
Graph Coloring Algorithms for
Assignment Problems in Radio

Networks

Francesc Comellas and Javier Ozón

Departament de Matemàtica Aplicada i Telemàtica
E.T.S.E. Telecomunicació, Universitat Politècnica de Catalunya

Campus Nord C-3, Gran Capitán s/n, Barcelona, Catalonia, Spain
comellas@mat.upc.es ozon@mat.upc.es

Abstract

Assignment problems in radio networks, like the channel assign-
ment, may be solved by graph coloring algorithms. In this paper
we compare the performance of several recent techniques on a simple
coloring problem: the search for a bipartite subgraph with the max-
imum number of edges of a given graph. The algorithms considered
are a neural network, a genetic algorithm, simulated annealing and
two heuristics. The results show that one heuristic, a new proposed
multiagent system, and the standard simulated annealing technique
are faster outperforming the algorithms in the literature. We also
show how the algorithms may be easily adapted to deal with the k-
coloring of a graph and can therefore be used for solving assignment
problems in telecommunications.

c©1995 by Lawrence Erlbaum Assoc. Inc. Pub., Hillsdale, NJ 07642
Applications of Neural Networks to Telecommunications 2
pp. 49–56 (1995). ISBN 0-8058-2084-1

1 Introduction

Several issues related to the design of radio networks, as well as other prob-
lems in telecommunications, may be formulated as graph coloring prob-
lems. Consider, for example, the construction of a packet radio network
which uses time division multiplexing. Since a user cannot transmit and/or
receive more than one packet at a time, time slots must be associated to
channels (one channel for each pair of users) in such a way that all channels

49

that correspond to a particular user get different time slots. If this problem
is modeled by graphs, users correspond to vertices, channels to edges and
assigning time slots corresponds to coloring the edges so that incident edges
have different colors. In a similar way we may deal with the task of assigning
channels to the radio base stations in a spectrum efficient way. Particular
instances of these problems are very often NP-complete optimization prob-
lems [6] and finding an optimal solution is a computationally hard task.
In these cases, heuristic methods and general combinatorial optimization
methods are used to obtain an acceptable answer in a reasonable time, see
[5, 9, 11].

In this paper we have considered the instance of the coloring problem
when only two colors are involved, and we have compared the methods de-
scribed in the literature (a heuristic search [8] and a neural network [11])
with the techniques introduced in this work (simulated annealing, a genetic
algorithm and a multiagent system). In Section 2 we give a short intro-
duction to the terminology used and the exact description of the problem.
In Section 3 we describe the algorithms considered. Finally, in Section 4,
we present the details of the implementations, the results obtained and the
extension of the algorithms to the general case.

2 Graph coloring

A proper coloring of a graph G = (V,E) is a function from the vertices
of the graph to a set C of colors such that any two adjacent vertices have
different colors. If |C| = k, we say that G is k-colored. The minimum
possible number of colors for which a proper coloring of G exists is called
the chromatic number χ(G) of G. If χ(G) = 2 then G is bipartite.

The problem of finding the chromatic number and a proper coloring of
a graph is of great interest for its widespread applications in areas such
as scheduling and timetabling and particularly in telecommunications. As
many other problems in graph theory, it is NP-complete. In this work
a variation of the graph coloring problem, the bipartite subgraph problem,
has actually been considered. This particular problem, which is also NP-
complete, consists of removing the minimum number of edges of a given
graph in such a way that the remaining graph is a bipartite graph. Effi-
cient algorithms for this problem are known only for particular graphs, e.g.
triangle-free graphs with maximum degree three [2]. A heuristic algorithm,
introduced by Hsu in [8], can be applied to any graph and more recently
Lee, Funabiki and Takefuji [11] proposed a neural network model for this
problem.

On the other hand, simulated annealing and genetic algorithms have out-
performed neural network approaches when applied to several NP-complete

50

graph problems, see [3, 4]. This fact encouraged the authors to look for
the application of these techniques to the coloring problem, object of this
paper.

3 Combinatorial optimization algorithms

The first technique that we have applied to the bipartite subgraph problem
belongs to a general class of algorithms, known as genetic algorithms, which
are inspired on the mechanics of natural selection and genetics.

In a genetic algorithm, see Goldberg [7], the starting point is a collection
of possible solutions generated at random, known as population. A suitable
encoding of each solution in the population is used to compute its fitness
through a cost function. At each iteration a new population, or generation,
is obtained by mating the best of the old solutions with one another. To
create the next generation, new solutions are formed through reproduction,
crossover and mutation. The solutions that will be considered for crossover
are probabilistically selected according to the fitness values from the set
that constitutes the current generation. This new population becomes the
parent pool. In the Goldberg’s approach a constant number of solutions are
selected so that a fixed size population is maintained. Crossover creates two
new child solutions from two solutions sampled from the parent pool. In this
way, fitter parents have a better chance of producing children. This is done
for the whole population. Children solutions are obtained by interchanging
random parts of their parents. Some randomness is also introduced through
the mechanism called mutation to ensure that the algorithms avoid getting
stuck at local minima. Mutation changes selected parts of a solution. The
crossover and mutation operations are done with fixed probabilities, thus
ensuring that some solutions from the current generation will be kept in the
new generation.

Once a new generation is created, the fitness of all solutions is evaluated
and the best solution is recorded. The process is repeated until either the
results stabilize or the optimal solution, when it can be identified, is reached.

The main aspects to decide are the representation of the solutions, the
cost function and the crossover and mutation operators. Important parame-
ters are the population size and the probabilities of crossover and mutation.

The second algorithm considered uses the simulated annealing (SA) tech-
nique which comes from the analogy made between the states of a physical
system, e.g. a liquid, and the configurations of a system in a combinatorial
optimization problem. If the temperature of the interacting molecules in a
liquid is suddenly reduced below its freezing point, the result is a disordered
glassy state with an energy higher than the true crystalline ground state.
In fact the molecules are in a local energy minimum. On the other hand,

51

1

2

3-2

0
-1

-1

2
-3-2

0
-1

if the temperature of the liquid is reduced slowly (annealing), waiting for
equilibrium to be reached before a new reduction is made, the liquid freezes
to the solid state through a cooling process that leads to the crystalline
state, which is the global energy minimum. In the analogy with the com-
binatorial optimization problem the parameters being varied are equated
with atomic positions in the liquid and its energy is identified with the cost
function being optimized. The temperature is then defined as a control
parameter related to the probability of accepting changes that worsen the
state of the system, thus ensuring a more comprehensive search of the state
space. Hence, in the simulated annealing, a change of state that decreases
the energy is always accepted, whereas if energy increases, the change is
accepted with a certain probability e−∆E/T , where T is the temperature of
the system. At a given temperature, a number of attempts large enough to
obtain a good statistical set of trials is performed and thereafter the tem-
perature decreased. This process is repeated and the system is gradually
cooled until it is stopped according to some criteria such as a small number
of changes accepted and/or a non significant reduction of the energy.

Figure 1: An ant acting on a graph.

The third algorithm we have considered is ants, a multiagent system
where several autonomous agents work together to obtain good solutions of
the bipartite subgraph problem. The ants algorithm starts by generating
an arbitrary random coloring of the graph which is, in general, non proper,
and by randomly allocating a set of agents, called ants, on different vertices
of the graph. Once it has been initializated, the process begins to evolve
by assigning to every vertex a certain value, calculated as the difference
between the number of adjacent vertices with the same color and the number
of adjacent vertices with different color. After that, every ant moves to the
adjacent vertex that has maximum value, changes the color of this vertex
and recalculates the values for it and its adjacent vertices (see Figure 1),
all that with a certain probability to avoid local minima. Once each ant

52

has moved, the process is repeated until the algorithm converges to a near-
optimal solution.

4 Results and conclusions

As an illustration of the performance of the three proposed algorithms note
that we may obtain from the graph with 30 vertices and 50 edges considered
by Lee et al. [11] a bipartite subgraph with 43 edges, whereas Hsu’s heuristic
algorithm [8] found only a subgraph with 38 edges and Lee et al. with a
neural network found a subgraph with 42 edges.

Figure 2: The graph proposed by Lee et al. and the solution with 43 edges
found in this paper.

For our study, a large number of instances have been simulated to test
the three algorithms with random graphs of orders ranging from 10 to 250
vertices and densities of 5%, 15% and 20% (the density of a graph is the
ratio between the number of edges that actually has the graph and the
maximum number that may contain). For each case 20 simulation runs
were performed and compared with the results given by Lee et al. in their
paper [11]. All simulations were programmed in C (less than 500 lines) and
executed on a HP Apollo 715/75.

Possible solutions has been coded as lists where each position represents
a vertex of the graph and has values 0 or 1 according to the color assigned to
it. The cost function calculates the number of edges that must be removed
from the associated graph to have a proper coloring.

In the genetic algorithm, we have used the same crossover and mutation

53

0 0 1 1 0 1 1 1 0 1 11 1 0 0 1 0 00 0 0 1 0 0

1 0 0 1 0 11 0 0 1 0 00 0 1 1 0 1 1 1 0 1 00

crossover

mutation

1 0 0 1 0 0 0 1 0 1 10 0 1 1 0 1 1 0 1 0 0

operators than Goldberg [7]. Figure 3 shows an example of their application.
Values for the relevant parameters were taken as follows: a population size
of 400 individuals and probabilities of crossing and mutation of 0.95 and
0.01.

Figure 3: Crossover and mutation operators in the genetic algorithm.

For simulated annealing we have used a standard implementation as
described in [1] and [10]. Simulated annealing requires careful tuning of its
control parameters to achieve good results. Typical values considered were:
initial temperature, T0, ranging from 0.5 to 1.5, number of iterations for
a given temperature Nk = α|E|, where |E| is the number of edges of the
graph and α is a factor ranging from 1 to 10, and cooling rate exponential,
Tk = 0.9Tk−1.

The third method, our multiagent system, used up to 10 agents (or ants)
and a probability of 0.9. Simulations show that the total number of agents
is not critical for the solution when the number of vertices of the graph is
relatively small (less than 1000).

Table 1 shows the results corresponding to graphs with a density of 15%.
Similar performances were obtained with different densities.

Finally, the new algorithms presented in this paper may be very easily
adapted to solve the problem of finding a k-coloring of a given graph. For the
genetic algorithm and the simulated annealing, all that is needed is to change
the set of values associated to each vertex from {0, 1} to {0, 1, . . . , k− 1} in
the list that codes a solution. The multiagent system may be also modified
to deal with more colors, but in that case the cost function needs to be
redefined. We have tested with success the modifications and generated
easily a 3-coloring of the Lee graph that uses all its edges.

As a conclusion, the results show that the multiagent system, the sim-
ulated annealing and the genetic algorithm presented in this work perform
better that the neural network approach. All three algorithms are simple
and easy to implement and may be adapted to deal with the general k-
coloring problem. Moreover, the multiagent system, besides finding better
solutions, runs around ten times faster than simulated annealing and fifty

54

Node Hsu NN GA GA SA SA ants ants
Size max. mean max. mean max. mean

10 6 6 6 6.0 6 5.8 6 5.8
20 24 25 24 22.5 26 24.2 26 24.7
30 49 50 54 52.1 58 52.9 58 53.4
40 90 90 94 89.9 94 91.0 96 91.1
50 128 135 139 135.4 140 137.9 142 137.4
60 191 195 199 191.1 198 193.5 200 193.7
70 246 254 257 251.9 261 257.6 265 258.4
80 311 330 330 326.2 338 331.4 339 331.6
90 390 405 406 402.9 419 412.4 421 413.1

100 478 494 492 485.0 508 502.8 514 503.4
150 1032 1060 1024 1015.0 1089 1080.7 1092 1084.8
180 1476 1502 1437 1420.5 1541 1527.9 1547 1532.2
200 1824 1860 1850 1812.1 1881 1867.4 1883 1870.1
250 2817 2854 2832 2807.6 2881 2866.3 2884 2865.1

Table 1: Comparison between Hsu’s algorithm, neural networks, genetic
algorithm (GA), simulated annealing (SA) and multiagent algorithm (ants)
on graphs with density 15%.

times faster than the genetic algorithm. It may be also directly implemented
on a parallel computer, thus improving its performance.

Acknowledgment

This work was supported by the CICYT, Spain, under grants TIC-92-1228-
E, TIC94-0592 and the EU-HCM program ERBCHRX-CT920049.

References

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines,
Chichester: John Wiley and Sons, 1989, ISBN 0-471-92146-7.

[2] J.A. Bondy and S.C. Locke. “Largest bipartite subgraph in triangle-
free graphs with maximum degree three”, J. Graph Theory, vol. 10, pp.
477–504, 1986.

[3] F. Comellas. “Using genetic algorithms for planarization problems”,
Computational and Applied Mathematics I, Eds. C. Brezinski and U.
Kulish, Elsevier Science Publishers B.V. (North Holland), pp. 93-100,
1992, ISBN 0-444-89701-1.

55

[4] F. Comellas and E. Pallarès. “Optimització combinatòria i disseny de
xarxes d’interconnexió”, Butll. Soc. Cat. Ciènc., vol. XIV (2), 1994,
pp. 221–234.

[5] M. Duque-Antón, D. Kunz, and B. Rüber. “Channel assignment for
cellular radio using simulated annealing”, IEEE Trans. Vehicular Tech-
nology, vol. 42, pp. 14–21, 1993.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, New York: W.H. Freeman, 1979,
ISBN 0-7167-1044-7.

[7] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley, 1989, ISBN 0-201-15767-5.

[8] C.P. Hsu, “Minimum-via topological routing”, IEEE Trans. Computer-
Aided Design, vol. 2, pp. 235–246, 1983.

[9] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon. “Opti-
mization by Simulated Annealing: an Experimental Evaluation; Part
II, Graph Colouring and Number Partitioning”, Operations Research,
vol. 39, pp. 378–406, 1991.

[10] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simu-
lated Annealing”. Science, vol. 220, pp. 671–680, 1983.

[11] K. C. Lee, N. Funabiki and Y. Takefuji. “A Parallel Improvement Al-
gorithm for the Bipartite Subgraph Problem”, IEEE Trans. Neural
Networks, vol. 3, pp. 139–145, 1992.

56

