

� ;

(40)

PnC1;1.20/ D
25�n

�
5 � 3n C 21 � 5n C 7 � 3n52nC1 � 5nC19n

�
14 .5nC1 � 3nC1/

; (41)

PnC1;2.20/ D
55 � 3�n � 19 � 3nC1 C 3n51�2n � 11 � 51�n C 2 � 5nC2 C 5�n9nC1

14
�
5nC1 � 3nC1

� ; (42)

PnC1;3.20/ D
75�n

�
95 � 9n � 38 � 15n � 77 � 25n � 14 � 3nC1125n C 38 � 135n C 52 � 225n

�
14
�
3nC1 � 5nC1

� ;

(43)

LnC1;1.01/ D
25�n

�
37 � 3n53nC1 � 25 � 9n C 38 � 15n C 39 � 25n � 2 � 32nC125nC1 C 5nC227n

�
14
�
3nC1 � 5nC1

�2 ;

(44)

LnC1;2.01/ D
75�n

�
�34nC35n C 27 � 53nC1 � 29 � 32nC153nC1 C 2 � 3n54nC3

�
14
�
3nC1 � 5nC1

�2
C 75�n 20 � 27n C 8 � 25n27nC1 � 13 � 45n � 188 � 75n

14
�
3nC1 � 5nC1

�2 ; (45)

LnC1;3.01/ D
75�n

�
�319 � 3nC125n C 62 � 33nC125n C 65 � 27n

�
14
�
3nC1 � 5nC1

�2
C 75�n 199 � 45n C 789 � 125n C 26 � 405n � 562 � 1125n C 254 � 1875n

14
�
3nC1 � 5nC1

�2 :

(46)

Proof. Based on Fig. 4, we have the recursion relations for the con-
necting vertex 01:

snC1;1.01/ D sn;1.1/s
2
n C pn;0.2/s

2
n ; (47)
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snC1;2.01/ D sn;2.1/s
2
nC2sn;1.1/s

2
nC4sn;1.1/snpnCpn;1.1/s

2
nCpn;1.2/s

2
n ; (48)

snC1;3.01/ D 2sn;2.1/s
2
n C 4sn;2.1/snpn C pn;2.1/s

2
n C pn;2.2/s

2
n : (49)

Since the quantities on the right-hand side of Eqs. (47-49) have been ex-
plicitly determined, according to the relation SnC1;i .01/ D snC1;i .01/=snC1,
we obtain Eqs. (32-34).

Analogously, we find PnC1;i .α/ and LnC1;i .α/, when α are connect-
ing vertices. It is obvious that Pn;0.α/ D Ln;0.α/ D 0. Note that ln;i .01/ D

ln;i .02/ D ln;i .10/ D ln;i .12/ D ln;i .20/ D ln;i .21/, pn;i .01/ D pn;i .10/, pn;i .02/ D

pn;i .12/, pn;i .20/ D pn;i .21/. Using Figs. 5, 6, and 7, we can establish the
recursive relations

pnC1;1.01/ D sn;1.1/snpn C pn;0.2/snpn ; (50)

pnC1;2.01/ D sn;2.1/snpn C sn;1.1/s
2
n C 5sn;1.1/snpn C sn;1.1/snlnC

3sn;1p
2
n C pn;1.1/s

2
n C 3pn;1.1/snpn C pn;1.2/snpn ; (51)

pnC1;3.01/ D sn;2.1/s
2
n C 5sn;2.1/snpn C sn;2.1/snln C 3sn;2.1/p

2
n

pn;2.1/s
2
n C 3pn;2.1/snpn C pn;2.2/snpn ; (52)

pnC1;1.02/ D sn;1.1/s
2
n C 3sn;1.1/snpn C pn;0.2/s

2
n C 3pn;0.2/snpn ; (53)

pnC1;2.02/ D sn;2.1/s
2
n C 3sn;2.1/snpn C 3sn;1.1/snpn C sn;1.1/snlnC

3sn;1.1/p
2
n C pn;1.2/s

2
n C 3pn;1.2/snpn C pn;1.1/snpn ; (54)

pnC1;3.02/ D 3sn;2.1/snpn C sn;2.1/snln C 3sn;2.1/p
2
n C pn;2.2/s

2
nC

3pn;2.2/snpn C pn;2.1/snpn ; (55)

pnC1;1.20/ D sn;1.1/s
2
nCsn;1.1/snpnC2pn;1.1/s

2
nCpn;0.2/s

2
nCpn;0.2/snpn ; (56)

pnC1;2.20/ D sn;2.1/s
2
n C sn;2.1/snpn C 2pn;2.1/s

2
n C sn;1.1/snpnC

sn;1.1/p
2
n C 2pn;1.1/s

2
n C 5pn;1.1/snpn C pn;1.2/s

2
nC

pn;1.2/snpn C ln;1.1/s
2
n ; (57)

pnC1;3.20/ D sn;2.1/snpn C sn;2.1/p
2
n C 2pn;2.1/s

2
n C 5pn;2.1/snpnC

pn;2.2/s
2
n C pn;2.2/snpn C ln;2.1/s

2
n ; (58)

lnC1;1.01/ D sn;1.1/s
2
n C 6sn;1.1/snpn C sn;1.1/snln C 4sn;1.1/p

2
nC

2pn;1.1/s
2
n C 8pn;1snpn C pn;0.2/s

2
n C 6pn;0.2/snpnC

pn;0.2/snln C 4pn;0.2/p
2
n ; (59)
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lnC1;2.01/ D sn;2.1/s
2
n C 6sn;2.1/snpn C sn;2.1/snln C 4sn;2.1/p

2
nC

2pn;2.1/s
2
n C 8pn;2.1/snpn C 2sn;1.1/snpn C sn;1.1/snlnC

8sn;1.1/p
2
n C 4sn;1.1/pnln C pn;1.1/s

2
n C 10pn;1.1/snpnC

3pn;1.1/snln C 10pn;1.1/p
2
n C pn;1.2/s

2
n C 6pn;1.2/snpnC

pn;1.2/snln C 4pn;1.2/p
2
n C ln;1.1/s

2
n C 4ln;1.1/snpn ; (60)

lnC1;3.01/ D 2sn;2.1/snpn C sn;2.1/snln C 8sn;2.1/p
2
n C 4sn;2.1/pnlnC

pn;2.1/s
2
n C 10pn;2.1/snpn C 3pn;2.1/snln C 10pn;2.1/p

2
nC

pn;2.2/s
2
n C 6pn;2.2/snpn C pn;2.2/snln C 4pn;2.2/p

2
nC

ln;2.1/s
2
n C 4ln;2.1/snpn : (61)

From Theorem 3.5 and Lemma 4.3, we obtain the exact expressions
for pnC1;i .01/, pnC1;i .02/, pnC1;i .20/, lnC1;i .01/, and thus for PnC1;i .01/,
PnC1;i .02/, PnC1;i .20/, LnC1;i .01/. �

4.3. Determination of Sn;i .α/ for an arbitrary vertex α

We finally calculate Sn;i .α/ for an arbitrary vertex α. Note that a
vertex α in Hn has a label 
1
2 � � � 
p with length p, where 1 � p � n

and 
z 2 f0; 1; 2g for 1 � z � p. In the preceding subsections we have de-
termined the degree distribution among all spanning trees for the three
outmost vertices corresponding to the case p D 1 and the six connecting
vertices associated with the case p D 2. Next, we will show that for any
vertex 
1
2 � � � 
p
pC1 inHnC1 with label length pC1, SnC1;i .
1
2 � � � 
p
pC1/

is obtained from some related quantities for the vertex 
1
3 � � � 
p
pC1 in
Hn with label length p.

Let 
 be a sequence of f0; 1; 2g, and let j
 j be the length of 
 satisfying
0 � j
 j � n � 1. Then, all vertices in Hn have the label form 0
 , 1
 , or
2
 , while all vertices in HnC1 have the label form 0k
 , 1k
 , or 2k
 with
k 2 f0; 1; 2g, corresponding to vertices in H 1

n , H 2
n , and H 3

n that form
HnC1. Below we are only concerned with SnC1;i .0k
/, since SnC1;i .1k
/

and SnC1;i .2k
/ can be easily obtained from SnC1;i .0k
/ by symmetry.
For an arbitrary vertex α in Hn, we define the following row vector,

which contains all quantities we are interested in:

Mn;i .α/ D
�
Sn;i .α/ Pn;i .α/ Tn;i .α/ Rn;i .α/ Ln;i .α/

�
;

where n � 1. Then, our task is reduced to evaluating MnC1;i .0k
/.
Before giving our main result for this subsection, we introduce some

matrices. Let E0 be the 5 � 5 identity matrix, and let E1 (E2) be an
elementary matrix obtained by interchanging the third (second) column
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and the fourth column of E0. In other words,

E0 D

266664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

377775 ; E1 D

266664
1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

377775 ; E2 D

266664
1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

377775 :
Moreover, for any non-negative integer n, the matrix Cn is defined as

Cn D266666664

2�5nC3n

3�5n
3�25n�9n

5n.5nC1�3nC1/
3�25n�9n

5n.5nC1�3nC1/

.5nC3n/2

2�5n.5nC1�3nC1/
6�25n�2�9n

.5nC1�3nC1/2

5n�3n

6�5n
9n�4�15nC3�25n

2�5n.5nC1�3nC1/

.5n�3n/2

2�5n.5nC1�3nC1/
25n�9n

2�5n.5nC1�3nC1/
7�125nC45nC27n�3nC2�25n

2�5n.5nC1�3nC1/2

5n�3n

6�5n
.5n�3n/2

2�5n.5nC1�3nC1/
9n�4�15nC3�25n

2�5n.5nC1�3nC1/
25n�9n

2�5n.5nC1�3nC1/
7�125nC45nC27n�3nC2�25n

2�5n.5nC1�3nC1/2

0 0 0 2�25n�9n�15n

5n.5nC1�3nC1/

2�.5n�3n/.3�25n�9n/

5n.5nC1�3nC1/2

0 0 0 3�.5n�3n/2

2�5n.5nC1�3nC1/

3�.2�5n�3n/.5n�3n/2

5n.5nC1�3nC1/2

377777775
:

Then, by alternatively computingMnC1;i .00
/,MnC1;i .01
/ andMnC1;i .02
/,
we obtain MnC1;i .0k
/, as the following lemma states.

Lemma 4.5. For the Tower of Hanoi graph Hn and n > 2,

MnC1;i .0k
/ DMn;i .0
/EkCn (62)

holds for all i D 1; 2; 3 and k D 0; 1; 2.

Proof. We first prove the case k D 0.
For this case, based on Figs. 4, 5, 6, and 7, we can establish the

following relations:

snC1;i .00
/ D 3sn;i .0
/s
2
n C pn;i .0
/s

2
n C tn;i .0
/s

2
n C 4sn;i .0
/snpn ;

pnC1;i .00
/ D sn;i .0
/s
2
n C pn;i .0
/s

2
n C 6sn;i .0
/snpn C 3pn;i .0
/snpnC

tn;i .0
/snpn C 3sn;i .0
/p
2
n C sn;i .0
/snln ;

tnC1;i .00
/ D sn;i .0
/s
2
n C tn;i .0
/s

2
n C 6sn;i .0
/snpn C pn;i .0
/snpnC

3tn;i .0
/snpn C 3sn;i .0
/p
2
n C sn;i .0
/snln ;

rnC1;i .00
/ D sn;i .0
/s
2
n C pn;i .0
/s

2
n C 3rn;i .0
/s

2
n C tn;i .0
/s

2
nC

ln;i .0
/s
2
n C 2sn;i .0
/snpn C pn;i .0
/snpnC

4rn;i .0
/snpn C tn;i .0
/snpn C sn;i .0
/p
2
n ;
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lnC1;i .00
/ D sn;i .0
/s
2
n C pn;i .0
/s

2
n C 2rn;i .0
/s

2
n C tn;i .0
/s

2
nC

ln;i .0
/s
2
n C 8sn;i .0
/snpn C 6pn;i .0
/snpn C 12rn;i .0
/snpnC

6tn;i .0
/snpn C 4ln;i .0
/snpn C 12sn;i .0
/p
2
n C 4pn;i .0
/p

2
nC

6rn;i .0
/p
2
n C 4tn;i .0
/p

2
n C 2sn;i .0
/snln C pn;i .0
/snlnC

2rn;i .0
/snln C pn;i .0
/snln C 4pn;i .0
/pnln:

By definition of Sn;i .α/, Pn;i .α/, Tn;i .α/, Rn;i .α/, and Ln;i .α/, we have

SnC1;i .00
/ D
2 � 5n C 3n

3 � 5n
Sn;i .0
/C

5n � 3n

6 � 5n
Pn;i .0
/C

5n � 3n

6 � 5n
Tn;i .0
/ ;

PnC1;i .00
/ D
3 � 25n � 9n

5n.5nC1 � 3nC1/
Sn;i .0
/C

9n � 4 � 15n C 3 � 25n

2 � 5n.5nC1 � 3nC1/
Pn;i .0
/C

.5n � 3n/2

2 � 5n.5nC1 � 3nC1/
Tn;i .0
/ ;

TnC1;i .00
/ D
3 � 25n � 9n

5n.5nC1 � 3nC1/
Sn;i .0
/C

.5n � 3n/2

2 � 5n.5nC1 � 3nC1/
Pn;i .0
/C

9n � 4 � 15n C 3 � 25n

2 � 5n.5nC1 � 3nC1/
Tn;i .0
/ ;

RnC1;i .00
/ D
.5n � 3n/2

2 � 5n.5nC1 � 3nC1/
Sn;i .0
/C

25n � 9n

2 � 5n.5nC1 � 3nC1/
Pn;i .0
/C

25n � 9n

2 � 5n.5nC1 � 3nC1/
Tn;i .0
/C

2 � 25n � 9n � 15n

5n.5nC1 � 3nC1/
Rn;i .0
/C

3 � .5n � 3n/2

2 � 5n.5nC1 � 3nC1/
Ln;i .0
/ ;

LnC1;i .00
/ D
6 � 25n � 2 � 9n

.5nC1 � 3nC1/2
Sn;i .0
/C

7 � 125n C 45n C 27n � 3nC2 � 25n

2 � 5n.5nC1 � 3nC1/2
Pn;i .0
/C

7 � 125n C 45n C 27n � 3nC2 � 25n

2 � 5n.5nC1 � 3nC1/2
Tn;i .0
/C

2 � .5n � 3n/ � .3 � 25n � 9n/

5n.5nC1 � 3nC1/2
Rn;i .0
/C

3 � .2 � 5n � 3n/.5n � 3n/2

5n.5nC1 � 3nC1/2
Ln;i .0
/;

which can be rewritten in matrix form as

MnC1;i .00
/ DMn;i .0
/Cn DMn;i .0
/E0Cn : (63)
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In this way, we have completed the proof of the case k D 0. For the
other two cases k D 1 and k D 2, the proof is completely analogous to
the case k D 0, we omit the details here. �

The first column of the matrix in Eq. (62) gives SnC1;i .0k
/ for any
vertex 0k
 , which is recursive expressed in terms of the related quanti-
ties for vertex 0
 . Let e1 denote the vector .1; 0; 0; 0; 0/>, from Lemma 4.5,
we have the following result.

Theorem 4.6. For the Tower of Hanoi graph Hn and n > 2,24SnC1;i .00
/

SnC1;i .01
/

SnC1;i .02
/

35 D
24Mn;i .0
/E0Cn

Mn;i .0
/E1Cn

Mn;i .0
/E2Cn

35 � e1 (64)

holds for all i D 1; 2; 3.

By symmetry, we can obtain the recursive relations for SnC1;i .1k
/

and SnC1;i .2k
/. Since for arbitrary n and j
 j D 0 and 1, the terms on
the right-hand side of Eq. (64) have been previously determined, we can
repeatedly apply Theorem 4.6 to obtain Sn;i .α/ for any vertex α in Hn.

5. Conclusion

In this paper we have found the number of spanning trees of the
Hanoi graph by using a direct combinatorial method, based on its self-
similar structure, which allows us to obtain an analytical exact expres-
sion for any number of discs. The knowledge of exact number of span-
ning trees for the Hanoi graph shows that their spanning tree entropy
is lower than those in other graphs with the same average degree. Our
method could be used to further study in this graph, and other self-
similar graphs, their spanning forests, connected spanning subgraphs,
vertex or edges coverings. We have used it to provide a recursive solu-
tion for the degree probability distribution for any vertex on all span-
ning tree configurations of the Hanoi graph.
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Discrete Math. Theor. Comput. Sci. Proc. AG, pp. 411–414.

[22] S.-C. Chang, L.-C. Chen, W.-S. Yang, Spanning trees on the Sierpiński gasket, J. Stat.
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[29] A. M. Hinz, S. Klavžar, U. Milutinović, C. Petr, I. Stewart, The Tower of Hanoi: Myths
and Maths, Springer, 2013.

[30] D. Dhar, Lattices of effectively nonintegral dimensionality, J. Math. Phys. 18 (1977)
577–585.

[31] D. Dhar, A. Dhar, Distribution of sizes of erased loops for loop-erased random walks,
Phys. Rev. E 55 (1997) R2093.

[32] M. Kneževic, J. Vannimenus, Large-scale properties and collapse transition of
branched polymers: Exact results on fractal lattices, Phys. Rev. Lett. 56 (1986) 1591.

[33] Z. Zhang, B. Wu, F. Comellas, The number of spanning trees in Apollonian networks,
Discrete Appl. Math. 169 (2014) 206 – 213.

[34] K. G. Wilson, The renormalization group: Critical phenomena and the Kondo prob-
lem, Rev. Mod. Phys. 47 (1975) 773–840.

[35] E. Teufl, S. Wagner, Enumeration problems for classes of self-similar graphs, J.
Combin. Theory, Ser. A 114 (2007) 1254–1277.

[36] R. Lyons, Asymptotic enumeration of spanning trees, Combin. Probab. Comput. 14
(2005) 491–522.

[37] M. Shinoda, E. Teufl, S. Wagner, Uniform spanning trees on Sierpiński graphs, Lat.
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