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Catalunya

c/ Esteve Terradas 5, 08860 Castelldefels, Barcelona, Catalonia, Spain

E-mail: almirall@ma4.upc.edu

comellas
Typewritten Text

comellas
Typewritten Text
Published in J. Phys. A: Math. Theor. 44 (2011) 205102  (11pp)



Label-based routing for a family of scale-free graphs. 2

Abstract. We give an optimal labeling and routing algorithm for a family of scale-

free, modular and planar graphs with clustering zero. Relevant properties of this

family match those of some networks associated with technological and biological

systems with a low clustering, including some electronic circuits and protein networks.

The existence of an efficient routing protocol for this graph model should help when

designing communication algorithms in real networks and also in the understanding of

their dynamic processes.

PACS numbers: 02.10.Ox, 05.45.Df, 89.20.Ff, 89.75.Da, 89.75.-k
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1. Introduction

The study of complex systems is often associated with small-world networks which have

an scale-free degree distribution, are highly clustered and, in some cases, are modular.

However, there are relevant networks which have a low clustering and a high modularity.

This is the case of some electronic circuits and protein networks, as shown in [5]. In [7]

we introduced a simple tunable family of scale-free, small-world, self-similar, planar

graphs with clustering zero to model these particular systems. Here we provide an

optimal labeling and routing for the graphs.

To make the paper self-contained we recall from [7] relevant characteristics and

parameters of the graphs, namely their diameter, average distance, clustering, degree

distribution and degree correlation coefficient. The vertex labeling introduced in this

paper is optimal in length and allows to produce, only from the labels, a shortest path

and an optimal routing between any two vertices. Therefore, this family of graphs,

with its labeling and routing protocol, is a good mathematical model for relevant real-

life systems which are associated with networks that have a low clustering, are almost

planar and display an scale-free degree distribution. Thus, the model constitutes a new

tool to generate and study new practical algorithms for these technological and biological

systems and should also help in the understanding of the underlying mechanisms which

shaped their particular topologies.

2. Generation and properties of the graphs Md(t)

We recall here the definition and main properties of the family of graphs introduced

by the authors in [7]. These graphs, denoted by Md(t), are scale-free, small-world.

modular, self-similar and planar. They generalize the family introduced and studied in

[2], which corresponds to the particular case d = 1. However, in this case, the graphs

are not scale-free.

The graphs Md(t) are constructed iteratively by introducing, at each step t, new

vertices and edges in a deterministic way, but they have also an equivalent modular

recursive construction.

In the iterative construction method, a generating edge is any edge whose

endvertices have been introduced at different iteration steps. The only edge of Md(0)

is also a generating edge. All other edges are called passive edges. A generating edge

becomes passive at the next iteration step.

Definition 2.1 The graph Md(t) is constructed iteratively as follows:

For t = 0, Md(0) has two vertices and a generating edge connecting them.

For t ≥ 1, Md(t) is obtained from Md(t− 1) by adding to every generating edge in

Md(t− 1), d parallel paths P4 of length three by identifying the two final vertices of each

path with the endvertices of the generating edge.

This process is repeated until the desired graph order is reached, see Fig. 1. We
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note that the graph order can be also adjusted with the parameter d (number of parallel

paths that are attached to each generating edge).

The same graph can be produced with a recursive modular construction, as follows:

For t = 0, Md(0) has two vertices and a generating edge connecting them.

For t = 1, Md(1) is obtained from Md(0) by adding to its only edge d parallel paths

of length three by identifying the two final vertices of each path with the endvertices of

the initial edge.

For t ≥ 2, Md(t) is constructed from 2d copies of Md(t− 1), by identifying, vertex

to vertex, the initial edge of each Md(t−1) with the generating edges of Md(1) (Fig. 1.)

Figure 1. Graphs Md(t) produced at iterations t = 0, 1, 2 and 3 for d = 2.

Next we give some relevant properties of the graphs. Their derivation and other

topological properties of the graphs Md(t) can be found in [7] :

Order and size of Md(t).– The order and size of Md(t), t ≥ 0, are |V (t)| =

((2d)t+1 + 2d− 2)/(2d− 1) and |E(t)| = (3d(2d)t − d− 1)/(2d− 1).

Planarity.– The graph Md(t) is planar as it can be drawn on the plane with no edges

crossing. A formal proof of planarity is obtained from the known planarity test which
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Figure 2. Recursive modular construction of Md(t) from the juxtaposition of 2d

copies of Md(t− 1), labeled M
(1)
d

(t− 1), · · ·, M
(2d)
d

(t− 1).

states that a graph is planar if it has no cycles of length 3 and |E| ≤ 2|V | − 4, |V | > 3

or from the Kuratowski’s theorem, see for example [4].

Modularity.– From the recursive construction process, we see that the graphs are

modular as d copies of Md(t−1) are joined to form Md(t). Modularity can be quantified

with the function Q introduced by Newman and Girvan in [9] and an algorithm to

find communities in a network by maximizing it, see [1, 9, 6]. This family of graphs is

highly modular. As an example, M3(4) and M3(5) display values of the modularity of

Q = 0.879 and Q = 0.941, respectively.

Degree distribution.– The cumulative degree distribution of the graph Md(t) follows,

for t large and k >> 1, a power-law distribution Pcum(k) ∼ k−γ with exponent γ = ln(2d)
ln(d)

.

Therefore the degree distribution is scale-free. Research on networks associated to

electronic circuits show that many of them are almost planar, modular and have a

small clustering coefficient and in most cases their degree distributions follow a power-

law [5, 8] with exponent values in the same range than those of Md(t) [7].

Correlation coefficient.– In [7], we give an exact analytical expression for the

Pearson correlation coefficient, r(t), for the degrees of the endvertices of the edges of

Md(t).

From the values of the correlation coefficient we see that this family of graphs has

the degrees of the endvertices negatively correlated, large degree vertices tend to be

connected with low degree vertices, and the graphs are disassortative.

We notice that most technological and biological networks have this property,

see [8].
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Diameter and average distance.– The diameter of Md(t) is D(t) = 3 + 2 · (t − 1),

t ≥ 1. Therefore, as for t large, t ∼ ln |Vt| we have in this limit that D(t) ∝ ln |Vt|.

The modular recursive construction of Md(t) allows to obtain also the exact

analytical value of the average distance d̄(t) (see [7]). For a large iteration step

d̄(t) ≃ t ∼ ln |Vt|, which shows a logarithmic scaling of the average distance with

the order of the graph. The diameter has the same behavior and thus the graphs are

small-world.

3. Labeling of Md(t)

We give here a way to label the vertices of Md(t), t ≥ 0, which has the property that a

routing by shortest paths between any two vertices is generated just from their labels.

The method is a generalization of the labeling which was introduced in [3].

The labeling assigns to a vertex introduced at step t ≥ 1, a label which is a word

or string of length t made using symbols from a set {s1, s2, · · · , s2d}. The two initial

vertices of step t = 0 have special labels a and b, distinct from the symbols above. This

labeling is optimal in the sense that, at a given iteration step, all possible words are used

and their number is exactly the same than the number of vertices. In this section we

show how we assign each different label to a unique vertex, and thus that the labeling

is deterministic.

3.1. Notation and preliminaries

Let S = {s1, s2, · · · , s2d} be a set of 2d symbols. S∗ is the set of all strings (words)

generated by S including the null string ε. S∗

e ( S∗

o ) is the set of all strings generated

only by the even (odd) indexed symbols from S. The length of a string w is denoted

by |w|. The juxtaposition of sets should be interpreted as the concatenation of their

elements.

We introduce the sets:

So = {s2i−1 | i = 1, 2, · · · , d}, odd indexed symbols.

Se = {s2i | i = 1, 2, · · · , d}, even indexed symbols.

Si = {w ∈ S∗ | |w| = i}, strings with length i.

Si
o = {w ∈ S∗

o | |w| = i}, strings of odd indexed symbols with length i.

Si
e = {w ∈ S∗

e | |w| = i}, strings of even indexed symbols with length i.

Si
o = Si − Si

o, complement set of Si
o.

We define a function r : S∗ → S∗ ∪ {a, b} which deletes from a word, starting from

the left, all odd indexed symbols up to the first occurrence of an even indexed symbol,
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which is also deleted:

r(w) =











b if w ∈ S∗

o ,

a if w ∈ S∗

oSe,

w′′ if w = w′sw′′ and w′ ∈ S∗

o , s ∈ Se, w
′′ ∈ S∗, w′′ 6= ε.

We note that, in the definition of r(w), w′ can be the null string ε. As examples

r(s2iw
′′) = w′′ (i = 1, · · · , d, w′′ ∈ S∗, w′′ 6= ε) and r(s2i) = a (i = 1, · · · , d,). We also

note that |r(w)| < |w|.

Definition 3.1 Let w1, w2 ∈ S∗. The longest common suffix (LCS) of w1 and w2 is

c ∈ S∗ satisfying w1 = w′

1sw1
c and w2 = w′

2sw2
c for some w′

1, w
′

2 ∈ S∗, sw1
, sw2

,∈ S and

sw1
6= sw2

.

3.2. Vertex labels for the graph Md(t)

We provide here a definition of Md(t) which associates its vertices to strings from S∗.

Definition 3.2 The graph Md(t) = (V (t), E(t)) at step t (t = 0, 1, · · ·) is defined as

follows:

V (0) = {a, b}

V (t) = St ∪ V (t− 1) = {a, b} ∪
t

⋃

t′=1

St′ (t ≥ 1)

E(0) = {{a, b}}

E(1) = {{a, s} | s ∈ Se} ∪ {{b, s} | s ∈ So} ∪ {{s2i−1, s2i} | i = 1, 2, · · · , d} ∪ E(0)

E(2) = {{a, w} |w ∈ SoSe} ∪ {{b, w} |w ∈ SoSo}

∪ {{s2i−1w, s2iw} |w ∈ S, i = 1, 2, · · · , d}

∪ {{sw, w} | sw ∈ SoS, s ∈ S} ∪E(1)

E(t) = {{a, w} |w ∈ St−1
o Se} ∪ {{b, w} |w ∈ St−1

o So}

∪ {{s2i−1w, s2iw} |w ∈ St−1, i = 1, 2, · · · , d}

∪ {{w, r(w)} |w ∈ St−1
o } ∪ E(t− 1) (t ≥ 3)

Fig. 3 shows the graph Md(2).

This new definition of Md(t) is equivalent to Def. 2.1 and at each step t introduces

|St| = (2d)t new vertices and (3d)(2d)t−1 edges, see [7] :

|V (t)| = |V (t− 1)|+ |St| = |V (t− 1)|+ (2d)t

|E(t)| = |E(t− 1)|+ |St−1
o So|+ |S

t−1
o Se|+

1

2
|St|+ |St−1

o |

= |E(t− 1)|+ dt−1d + dt−1d +
1

2
(2d)t + ((2d)t−1 − dt−1)(2d)

= |E(t− 1)|+ (3d)(2d)t−1.

We note that, since for any step t ≥ 1 the number of vertices that are added to the

graph Md(t) is equal to (2d)t, this labeling is optimal in the sense that each label is a
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s2d− 1s1

s2s1

s2ds1

s1s2

s2s2

s2ds2
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s2ds4
s2s4

s2d− 1s4

s3

s2s3

s2ds3
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s2d− 1

s2s2d− 1

s2ds2d− 1
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b
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s1
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Figure 3. The graph Md(2).

different 2d-ary word of length t, Because of this, and to facilitate the reading of some

proofs, we will refer, when needed, to vertices by their labels.

Definition 3.3 The Md(1)-structure Md(1)(w) = (V1(w), E1(w)) defined by a vertex

w ∈ S∗ is:

V1(w) = ∪ {sw | s ∈ S} ∪ {w, r(w)}, and

E1(w) = {{w, r(w)}} ∪ {{s2i−1w, s2iw} | i = 1, 2, · · · , d}

∪ {{r(w), s2i−1w} | i = 1, 2, · · · , d} ∪ {{w, s2iw} | i = 1, 2, · · · , d}.

Note that Md(1)(w) is a subgraph isomorphic to Md(1), see Fig. 4.

s4

s3

r(w)

s1

s2

s2d

s2d−1

w

w

w

w

w

w

w

Figure 4. Md(1)(w) or Md(1)-structure generated by the vertex w.
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4. Routing by shortest paths in Md(t)

We give here a shortest path routing protocol between any two vertices. The way to find

this shortest path is peculiar, as the routing is generated both from each vertex until

a common vertex is attained. However, to obtain the full routing the only information

needed are the labels of the source and destination vertices.

To find a shortest path between any two vertices u and v, the routing protocol is

as follows. First we compute c, the longest common suffix of u and v, and Md(1)(c).

In Md(1)(c) we identify two vertices, uf and vf associated, respectively, with u and v.

Next we produce shortest paths between u and uf and between v and vf . The shortest

path between uf and vf is deduced from Fig. 4.

Proposition 4.1 Let u, v ∈ S∗ be two vertices of Md(t), t ≥ 1, which have c as their

longest common suffix. A shortest path between u and v goes through Md(1)(c).

Proof. If c is the LCS of u and v, vertices u and v have been generated from

edge {c, r(c)} and vertex c has been introduced at some step 1 ≤ t0 ≤ t. We prove

the proposition by induction and when the vertices u and v have been introduced to

the graph at the same iteration step. If they are introduced at different steps the proof

follows a similar argument. Let k = t − t0. For k = 1, and from the construction

process u and v belong to Md(1)(c) and obviously any shortest path between them is in

Md(1)(c). Suppose now that vertices u and v are introduced at some step k > 1. From

the construction process there exist two vertices generated from c at step k− 1, namely

uk−1 and vk−1, such that u ∈Md(1)(uk−1) and v ∈Md(1)(vk−1) and with shortest paths

between them that intersect Md(1)(c). Thus, as any path from u to v goes through

uk−1 or r(uk−1) and vk−1 or r(vk−1), it is also shortest possible and intersects Md(1)(c).

Note that shortest paths between any two existing vertices of Md(t) are not modified in

further iterations and their length is the same in Md(t + 1) as in Md(t) �

Definition 4.2 Let u ∈ S∗ be a vertex of Md(t), t ≥ 1, such that u = wc for some

w, c ∈ S∗ and c 6= ε. We define uf(c) = rk(u) where k is the minimum value which

verifies rk(u) ∈ V1(c).

In what follows, d(x, y) denotes the distance between vertices x and y.

Lemma 4.3 Let u be a vertex of Md(t) introduced at step t ≥ 1 then, d(s2ku, u) = 1

and d(s2k−1u, u) = 2, 1 ≤ k ≤ d.

Proof. It follows from the construction process. See Fig. 5 �

Lemma 4.4 Let u be a vertex of Md(t) introduced at step t ≥ 1. If w ∈ S∗

o , |w| = k

then d(ws2lu, u) = 1 and d(ws2l−1u, u) = 2, 1 ≤ l ≤ d.

Proof. Let us take wk = sok
. . . so1

with all indices o1, o2, . . . , ok odd. We prove the

first equality by induction on k. By construction, it is true for k = 1. From Lemma 4.3, if

a vertex u has been introduced at step τ , then a vertex s2lu is a neighbor of u introduced
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s2d− 1s1

s2s1

s2ds1

s1s2c

s2s2

s2ds2

s4

s2ds4
s2s4

s2d− 1s4

s3

s2s3

s1s3

s2d− 1

s2s2d− 1

s2ds2d− 1

s2s2d

s2ds2d

r(c)
s1

s2

s2d

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

s2ds3c

c

Figure 5. Md(1)(c) and Md(1)(sic) structures with i = 1 . . . 2d. c is the longest

common suffix of any two vertices. Vertex c was introduced at step t and vertex r(c)

at some step tr(c) < t. We show the labeling process at steps t, t + 1 and t + 2.

at step τ +1. The generating edge with endvertices u and s2lu introduces, at step τ +2,

new vertices s1s2lu, s3s2lu, . . . , s2d−1s2lu which are also neighbors of u, see Fig. 5 for

c = u. In particular, w1s2lu is a neighbor of u. By induction, if d(wk−1s2lu, u) = 1,

at the next step, from Def. 3.3 with w = wk−1s2lu, vertex r(wk−1s2lu) is adjacent

to wks2lu, but r(wk−1s2lu) = u and thus d(wks2lu, u) = 1. The proof for the second

equality follows a similar argument. �

We verify, by construction, that the shortest path to reach Md(1)(c) (either from u

or v) is through the neighbor which has the shortest label, since the length of the label

indicates at which step the vertex was created. To find the neighbor ancestor, u′, of

vertex u = su1
su2

. . . sum
sum+1

c which has the shortest label, we consider two cases:

• If su1
∈ Se, by construction, u′ is the vertex u′ = su2

. . . sum
sum+1

c. Note that

d(u, u′) = 1.

• If su1
, su2

, . . . , suk
∈ So and suk+1

∈ Se with k + 1 ≤ m, u′ is the vertex

u′ = suk+2
. . . sum

sum+1
c. Note by Lemma 4.4 that d(u, u′) = 1.

Note that in both cases we can also find the neighbor ancestor of a vertex by applying

the function r, thus u′ = r(u).

The next proposition provides a routing by shortest path between two vertices u

and v with labels different from b and such that vertex u is a suffix of vertex v. It gives

also the distance between them.

Lemma 4.5 Let u and v be two vertices of Md(t), t ≥ 1, such that v = si1 . . . sinsin+1
u.

Let ij1 , ij2, . . . , ijk
be all even indices in the set {i1, · · · , in} and j1 < · · · < jk, k ≥ 1. (If

there are no even indices in this set, we take k = 0 in the following expressions).
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Then, the distance d(u, v) and the routing between u and v are as follows:

• If sin+1
∈ Se then rk+1(v) = u, d(u, v) = k + 1 and the routing is given by the

following sequence of vertices

v, r(v), r2(v), . . . , rk(v), rk+1(v) = u.

• If sin+1
∈ So then rk+1(v) = r(u), d(u, v) = k + 2 and the routing is given by the

following sequence of vertices

v, r(v), r2(v), . . . , rk(v), rk+1(v) = r(u), u.

Proof. From vertex v, and using the function r, first we find the sequence xsij1
where

x ∈ S∗

o and sij1
∈ Se. Using Lemma 4.4, d(v, sj1+1 . . . sin+1

u) = 1. The routing begins by

this sequence of two vertices, v, sj1+1 . . . sin+1
u, . . . that we can also write v, r(v), . . ..We

repeat the protocol until we reach xsin+1
u where x ∈ S∗

o . According to Lemma 4.4 we

have to consider the following two cases:

• If sin+1
∈ Se, we add one unit to the distance and the routing is given by the

following sequence of vertices

v, sij1+1
. . . sin+1

u, sij2+1
. . . sin+1

u, . . . , sijk+1
. . . sin+1

u, u

with d(v, u) = 1 + k. Note that we can write this sequence of vertices as,

v, r(v), r2(v), . . . , rk(v), rk+1(v) = u

• If sin+1
∈ So, the first steps of the routing are

v, r(v), r2(v), . . . , rk(v), rk+1(v) = r(sijk+1
. . . sin+1

u) . . .

To produce the final part of the routing we consider these cases:

– If u = wower(u), wo ∈ S∗

o , we ∈ Se, the routing is

v, r(v), r2(v), . . . , rk(v), rk+1(v) = r(u), u.

And the distance d(u, v) = k + 2.

– If u ∈ S∗

o the routing is

v, r(v), r2(v), . . . , rk(v), rk+1(v) = b, u.

�

Example 4.6 If u and v are the vertices with labels v = s1s3s4s2s2s3s1s3s4s2s2s4s1s3s1

and u = s2s4s1s3s1, the routing is: s1s3s4s2s2s3s1s3s4s2s2s4s1s3s1, s2s2s3s1s3s4s2s2s4s1s3s1,

s2s3s1s3s4s2s2s4s1s3s1, s3s1s3s4s2s2s4s1s3s1, s2s2s4s1s3s1, s2s4s1s3s1 and d(v, u) = 5.
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With the results obtained so far, we can give now the routing between any two

vertices of Md(t).

In what follows, we denote by u → v the (shortest) path from vertex u to vertex

v, generated according to the rule of the neighbor ancestor which has the shortest label,

and u ↔ v will denote the shortest path between two vertices of Md(1)(c) which is

obtained from Figure 4.

Theorem 4.7 Let u, v ∈ S∗ and c is the longest common suffix of u and v. We can write

u = su1
su2

. . . sum
sum+1

sum+2
c and v = sv1

sv2
. . . svn

svn+1
svn+2

c. Then the routing between

u and v is given by u → uf ↔ vf ← v where uf and vf can be attained applying the

function r. The distance between the vertices is d(u, v) = d(u, uf) + d(uf , vf) + d(vf , v).

Proof. If c is the longest common suffix of the vertices u and v, the routing between

u and v has to go through the structure Md(1)(c). We use Definition 4.2 to find the

vertices uf , vf reachable from u and v, respectively. We have to consider several cases.

(i) um+1, vn+1 ∈ Se. From vertex u we attain vertex um+2c = rk(u) ∈ Md(1)(c) (for

some k) and uf = um+2c. In a similar way vf = vn+2c ∈ Md(1)(c). The distance

between uf and vf depends on the indices um+2 and vn+2:

• If um+2, vn+2 ∈ So, the routing between uf and vf is uf , r(c), vf and d(uf , vf ) =

2.

• If um+2 ∈ So, vn+2 ∈ Se and vn+2 = um+2 + 1, uf and vf are neighbors and

d(uf , vf) = 1.

• If um+2 ∈ So, vn+2 ∈ Se and vn+2 6= um+2 + 1, the routing between uf and vf

is uf , r(c), c, vf and d(uf , vf) = 3.

(ii) um+1, vn+1, vn+2 ∈ So and um+2 ∈ Se. From vertex u we reach vertex c = rk(u) ∈

Md(1)(c) (for some k) and uf = c. From vertex v we reach vertex r(c) ∈Md(1)(c),

vf = c and d(uf , vf) = 1.

(iii) um+1um+2 ∈ SoSe and vn+1vn+2 ∈ SeSo. From vertex u we reach vertex c = rk(u) ∈

Md(1)(c) (for some k) and uf = c. From vertex v we reach vertex vn+2c ∈Md(1)(c),

vf = vn+2c and d(uf , vf) = 2.

Other cases are studied similarly.

Lemma 4.5, produces the routings u → uf and v → vf and gives the distances

d(u, uf) and d(v, vf). �

5. Conclusion

We have provided a labeling and produced a routing algorithm for a family of graphs

which are planar, modular, have a disassortative degree hierarchy and are small-world

and scale-free. Another relevant characteristic of the graphs is their zero clustering.

This combination of a low clustering coefficient, modularity, and small-world scale-free

properties can be seen in real complex systems, like some social and technical networks
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and those related to several biological systems (metabolic networks, protein interactome,

etc) [5, 8], which are also disassortative.

Finally, note that the planar property and the deterministic character of the family,

is in contrast with more usual probabilistic approaches, and would make easy the study

of other network characteristics and parameters and the development of novel network

algorithms (communication, hub location, etc.) which then could be extended to real-life

complex systems.
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