1987 International Conference on

COMMUNICATION

November 9-11 1987, Nanjing, China

Staff Editors: Qian Yasheng
Tsinghua University
Wang Xiuying
Chinese Institute of Electronics

Co-sponsored by: Chinese Institute of Electronics (CIE)
: China Institute of Communications (CIC)
Tsinghua University
Jiao-Tong University
Nanjing Institute of Technology

in Cooperation with IEEE Communication Society

\@Wo rld Scientific

Singapore » New Jersey ®» Hong Kong



Fublished by

World Scientific Publishing Co. Pte. L1d.
P.O. Box 128, Farrer Road, Singapore 9128

U. 5. A. office: World Scientific Publishing Co., Inc.
687 Hartwell Street, Teaneck NJ 07666, USA

Library of Congress Cawaloging -in-Publication data is available.

COMMUNICATION TECHNQLOGY
Copyright © 1987 by World Scientific Publishing Co Pie L1d.

All rights reserved. This book, or ports thereof, may noi be reproduced
in eny form or by any means, clecironic or mechanical, including photo-
copying, recording or any information Storage and retrievgl sysiem now
known or 10 be im ented, without written permission Jrom the Publisher.

ISBN 9971-50-349-9

Printed in Singapore by Lhopia Press.



THE OPTIMIZATION OF CHORDAL RING NETWORKS

P. Morillo, F. Comellas and M.A. Fiol

Department of

This paper deals with the de
vion networks modeled by graphs.
optimization ©
lization of
optimizatiocn
minimum diameter for a g

ter. The use of a geometrical approach based on pl

tates the solution of the problem.

\. INTRODUCTION

Interconnection networks for distributed com-
puter systems can be modeled by graphs /17,7127, in
which the vertices represent the nodes, or
processing elements, of the network and the edges
represent the communication links between them.
One of the.main factors to be considered in the
design of interconnection networks is their topo-
iogy, which is related to the communication delay,

throughput, routing of the messages, etc. These
-haracteristics correspond respectively to some
parameters and properties in the associated

yraphs: diameter, degree, existence of short paths
berween vertices, etc. So, let us begin by recal-
!i1ag some concepts from graph theory.

A graph G=(V,E) consists of a set V of points
walled vertices and a set A of {nonordered) pairs
of distinct vertices called edges. If there exists
an edge incident to the vertices 1,j, that is 1,j€
k., we say that i and j are adjacent. The degree of
o vertex is the number of edges incident to it and
G is 3-regular if all its vertices have degree 3.
e distance d(i,j) between two vertices i,jeV is
the minimum number of edges which must be used in
a path between them. The maximum distance among
pairs of vertices is the diameter of the graph

D= max {d(i,j); 1,jev}

An 1somorphism between two graphs, Gy=(V1.4])
and  Gy=(V3,A2),1s a bijection from V) to V9 that
preserves adjacency. Then Gy and Gy are said to be
isomorphic and represent, in fact, the same graph.
\n 1somorphism of G into itself is called an auto-
morphism. A graph G=(V,E) is bipartite if there
“Xists a partition of V, V=V1UV3, Vlnvz=¢§uch that
all its edges are incident to a vertex of Vy and a
vertex of Vj.

In a multicomputer system, the communication
Letween processor-memory units requires 1n general
tne use of some intermediate network nodes. As a
consequence, there are some delays that cause a
loss, _of performance in the system. The smallest
delays occur when every computer is directly con-

f a new family of such networ
the well-known Arden and Lee's Chordal
problem leads to the search for certain 3-regular
iven order and/or maximum order for a given diame-
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sign of multi-(micro)computer interconnec-
In particular we concentrate

upon the
ks that turn out to be a genera-
Ring networks. This
graphs with

ane tessellations facilai-

nected to each other. However, with a large number

of computers this structure is not possible be-
cause of the limited number of connecticns that
each computer may support owing to of technical

and economical reasons.

On the other hand, one of the simplest topo-
logies for interconnection networks is the ring
one, in which each node is connected to two others
making up a bidirectional loop. This structure has
also some inconveniences: a poor reliability (any
link or processor failure disconnects the network}
and a low performance (some messages must travel
along half the ring to reach their destination).

The ring topology can be improved by adding
links between nodes in a regular form. If only one
link is added to each node the corresponding
graphs are 3-regular. This is the case of the
Chordal Rings networks, proposed by Arden and Lee
73]/ as candidates for efficient and reliable
multi-(micro)computer interconnection topologies.
These networks have an even number of nodes la-
beled with the integers 0,1,2,...,n-1, and- each
even node 1 is connected to the (i+l} mod n and
(i+c) mod n nodes for some odd integer C. Conse-
quentiy, each odd node j is connected to the nodes
(j+l) mod n and {j-c) mod n. Therefore we have a
ring structure with additional links called
chords, as shown in Fig. 1 for n=14 and c=9.

o even nude
e odd node

12

10

6

Fig.1



It is known that certain families of graphs
(and digraphs) can be fully represented by plane
tessellations when  their vertices are  &8sS0-
ciated with regular polygons /4/, /5/, /7/. This
geomctrical representation characterizes the graph
and facilitates the study of some of its parame~
ters, particularly those related with the distan-
ce.

In Section 11 we define one of such families
which includes, as a particular case, the Chordal
Ring networks and whose vertices are identified
with equilateral triangles. The design of effi-

cient generalized Chordal Ring networks leads, in
Section I¥I, to the search for such graphs with
maximum order n for a given diameter D. This
question is related to the converse optimization
problem, considered in Section IV, which consists
in finding the minimum diameter of a generaiized
Chordal Ring graph with given order n. Our study
leads to the optimal solutions, in the first case

for all values of D and in the second one for
infinitely many values of n, thus improving the
values given by Arden and Lee in /3/.
2. GENERALIZED CHORDAL RING GRAPHS

We consider a family of 3-regular grephs

which have an even number n of vertices labeled

with the integers modulo n. More precisely, the
set of vertices of the generalized Chordal Ring

raph, CRp(2,b,c), is V=VgUV; with
V0=i0.2,&.....n-2T and V]={1.3.5,....n-1}. Each

vertex i€Vg is adjacent to the vertices {modulo n)
iva,i+b,i+c € V) for three different odd integers
a,b,c. Consequently, each vertex jeV; is adjacent
to the vertices j-a,3i-b,j-c € Vpg,see Fig.2. It is
very simple to show that, for any odd integer r,
the graphs CRp(a,b,c) and- CRp(a+r,b+r,c+r) are
isomorphic. Hence , without loss of generality, we

can fix one of these parameters, say a=l. In
particular, note that the graphs CR(1,-1,c) are
Chordal Rings in the sense of Arden and Lee,

though they were already introduced by Coxeter /5/
in another context.

ooV, H
v
*© 1
Fig. 2

From the definition, it is clear that the
generalized Chordal Ring graphs are bipartite.
Mereover they have a high degree of symmetry be-
cause of the existence of the automorphisms i-y—

1+ for ® even and i—)—fi—i for F odd. In graph
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theoretical terminology we say that these
are vertex-symmetric.

graphs

3. LARGEST CHORDAL RING NETWORKS

In this section we solve the problem of maxi-
mizing the number of vertices of a generalized
chordal ring graph with any given diameter.

Let wus consider
svmmetry enables the

the graph CRp(a,b,c). Its
study of its characteristics
from any vertex. For convenience we choose vertex
0. From this vertex, the vertices a, b and c are
reached in 8 single step, the vertices (modulo n)
a-b, a-c, b-c, b-a2, c-a and c-b are reached after
two steps, and so on. If we associate to each even
(respectively odd) vertex an equilateral triangle
in "right" (respectively "down") position, these
vertices can be arranged in a planar pattern as
shown in Fig.3.

Fig. 3

Note that, because of the particular adjacen-
cy conditions, in these graphs there are at most
31 vertices at distance 1 ()0) from vertex 0.
Therefore, the maximum number of vertices, np of &
generalized chordal ring graph with diameter D is
bounded by :

D
g 1 +:Z.131=%0(D+1) (1)

As we shall see, this bound cannot be attained.

Before advancing in our study, notice that,
to move between the even vertices we use Lho
"double-steps" %A 2B %C, where Asb-c, B=c~a and
C=a-b=-(A+B). Therefore 3t is not difficult to
show that a necessary and sufficient condition tu
reach all the even vertices from vertex O is

(A,B,C.N) = (a-b,a-c,n) = 2 (2)
Then the odd vertices can also be reached from
vertex 0. For more details about the proof, wt

refer to /&4/. 1n fact, (e-b,a-c,n)/2 is the numbce
of connected components of the graph CRn(a.b,c)-
’
Our study is based in the following two TU-
marks of 2 geometric nature:
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1)Periodicity: Consider the regular tessella—
<1on of the infinite plane with equilateral trian-
ol we number them following the pattern of
e starting with O in an arbitrary one of type

Ihen every triangle contains a number from O
7 u-1 ond the distribution of these numbers in
- plane repeats itself periodically. This fact
.~ 1llustrated in Fig.4 for the graph
“R(1,-1,9), drawn in Fig.l.

U

2)Tessellation: Assuming that condition (2)
. 1ds, form a tile with n triangles labeled from O
., n-1. By the stated periodicity, this rile tes-

~liates the plane as shown in Fig.4.
¥ 4 L % -

AN AVAVAVAVAY
AVOVANLNVAVAVAN
S AVAVAVAVAVAV
ANATATANLVAVAY
A AVAVAYAVAV,
NN/ NANAN/N/

AT ASTAVAV,

2
\ L4 N
Fig. 4 ;
Periodic pattern of CRy4(1,-1,9).

Now it is easily seen that for any diameter D
y: he tiles corresponding to the maximum number of
vertices (1), do not tessellate the plane, see
“1g.5. Therefore we conclude that the bound (1) is
aut attained.

ib} Dleven)elp

ta) Dipdd)=2ipe+l

Fig. 5
Tiles with n(area)=%D(D+1)

Stated in this context our concern is to find
@i construct (i.e. find integers a, b and c¢ that
.an  generate it) tiles that tessellate the plane
:nd have maximum area (=number of unit triangles)
iur a given diameter D.

Let us see, first that the bound (1) can be
.aproved. Since the considered graphs are bipar-
“ite, the vertices of Vg are at even distance of
‘ertex 0, while the vertices of V] are all at odd

‘1stances from it. Therefore the maximum order np

5 bounded by twice the number of vertices in Vg

'«hen D is odd) or Vy(when D is even) at distance
$0-1 of vertex 0. Therefore, we have
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D-1 2
n, = 20+ L 31y = 32 poag
2
1=2
1l even
(3.a)
D-1 3D2
nD=22 31=T,Deven
1=1 (3.b)
1 odd
We next show that this bound can be attained
when D 1s odd but cannot when D is even, D»2. In

the first case the appropriate tile is the shaded
polygon of Fig.5(a) which tessellates the plane as
shown in Fig.6(a).

(a} D o8¢

(b) D aeven

Fig. 6

It remains to show that it can be generated
by an adequate choice of a, b and c. For this it
suffices to see that these values produce the
given periodic pattern, which is characterized by
the position of the "zeros”. To obtain this dis-
tribution we have to express the null effect of
translations along two independent vectors {each
of them is associated to a path as shown in Fig.6)
that generate the pattern. Choosing them as 1in
Fig.6, a, b and c must satisfy



D1 . Dl o
2 a + ﬁi—b Dc =0 mod n,
D-1 D+l 4
~Da + —5-b + 5 c=0 mod ng (4)

rogether -with condition (2) that prevents the pre-
sence of any other zeros within each tile.

(4) can be solved by fixing a=1 and
for some integers & and

System
writing (in matrix form),

D;l D (b) (“) _ D;l
= n +

D-1 D+l D

= 3 c F D

2
so that its solutions,
dulo npyare given by

b D+1 2D (o{) 1
= +
-D+1 D+l (3 1

(3=1, we obtain the
jointly with a=1,

(5)

that can be understood mo-

(6)

C

For instance, for o=-2,
solutions be=-1 and ¢=3D which,
trivially satisfy (2).

The study for D even is similar but now the
tile with maximum area 3D?/2, that also tessel-
lates the plane, (shaded area of Fig.5(b) ) leads
always to a system whose solutions do not satisfy
{2) when D»2. Hence this tile cannot be generated
and we must lock for smazller ones.

The best we can do is to use the tile bor-

dered by heavy lines in Fig.5(b), obtained from

_the optimal (shaded) one by removing a shortest
row of adjacent triangles. This tile corresponds
to the number of vertices (i.e. has area)
np=3D2/2-D and tessellates the plane as shown in
Fig.6(b). From this figure, the equations for the
distribution of the zeros are now

D-2 D
il — - = mod
5 a+ 5 b {D-1)c 0 nD 7
. D D _
-Da + 5 b+ 5 c=90 mod nD
with solutions, say, a=1 and
b D 2(D-1) ™ 1
= + (B)
c -D D F 1
for any integers o(andﬁ For instance, fore=-2
and f=] we obtain b=-1 and c=3D+]. These vazlues
clearly satisfy (2) and, so, they generate the
tile.
Summarizing, we have obtained two families of
Chordal Ring grephs with maximum number of ver-

tices for any given diameter, namely:

2

D odd: CR%(l,—l.BD), np = e

Deven: CR_(1,-1,3D+1), nD= -3%2 -D

- ™ (9)
(D2}

(For D=2, we have the graph CRg(1,-1,3) that does
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attain the bound (3b)}. For D=3,
the so-called Heawood graph of Fig.l
tessellation is shown in Fig.4.

CRy4(1,-1,9) is
and whose

These values of np imBrove those of Arden and
Lee in /3/ that where np=D<+2D-6 for D odd and3 5,
and nD=D2+3D—!2 for D even and )8.

4, CHORDAL RING NETWORKS WITH MINIMUM DIAMETER

The
generalized Chordal Ring graph with given
of vertices n is much more difficult to solve
than the converse one considered in Section III.
This is due mainly to the fact that the diameter
of these graphs does not always increase with »n.
For example, the minimum diameter for 46 vertices
is D=7, take for instance CR4g(1,9,1), whereas the
graph CR;g(1,19,~1) on 4B vertices has diameter

problem of minimizing the diameter of a
number

D=6. Therefore, no close formula giving the m-
nimum diameter as a function of the number of
vertices seems to exist.

Using & geometrical representation of the

graph the problem is now to find constructible
tiles with given area n, that tessellate the plane
and correspond to graphs with minimum diameter.

Some of these tiles can be obtained from the
ones associated to the largest graphs, with order
np given in (9), by removing some outer rows of
adjacent pairs of triangles as shown in Fig. 7 and
8. The way of finding values a, b end c¢ that
generate the depicted tiles is essentially thc
same that in Section III.

Fig. 7.a

R RRRRRRRBRBRBRBRBRRRERBBREEIRRERRRRRRRRTTIII=™



Fig. 7.c

Fig., B8

Table I gives the results obtained for each
corresponding values of n. Note that in all cases
we have values 1 and -1 , so that the graphs
are Chordal Rings.

n D a b c
6pI+bp 2p+l -1 -6p-1 1
6p2+2p-2 | 2p+l -1 -6p+l 1
6p2+2p 2p+l -1 6p-1 1
6p2-2 2p+1 1 -1 —6p+3
6p2-t4p 2p 13 -1 -6p+1

Table I
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