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Abstract

It has been shown that many networks associated with complex systems
are small-world (they have both a large local clustering coefficient and a small
diameter) and they are also scale-free (the degrees are distributed according
to a power law). Moreover, these networks are very often hierarchical, as they
describe the modularity of the systems that are modeled. Most of the studies
for complex networks are based on stochastic methods. However, a determin-
istic method, with an exact determination of the main relevant parameters
of the networks, has proven useful. Indeed, this approach complements and
enhances the probabilistic and simulation techniques and, therefore, it pro-
vides a better understanding of the modeled systems. In this paper we find
the radius, diameter, clustering coefficient and degree distribution of a generic
family of deterministic hierarchical small-world scale-free networks that has
been considered for modeling real-life complex systems.
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1 Introduction

With the publication in 1998 and 1999 of the papers by Watts and Strogatz on
small-world networks [31] and by Barabási and Albert on scale-free networks [5],
there has been a renewed interest in the study of networks associated to complex
systems that has received a considerable boost as an interdisciplinary subject, see
[30] .

Many real-life networks, transportation and communication systems (including
the power distribution and telephone networks), Internet [15], World Wide Web [4],
and several social and biological networks [17, 18, 21], belong to a class of networks
known as small-world scale-free networks. All these networks exhibit both a strong
local clustering coefficient (nodes have many mutual neighbors) and a small diam-
eter. Another important characteristic is that the number of links attached to the
nodes usually obeys a power law distribution (‘scale-free’ network). Several authors
also noticed that the modular structure of a network can be characterized by a
specific clustering distribution that depends on the degree. The network is then
called hierarchical [26, 28, 32]. Moreover, with the introduction of a new measuring
technique for graphs, it has been discovered that many real networks can also be
categorized as self-similar, see [27].

Along with these observational studies, researchers have developed different mod-
els [3, 14, 22], most of them stochastic, which should help to understand and predict
the behavior and characteristics of complex systems. However, new deterministic
models constructed by recursive methods, based on the existence of ‘cliques’ (clus-
ters of nodes linked to each other), have also been introduced [7, 10, 13, 19, 33].
Such deterministic models have the advantage that they allow one to analytically
compute relevant properties and parameters, which may be compared with data
from real and simulated networks. In [7], Barabási et al. proposed a simple hierar-
chical family of deterministic networks and showed it had a small-world scale-free
nature. However, their null clustering coefficient of all the vertices (the clustering
coefficient of a vertex is defined as the number of edges between the neighbors of
this vertex divided by the number of all possible edges between these neighbors)
contrasts with many real networks that have a high clustering coefficient. Another
family of hierarchical networks is proposed in [26]. It combines a modular structure
with a scale-free topology and models the metabolic networks of living organisms
and networks associated with generic system-level cellular organizations. A simple
variation of this hierarchical network is considered in [25], where other modular net-
works (as WWW, the actor network, Internet at the domain level, etc.) are studied.
This model is further generalized in [24].

Several authors [6, 25, 26] claim that a signature for a hierarchical network on
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top of the small-world scale-free characteristics is that the clustering of the vertices
of the graph follows C(ki) ∝ 1/ki, where ki is the degree of vertex i.

Other more recent examples of recursively grown, deterministic hierarchical net-
works, and examples of how these topological features may affect processes embed-
ded on them are the following: First, there is a very interesting class of deterministic
hierarchical networks, originally introduced by Dyson [12], that has recently been
investigated by Agliari et al. [1, 2]. Moreover, the original graph introduced by
Ravasz et al. [25, 26] (as well as the one by Song, Havlin, and Makse [27]) has
been extensively investigated in the context of reaction-diffusion processes, see for
instance Meyer et al. [20] and Tavani and Agliari [29].

In this paper, we present a new family of deterministic hierarchical networks,
which generalizes some previous proposals [26, 25, 24, 9, 8].

The generalization is carried out in three fronts: First, it concerns with the
building procedure, as the obtained graphs are defined as graphs on alphabets [16],
where vertices are labeled with words on a given alphabet, and the edges are defined
by a specific rule relating different words. Second, some new edges are added between
some specific vertices (called roots), which enables to reduce the diameter and the
mean distance of the resulting structure. Third, our approach allows to use basic
building blocks (complete graphs) with different numbers of vertices, so obtaining
similar results. In fact, this has been studied in a subsequent work by the last two
authors [11], where a simple routing algorithm is presented.

Here, and as a first approach, our family of hierarchical networks is defined recur-
sively from an initial complete graph on n vertices. Then, a more formal definition
is introduced by using the above mentioned technique of graphs on alphabets. This
allows us the characterization of their main distance-related parameters, such as the
radius and the diameter, and the degree and clustering distributions are also deter-
mined. Moreover, we have seen that they are scale-free with a power law exponent,
which depends on the initial complete graph; that the clustering distribution c(z)
scales with the degree as z−1; and that the clustering coefficient does not depend on
the order of the graph, as in many networks associated to real systems [6, 25, 26].

2 The hierarchical graph Hn,k

In this section we generalize the constructions of deterministic hierarchical graphs
introduced by Ravasz et al. [25, 26] and Noh [24]. Roughly speaking, these graphs
are constructed first by connecting a selected root vertex of a complete graph Kn to
some vertices of n−1 replicas of Kn, and establishing also some edges between such
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copies of Kn. This gives a graph with n2 vertices. Next, n − 1 replicas of the new
whole structure are added, again with some edges between them and to the same
root vertex. At this step the graph has n3 vertices. Then we iterate the process
until, for some integer k ≥ 1, the desired graph order nk is reached (see below for
a formal definition). Our model enhances the modularity and self-similarity of the
graph obtained, and allows us to derive exact expressions for the radius, diameter,
degree and clustering distributions.

2.1 Definition, order and size

Next we provide a recursive formal definition of the proposed family of graphs, char-
acterized by the parameters n (order of the initial complete graph) and k (number
of iterations or dimension). This allows us to give also a direct definition and derive
an expression for the number of edges (the radius and the diameter will be studied
in the next section).

Definition 2.1 Let n and k be positive integers, n ≥ 2 and k ≥ 1. The hierarchical
graph Hn,k has vertex set Vn,k, with nk vertices, denoted by the k-tuples x1x2x3 . . . xk,
xi ∈ Zn, for 1 ≤ i ≤ k, and edge set En,k defined recursively as follows:

• Hn,1 is the complete graph Kn.

• For k > 1, Hn,k is obtained from the union of n copies of Hn,k−1, each denoted
by Hα

n,k−1, for 0 ≤ α ≤ n− 1, and with vertices xα2x
α
3 . . . x

α
k ≡ αx2x3 . . . xk, by

adding the following new edges (where adjacencies are denoted by ‘∼’):

000 . . . 00 ∼ x1x2x3 . . . xk−1xk, xj 6= 0, 1 ≤ j ≤ k; (1)

x100 . . . 00 ∼ y100 . . . 00, x1, y1 6= 0, x1 6= y1. (2)

Alternatively, a direct definition of the edge set En,k is given by the following
adjacency rules (when i = 0, then x1x2 . . . xi is the empty string):

x1x2 . . . xk ∼ x1x2 . . . xk−1yk, yk 6= xk; (3)

x1x2 . . . xi00 . . . 0 ∼ x1x2 . . . xixi+1xi+2 . . . xk,

xj 6= 0, i+ 1 ≤ j ≤ k, 0 ≤ i ≤ k − 2; (4)

x1x2 . . . xi00 . . . 0 ∼ x1x2 . . . xi−1yi00 . . . 0,

xi, yi 6= 0, yi 6= xi, 1 ≤ i ≤ k − 1. (5)

Notice that both conditions (1) and (2) of the recursive definition correspond to (4)
with i = 0, and (5) with i = 1, respectively.
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Figure 1: Hierarchical graphs with initial order 4: (a) H4,1, (b) H4,2, (c) H4,3.

To illustrate our construction, Fig. 1 shows the hierarchical graphs H4,k, for
k = 1, 2, 3. The following result gives the number of edges of Hn,k, which can be
easily computed by using the recursive definition.

Proposition 2.2 The size of Hn,k is

|En,k| =
3

2
nk+1 − (n− 1)k+1 − 2nk − n

2
+ 1. (6)

Proof. When constructing Hn,k from n copies of Hn−1,k, the adjacencies (1) and

(2) introduce (n− 1)k and
(
n−1
2

)
new edges, respectively. Therefore,

|En,k| = n|En,k−1|+ (n− 1)k +

(
n− 1

2

)
.

By applying recursively this formula and taking into account that |En,1| =
(
n
2

)
, we

get

|En,k| = nk−1
(
n

2

)
+

k∑
i=2

nk−i(n− 1)i +

(
n− 1

2

)
k−2∑
i=0

ni, (7)

which yields the result. 2
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2.2 Hierarchical properties

The hierarchical properties of the graphs Hn,k are summarized by the following facts,
that are a direct consequences of the definition:

(a) According to (3), for each sequence of fixed values αi ∈ Zn, 1 ≤ i ≤ k− 1, the
vertex set {α1α2 . . . αk−1xk : xk ∈ Zn} induces a subgraph isomorphic to Kn.

(b) Vertex r := 00 . . . 0, which we distinguish and call root, is adjacent by (4) to
vertices x1x2 . . . xk, xi 6= 0, for all 1 ≤ i ≤ k, which we call peripheral.

(c) For every i, 1 ≤ i ≤ k − 1, Hn,k can be decomposed into ni vertex-disjoint
subgraphs isomorphic to Hn,k−i. Each of such (induced) subgraphs is denoted
by Hα

n,k−i and has vertex labels αxi+1xi+2 . . . xk, with α = α1α2 . . . αi ∈ Zin
being a fixed sequence. In particular, for i = 1, Hn,k has n subgraphs Hα

n,k−1,
α = 0, 1, . . . , n− 1, as stated in the recursive definition.

(d) The root vertex of the subgraph Hα
n,k−i is α 00 . . . 0︸ ︷︷ ︸

k−i

. Thus, the total number

of root vertices of all the subgraphs, including the one in Hn,k, is

1 + (n− 1)
k−1∑
i=1

ni−1 = nk−1, (8)

as expected since a given vertex x1x2 . . . xk is a root (of some subgraph) if and
only if xk = 0.

(e) The peripheral vertices of the subgraph Hα
n,k−i are of the form αxi+1xi+2 . . . xk,

where xj 6= 0 and i+ 1 ≤ j ≤ k. Thus, the total number of peripheral vertices
of all the subgraphs, including those in Hn,k, see (b), is

(n− 1)k + (n− 1)
k−1∑
i=1

ni−1(n− 1)k−i = nk−1(n− 1), (9)

as expected, since x1x2 . . . xk is a peripheral vertex (of some subgraph) if and
only if xk 6= 0. Note that, adding up (8) and (9), we get nk = |Vn,k|, so that
every vertex of Hn,k is a root or peripheral of some subgraph isomorphic to
Hn,k′ , for 1 ≤ k′ ≤ k.

(f) By collapsing in Hn,k each of the ni subgraphs Hα
n,k−i, α ∈ Zin, into a single

vertex and all multiple edges into one, we obtain a graph isomorphic to Hn,i.
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(g) According to (5), for every fixed i, 1 ≤ i ≤ k, and given a sequence α ∈ Zi−1n ,
there exist all possible edges among the n− 1 vertices labeled αxi00 . . . 0 with
xi ∈ Z∗n = {1, 2, . . . , n − 1}, that is, the root vertices of Hαxi

n,k−i. Thus, these
edges induce a complete graph isomorphic to Kn−1.

3 Radius and Diameter

In this section we determine the radius and diameter of Hn,k by using a recursive
method. With this aim, let us first introduce some notation concerning Hn,k. Let
∂k(x,y) denote the distance between vertices x,y ∈ Vn,k in Hn,k; and ∂k(x, U) :=
minu∈U{∂k(x,u)}. Let rα = α00 . . . 0 be the root vertex of Hα

n,k−1, for α ∈ Zn (as
stated before, r stands for the root vertex of Hn,k). Let P and Pα, for α ∈ Zn,
denote the set of peripheral vertices of Hn,k and Hα

n,k−1, respectively.

Proposition 3.1 Let rk, εk(r), and Dk denote, respectively, the radius, the eccen-
tricity of the root r, and the diameter of Hn,k. Then,

(a) rk = εk(r) = k.

(b) Dk = 2k − 1.

Proof.

(a) The radius of Hn,k coincides with the eccentricity of the root: rk = εk(r) = k.

(b) By induction on k.
For k = 1: As Hn,1 = Kn, then D1 = 1.
Assume that, for some fixed k > 1, Dk = 2k − 1.
Then, for k′ = k + 1: As Hn,k′ is made from n copies of Hn,k (called copy 0,
copy 1,. . . , copy n−1), two further vertices in Hn,k′ must be in different copies
of Hn,k. If none of these two vertices is in the copy 0 of Hn,k, then both copies
are joined by their roots. Then, the diameter of Hn,k′ is:

Dk′ = εk(r) + εk(r) + 1 = 2k + 1 = 2k′ − 1,

where r is the root of any of the two copies of Hn,k. On the other hand, if
one of the two vertices is in the copy 0 of Hn,k, then both copies are joined
from the root of the copy 0 to the peripheral vertices of the other copy of Hn,k.
Then, the diameter of Hn,k′ is:

Dk′ = εk(r) + εk(p) + 1 = 2k + 1 = 2k′ − 1,
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where p is one of the peripheral vertices of the non-zero copy of Hn,k, and
εk(p) = k.

2

Then, from the result on the diameter and property (c) in Subsection 2.2, we have
that the distance between two vertices x and y of Hn,k, with maximum common
prefix of length i = |x ∩ y|, satisfies

∂(x,y) ≤ 2(k − i)− 1.

Alternatively, we can give recursive proofs of these results. Indeed, let us consider
the case of the diameter. With this aim, we first give the following result that follows
from the recursive definition of Hn,k:

Lemma 3.2 Let x and y be two vertices in Hn,k, for k > 1. Then, depending on
the subgraphs Hn,k−1 where such vertices belong to, we are in one of the following
three cases:

(a) If x,y ∈ V α
n,k−1 for some α ∈ Zn, that is, x = αx′ and y = αy′, then

∂k(x,y) = ∂k−1(x
′,y′).

(b) If x ∈ V 0
n,k−1 and y ∈ V α

n,k−1 for some α ∈ Z∗n, that is x = 0x′, y = αy′, with
α 6= 0, then

∂k(x,y) = ∂k−1(x
′, r0) + 1 + ∂k−1(y

′, Pα).

(c) If x ∈ V α
n,k−1 and y ∈ V β

n,k−1 for some α, β ∈ Z∗n, α 6= β, that is x = αx′,
y = βy′, with α, β 6= 0, then

∂k(x,y) = min{∂k−1(x′, Pα)+2+∂k−1(y
′, P β), ∂k−1(x

′, rα)+1+∂k−1(r
β,y′)}.

Lemma 3.3 For any vertex x in Hn,k we have:

∂k(x, r) ≤
{
k − 1 if x = 0x′,
k otherwise,

and ∂k(x, P ) ≤
{
k if x = 0x′,
k − 1 otherwise.

Proof. By induction on k.
Case k = 1: If x = 0 = r, then ∂1(x, r

0) = 0 and ∂1(x, P ) = 1. Otherwise,
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x ∈ P = Z∗n, and then ∂1(x, r) = 1 and ∂1(x, P ) = 0.
Case k > 1: We observe that, from the recursive definition of Hn,k,

∂k(x, r) =

{
∂k−1(x

′, r0) if x = 0x′,
∂k−1(x

′, Pα) + 1 if x = αx′ and α 6= 0,

and

∂k(x, P ) =

{
∂k−1(x

′, r0) + 1 if x = 0x′,
∂k−1(x

′, Pα) if x = αx′ and α 6= 0.

Then, by the induction hypothesis, the lemma holds. 2

In the next result, z01 = 0101 . . . and z10 = 1010 . . . denote any vertex x1x2 . . . xi . . .
of Hn,k or Hn,k−1, where xi ≡ i+ 1 (mod 2) and xi ≡ i (mod 2), respectively.

Lemma 3.4 In Hn,k, the following equalities hold:

(a) ∂k(z
01, r) = ∂k(z

10, P ) = k − 1,

(b) ∂k(z
10, r) = ∂k(z

01, P ) = k.

Proof. By induction on k.
Case k = 1: Hn,k is the complete graph Kn, and the result clearly holds.
Case k > 1: From Lemma 3.2 we have:

(a) ∂k(z
01, r) = ∂k−1(z

10, r0) = k − 1,

∂k(z
10, P ) = ∂k−1(z

01, P 0) = k − 1;

(b) ∂k(z
10, r) = ∂k−1(z

01, P 1) + 1 = k,

∂k(z
01, P ) = ∂k−1(z

10, r0) + 1 = k − 1 + 1 = k.

2

Now we can give the result about the diameter of Hn,k.

Proposition 3.5 The diameter of Hn,k is Dk = 2k − 1.

Proof. First we prove by induction on k that, for any given pair of vertices of Hn,k,
x and y, we have ∂k(x,y) ≤ 2k − 1.
Case k = 1: The result trivially holds since Hn,1 = Kn and D1 = 1.
Case k > 1: Considering the three cases of Lemma 3.2 and by using the induction
hypothesis, we have:
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(a) If x,y ∈ V α
n,k−1 for some α ∈ Zn, that is, x = αx′ and y = αy′, then,

∂k(x,y) = ∂k−1(x
′,y′) ≤ 2(k − 1)− 1 = 2k − 3 < 2k − 1.

(b) If x ∈ V 0
n,k−1 and y ∈ V α

n,k−1 for some α ∈ Z∗n, that is, x = 0x′, y = αy′, with
α 6= 0, then,

∂k(x,y) = ∂k−1(x
′, r0) + 1 + ∂k−1(y

′, Pα) ≤ 2(k − 1) + 1 = 2k − 1,

since, by Lemma 3.3, ∂k−1(x
′, r0) ≤ k − 1 and ∂k−1(y

′, Pα) ≤ k − 1.

(c) If x ∈ V α
n,k−1 and y ∈ V β

n,k−1 for some α, β ∈ Z∗n, α 6= β, that is x = αx′,
y = βy′, with α, β 6= 0, then

∂k(x,y) = min{∂k−1(x′, Pα) + 2 + ∂k−1(y
′, P β), ∂k−1(x

′, rα) + 1 + ∂k−1(r
β,y′)}

≤ 2(k − 1) + 1 = 2k − 1,

since, by Lemma 3.4, ∂k−1(x
′, rα) ≤ k − 1 and ∂k−1(r

β,y′) ≤ k − 1.

Now, we have to prove that there exist two vertices in Hn,k at distance exactly
2k − 1. Let x = z01 and y = z10. It follows from Lemmas 3.2 and 3.4 that
∂k(x,y) = 2k − 1. This completes the proof. 2

Note that the diameter scales logarithmically with the order N = |Vn,k| = nk,
since Dk = 2

logn
logN − 1. This property, together with the high value of the

clustering coefficient (see next section), shows that this is a small-world network.

4 Degree and clustering distribution

In this section we study the degree and clustering distributions of the graph Hn,k.

Proposition 4.1 The vertex degree distribution in Hn,k is as follows:

(a) The root vertex r of Hn,k has degree

δ(r) =
(n− 1)k+1 − (n− 1)

n− 2
.

(b) The degree of the root vertex rαk−i of each of the (n− 1)ni−1 subgraphs Hα
n,k−i,

with i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Zin, and αi 6= 0, is

δ(rαk−i) =
(n− 1)k−i+1 − (n− 1)

n− 2
+ (n− 2).
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(c) The degree of the (n− 1)k peripheral vertices p of Hn,k is

δ(p) = n+ k − 2.

(d) The degree of the (n−1)k−ini−1 peripheral vertices pαk−i of the subgraphs Hα
n,k−i,

with i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Zin, and αi 6= 0, is

δ(pαk−i) = n+ k − i− 2.

Proof. (a) By the adjacency conditions (3) and (4), the root of Hn,k has degree

δ(r) =
k∑
i=1

(n− 1)i =
(n− 1)k+1 − (n− 1)

n− 2
.

(b) The root of the subgraph Hα
n,k−i, for i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Zin

and αi 6= 0, is adjacent, by (a), to (n−1)k−i+1−n+1
n−2 vertices belonging to the same

subgraph, and also, by (5), to the n− 2 other roots ‘at the same level’.

(c) Each peripheral vertex of Hn,k is adjacent, by (3), to n− 1 vertices and, by (4),
to k − 1 roots of other subgraphs.

(d) Each peripheral vertex of Hα
n,k−i, for i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Zin

and αi 6= 0, is adjacent, by (3), to n−1 vertices (of the subgraph isomorphic to Kn)
and, by (4), to k − i roots of other subgraphs. 2

The above results on the degree distribution of Hn,k are summarized in Table 1.
Note that, from such a distribution, we can obtain again Proposition 2.2 since the
number of edges can be computed from

2|En,k| = δ(r) +
k−1∑
i=1

(n− 1)ni−1δ(rαk−i) + (n− 1)kδ(p) +
k−1∑
i=1

(n− 1)k−ini−1δ(pαk−i),

which yields (7). Moreover, using this result, we see that, for a large dimension k,
the average degree turns out to be of order

δ =
2|En,k|
|Vn,k|

=
3nk+1 − 4nk − 2(n− 1)k+1 − n+ 2

nk
∼ n+ 2k − 2.

From the degree distribution and for large k, we see that the number of vertices
with a given degree z, Nn,k(z), decreases as a power of the degree z and, therefore, the
graph is scale-free [5, 10, 14]. As the degree distribution of the graph is discrete, to
relate the exponent of this discrete degree distribution to the standard γ exponent of
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a continuous degree distribution for random scale-free networks, we use a cumulative
distribution

Pcum(z) ≡
∑
z′≥z
|Nn,k(z

′)|/|Vn,k| ∼ z1−γ,

where z and z′ are points of the discrete degree spectrum. When z = (n−1)k−i+1−n+2
n−2 ,

there are exactly (n − 1)ni−1 vertices with degree z. The number of vertices with
this or a higher degree is

(n− 1)ni−1 + · · ·+ (n− 1)n+ (n− 1) + 1 = 1 + (n− 1)
i−1∑
j=0

nj = ni.

Then, we have z1−γ = ni/nk = ni−k. Therefore, for large k, ((n − 1)k−i)1−γ ∼ ni−k

and

γ ∼ 1 +
log n

log(n− 1)
. (10)

For n = 5 this gives the same value of γ as in the case of the hierarchical network
introduced in [25]. This network can be obtained from H5,k by deleting the edges
that join the roots of Hj

5,k−i, for j 6= 0, and 1 ≤ i ≤ k− 2. More generally, the same
result given in (10) was already derived for the hierarchical network model of Noh
[24].

Table 1: Degree and clustering distribution for Hn,k.

Vertex class No. vertices Degree Clustering coefficient

Hn,k root 1 (n−1)k+1−(n−1)
n−2

(n−2)2
(n−1)k+1−2n+3

Hα
n,k−i roots (n− 1)ni−1 (n−1)k−i+1−(n−1)

n−2 + n− 2 (n−2)2
(n−1)k−i+1+(n−1)2−3n+4

i = 1, 2, . . . , k − 1,
α=α1α2 . . . αi ∈Zi

n,
αi 6= 0

Hn,k peripheral (n− 1)k n+ k − 2 (n−1)2+(2k−3)(n−1)+2−2k
(n+k−2)(n+k−3)

Hα
n,k−i peripheral (n− 1)k−ini−1 n+ k − i− 2 (n−1)2+(2k−2i−3)(n−1)+2+2i−2k

(n+k−i−2)(n+k−i−3)
i = 1, 2, . . . , k − 1,
α=α1α2 . . . αi ∈Zi

n,
αi 6= 0

Next we find the clustering distribution of the vertices of Hn,k. The clustering
coefficient of a graph G measures its ‘connectedness’ and is another parameter used
to characterize small-world and scale-free networks. The clustering coefficient of a
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vertex was introduced in [31] to quantify this concept. For each vertex v ∈ V (G)

with degree δv, its clustering coefficient c(v) is defined as the fraction of the
(
δv
2

)
possible edges among the neighbors of v that are present in G. More precisely, if εv
is the number of edges between the δv vertices adjacent to vertex v, its clustering
coefficient is

c(v) =
2εv

δv(δv − 1)
, (11)

whereas the clustering coefficient of G, denoted by c(G), is the average of c(v) over
all nodes v of G:

c(G) =
1

|V (G)|
∑

v∈V (G)

c(v). (12)

Another definition of clustering coefficient of G was given in [23] as

c′(G) =
3T (G)

τ(G)
, (13)

where τ(G) and T (G) are, respectively, the number of triangles (subgraphs isomor-
phic to K3) and the number of triples (subgraphs isomorphic to a path on 3 vertices)
of G. A triple at a vertex v is a 3-path with central vertex v. Thus the number of
triples at v is

τ(v) =

(
δv
2

)
=
δv(δv − 1)

2
. (14)

The total number of triples of G is denoted by τ(G) =
∑
v∈V (G) τ(v). Using these

parameters, note that the clustering coefficient of a vertex v can also be written as
c(v) = T (v)

τ(v)
, where T (v) =

(
δv
2

)
is the number of triangles of G that contain the

vertex v. From this result, we get that c(G) = c′(G) if and only if

|V (G)| =
∑
v∈V (G) τ(v)∑
v∈V (G) T (v)

∑
v∈V (G)

T (v)

τ(v)
.

This is true for regular graphs or for graphs such that all their vertices have the
same clustering coefficient. In fact, c′(G) was already known in the context of social
networks as transitivity coefficient.

We first compute the clustering coefficient and, then, the transitivity coefficient.

Proposition 4.2 The clustering distribution of Hn,k is the following:

(a) The root r of Hn,k has clustering coefficient

c(r) =
(n− 2)2

(n− 1)k+1 − 2n+ 3
.
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(b) The clustering coefficient of the root vertex rαk−i of each of the (n − 1)ni−1

subgraphs Hα
n,k−i, with i = 1, 2, . . . , k− 1, α = α1α2 . . . αi ∈ Zin, and αi 6= 0, is

c(rαk−i) =
(n− 2)2

(n− 1)nk−i+1 + (n− 1)2 − 3n+ 4
.

(c) The clustering coefficient of the (n− 1)k peripheral vertices p of Hn,k is

c(p) =
(n− 1)2 + (2k − 3)(n− 1) + 2− 2k

(n+ k − 2)(n+ k − 3)
.

(d) The clustering coefficient of the (n − 1)k−ini−1 peripheral vertices pαk−i of the
subgraphs Hα

n,k−i, with i = 1, 2, . . . , k − 1, α = α1α2 . . . αi ∈ Zin, and αi 6= 0 is

c(pαk−i) =
(n− 1)2 + (2k − 2i− 3)(n− 1) + 2 + 2i− 2k

(n+ k − i− 2)(n+ k − i− 3)
.

Proof. We prove only three of the cases, as the proof of the other is similar.

(a) As the root of Hn,k is adjacent to
∑k
i=1(n− 1)i vertices with degree n− 2, its

clustering coefficient is

c(r) =
n−2
2

(n−1)k+1−n+1
n−2

1
2
(n−1)k+1−n+1

n−2

(
(n−1)k+1−n+1

n−2 − 1
) =

(n− 2)2

(n− 1)k+1 − 2n+ 3
.

(b) The roots of Hα
n,k−i (i = 1, 2, . . . , k− 1, and αi 6= 0) have clustering coefficient

c(rαk−i) =
n−2
2

(n−1)k−i+1−n+1
n−2 + (n−2)(n−3)

2

1
2

(
(n−1)k−i+1−n+1

n−2 + n− 2
) (

(n−1)k−i+1−n+1
n−2 + n− 3

)
=

(n− 2)2

(n− 1)k−i+1 + (n− 1)2 − 3n+ 4
.

(d) The clustering coefficient of the peripheral vertices of Hα
n,k−i (i = 1, 2, . . . , k−1,

and αi 6= 0) is

c(pαk−i) =
(n−1)(n−2)

2
+ (n− 2)(k − i− 1)

1
2
(n+ k − i− 2)(n+ k − i− 3)

=
(n− 1)2 + (2k − 2i− 3)(n− 1) + 2 + 2i− 2k

(n+ k − i− 2)(n+ k − i− 3)
.

In particular, note that, for i = k − 1, the peripheral vertices of Hα
n,1, with

α 6= 0, have clustering coefficient (n−1)2−n+1
(n−1)n = 1.
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Figure 2: The clustering coefficient of Hn,k for n = 4, 8, . . . , 20.

2

The above results on the clustering distribution are summarized in Table 1. From
these results, we can compute the clustering coefficient of Hn,k, which is shown in
Fig. 2. The clustering coefficient tends to 1 for large n.

We think that this constant value for the clustering coefficient, which is in-
dependent of the order of the graph, together with the γ value of the power-law
distribution of the degrees, is also a good characterization of modular hierarchical
networks. Observations in metabolic networks of different organisms show that they
are highly modular and have these properties, confirming the claim, see [6, 26].

To find the transitivity coefficient, we need to calculate the number of triangles
and the number of triples of the graph.

Proposition 4.3 The number Tn,k of triangles of Hn,k is

Tn,k =
1

2
(n− 2)

(
1− n

3
− (n− 1)k+1 +

2

3
nk(2n− 3)

)
.
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Proof. When constructing Hn,k from n copies of Hn,k−1, the adjacencies (1) and

(2) introduce (n− 1)k−1
(
n−1
2

)
and

(
n−1
3

)
new triangles, respectively. Therefore,

Tn,k = nTn,k−1 + (n− 1)k−1
(
n− 1

2

)
+

(
n− 1

3

)
.

By applying recursively this formula and taking into account that Tn,1 =
(
n
3

)
, we

get the result. 2

Moreover, from the results of Proposition 4.1 (or Table 1) giving the number of
vertices of each degree, we have the following result for the number of triples (we
omit the obtained explicit formula, because of its length):

Proposition 4.4 The number τn,k of triples of Hn,k is

τn,k =
(
δ(r)
2

)
+(n−1)

∑k−1
i=1 n

i−1
(
δ(rαk−i)

2

)
+(n−1)k

(
δ(p)
2

)
+
∑k−1
i=1 (n−1)k−ini−1

(
δ(pαk−i)

2

)
.

Now the transitivity coefficient follows from the two previous results and, as Fig. 3
shows, tends quickly to zero as k → ∞. More precisely, note that the logarithmic
scale shows the exponential decreasing rate.

transitivity

coefficient

n=4

n=8

n=12

n=16

n=20

1 2 3 4 5 6 7 8 9 10 11 12
k

10-10

10-6

10-2

c'(Hn,k )

Figure 3: Transitivity coefficient of Hn,k for n = 4, 8, . . . , 20.
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5 Conclusions

In this paper we have provided a family of graphs that generalize the hierarchi-
cal network introduced in [26], and combine a modular structure with a scale-free
topology, in order to model modular structures associated to living organisms, social
organizations and technical systems. For the proposed graphs, we have calculated
their radius, diameter, degree distribution and clustering coefficient. Moreover, we
have seen that they are scale-free with a power law exponent, which depends on
the initial complete graph; that the clustering distribution c(z) scales with the de-
gree as z−1; and that the clustering coefficient does not depend on the order of the
graph, as in many networks associated to real systems [6, 25, 26]. Finally, it is
worth mentioning that our definition can be generalized by taking the vertex set
Zn1 × Zn2 × · · · × Znp (instead of Zpn), so obtaining similar results, as shown in [11].
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