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1. INTRODUCTION. Functions defined as pointwise maxima or minima of a finite
set of smooth functions need not be differentiable, thus disallowing the characteriza-
tion of their extrema by the standard methods of elementary calculus. However, the
minimization of functions such as f = max{ f1, f2, . . . , fm} do often surface in ap-
plications, so methods for sorting out their critical points may be of interest. In fact,
an appropriate characterization can be used to find effectively exact solutions to prob-
lems of this type that are generally studied in the field of nonsmooth optimization and
solved approximatively by various algorithmic methods (see [1], [3], [5], and [6]). A
concrete application by the authors can be found in [2].

To give a feel for the problem, we consider first a one variable example in which
we look for the minima of the function

f (x) = max
{

f1(x), f2(x)
} = max

{
x2,

8 + 4x − x2

3

}

whose graph is shown in Figure 1. The function has two critical points at which f ′(x)

does not exist: x∗ = −1 and x∗ = 2. It attains its minimum value at the former, while
at the latter it does not have even a local minimum. This may be inferred from a
known version of the first derivative test that assumes the existence of the left- and
right-hand derivatives of f at x∗ and states: f ′(x∗−) ≤ 0 and f ′(x∗+) ≥ 0 are neces-
sary conditions for f to have a minimum at x∗, while f ′(x∗−) < 0 and f ′(x∗+) > 0
are sufficient conditions for it. In the example f satisfies the necessary and sufficient
conditions at −1 but only the necessary conditions at 2. Of course, reversing all the
inequalities characterizes a maximum. Now a simple and common characterization of
an extremum (either a maximum or a minimum) comes out: namely, the existence of
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Figure 1. f (x) = max{x2, (8 + 4x − x2)/3}.

constants α and β such that α + β > 0 and

α f ′(x∗−) + β f ′(x∗+) = α f ′
1(x∗) + β f ′

2(x∗) = 0

is a sufficient condition for an extremum when both constants are required to be pos-
itive, whereas it is a necessary condition only when one of them is allowed to vanish.
Moreover, this characterization can be carried over to the case of several variables.

2. CHARACTERIZATION OF THE MINIMA. Consider now the minimization
of a real function f defined in some open set in Rn as the maximum of m continously
differentiable functions of x = (x1, x2, . . . , xn):

f = max{ f1, f2, . . . , fm}. (1)

Besides regular critical points x∗ where some function fi is larger than the others,
hence characterized by ∇ fi(x∗) = 0, we have to study the critical points x∗ where the
values of several functions coincide and their common value is larger than those of
the remaining functions. The following characterization can be found in [3, chap. 3,
sec. 2] and [6, sec. 2.1] in a somewhat more general framework.

Theorem 1. Let f = max{ f1, f2, . . . , fm}, where the functions fi are continously dif-
ferentiable in some open set in Rn, and let x∗ be a critical point of f . Suppose that the
labeling of the functions is such that

f1(x∗) = f2(x∗) = · · · = fk+1(x∗) > fk+2(x∗) ≥ · · · ≥ fm(x∗) (2)

for some k. Then a necessary condition for f to have a local minimum at x∗ is that the
k + 1 gradients ∇ f1(x∗),∇ f2(x∗), . . . ,∇ fk+1(x∗) have a vanishing nontrivial linear
combination with nonnegative coefficients:

k+1∑
i=1

ci∇ fi(x∗) = 0, ci ≥ 0,

k+1∑
i=1

ci > 0. (3)

Moreover, when k = n and the n + 1 gradients ∇ fi(x∗) (1 ≤ i ≤ n + 1) span Rn, a
sufficient condition for f to have a strict minimum at x∗ is that (3) hold with positive
coefficients ci :

n+1∑
i=1

ci∇ fi(x∗) = 0, ci > 0. (4)
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Characterizations (3) and (4) still hold when looking for the maxima of the minimum
of a (finite) set of functions.

3. EXACT SOLUTIONS. Any point x∗ at which (3) holds is called a stationary
point of f . While the determination of global minima is often accomplished via dif-
ferent iterative algorithmic methods (see, for instance, [6]), in many cases stationary
points can be determined exactly through an appropriate use of condition (3). Indeed,
when k < n the linear dependence expressed by (3) provides n − k equations that,
together with the k equations f1(x∗) = f2(x∗) = · · · = fk+1(x∗), lead to the critical
points among which stationary points (and thus extrema) are to be found, as shown in
the following examples.

Example 1. We look here for the point closest to three given points in the plane (i.e.,
at minimum distance from the furthest one). In the preceding formulation, we must
find the minimum of the maximum of three functions: f = max{ f1, f2, f3}, where
f1, f2, and f3 are the (squared) distances from a point (x, y) to the given points.

1. Consider first the points (−4, 0), (4, 0), and (0,−2). Then

f1(x, y) = (x + 4)2 + y2, f2(x, y) = (x − 4)2 + y2, f3(x, y) = x2 + (y + 2)2.

We have f1(x, y) = f2(x, y) = f3(x, y) = 25 at (x∗, y∗) = (0, 3). At this point

5∇ f1(0, 3) + 5∇ f2(0, 3) − 6∇ f3(0, 3) = 5(8, 6) + 5(−8, 6) − 6(0, 10) = (0, 0).

Since the necessary condition (3) does not hold, no minimum can be attained at
this point.

Considering now f1(x, y) = f2(x, y), we obtain x = 0, and for points on this
line ∇ f1(0, y) = (8, 2y) and ∇ f2(0, y) = (−8, 2y), which are linearly depen-
dent only when y = 0. Now, at (x∗, y∗) = (0, 0) we have f1(0, 0) = f2(0, 0) =
16 > f3(0, 0) = 4 and also

∇ f1(0, 0) + ∇ f2(0, 0) = (8, 0) + (−8, 0) = (0, 0),

satisfying the necessary condition (3). Direct verification along the line x = 0,
where f (0, y) = 16 + y2, shows that the function does attain its minimum value
at this point.

2. Now let the points be (0, 0), (2, 0), and (0, 2), so that

f1(x, y) = x2 + y2, f2(x, y) = (x − 2)2 + y2, f3(x, y) = x2 + (y − 2)2.

These functions satisfy f1(x, y) = f2(x, y) = f3(x, y) = 2 at (x∗, y∗) = (1, 1),
at which point

0∇ f1(1, 1) + ∇ f2(1, 1) + ∇ f3(1, 1) = 0(2, 2) + (−2, 2) + (2,−2) = (0, 0).

Thus at (1, 1) the necessary condition (3) is satisfied, but not the sufficient con-
dition (4). However, direct verification ( f (1 + ε1, 1 + ε2) − f (1, 1) ≥ ε2

1 + ε2
2

near (1, 1)) shows that the function does attain its minimum value at this point.
3. Finally, consider the points (−4, 0), (4, 0), and (0, 8). In this instance

f1(x, y) = (x + 4)2 + y2, f2(x, y) = (x − 4)2 + y2, f3(x, y) = x2 + (y − 8)2.
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Now f1(x, y) = f2(x, y) = f3(x, y) = 25 at (x∗, y∗) = (0, 3), where

5∇ f1(0, 3) + 5∇ f2(0, 3) + 6∇ f3(0, 3) = 5(8, 6) + 5(−8, 6) + 6(0,−10) = (0, 0).

At (0, 3) both the necessary condition (3) and the sufficient condition (4) are
satisfied, so this is the point we were after (see Figure 2a).
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Figure 2. (a) Example 1, case 3; (b) Example 2.

Of course, this is an easy example because each function fi (hence f ) is convex, so
the minimum is always attained: at an inner point (the triangle’s circumcenter) when
the three points are the vertices of an acute triangle, and at the midpoint of the longest
side when the points are the vertices of an obtuse or right triangle. The next example
describes quite a different situation.

Example 2. Consider

f (x, y) = max
{

f1(x, y), f2(x, y)
} = max{x − y2,−3x + x2 + y2}

(see Figure 2b). We have f1 = f2 on the ellipse E : x2 − 4x + 2y2 = 0, with f1 > f2

inside and f1 < f2 outside E . Inside the ellipse ∇ f1(x, y) = (1,−2y) �= (0, 0), while
outside it ∇ f2(x, y) = (−3 + 2x, 2y) �= (0, 0) as well. Next, for points on the ellipse
∇ f1 and ∇ f2 can be linearly dependent only under the following conditions:

(a) if y �= 0, then x = 1, which yields the two points A = (1,
√

3/2) and B =
(1,−√

3/2);
(b) if y = 0, then x2 − 4x = 0, giving two new points, C = (0, 0) and D = (4, 0).

At A and B, ∇ f1 + ∇ f2 = 0. Parameterizing the ellipse E in the standard way by
g : [−π, π] → R2 we obtain

g(s) = (
x(s), y(s)

) = (2 − 2 cos s,
√

2 sin s),

with A = g(π/3) and B = g(−π/3). Set

φ(s) = f
[
g(s)

] = 2 (cos2 s − cos s).
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Then φ′(±π/3) = 0 and φ′′(±π/3) = 3 > 0, revealing that f attains its minimum
value φ(±π/3) = −1/2 at these points. At C , we get 3∇ f1 + ∇ f2 = 0. Since
C = g(0) and φ′(0) = 0 but φ′′(0) = −2 < 0, f does not attain a minimum at C .
Lastly, at the point D, ∇ f1 = (1, 0) and ∇ f2 = (5, 0), so the necessary condition (3)
does not hold at D.

Finally, we consider one of the standard test examples used to compare different
algorithms in nonsmooth optimization (see [5, p. 139] or [4]). Most problems in these
tests admit analogous treatment.

Example 3. We look for the minimum of

f (x, y) = max
{

f1(x, y), f2(x, y), f3(x, y)
}

= max
{
x2 + y4, (x − 2)2 + (y − 2)2, 2e−x+y

}
.

All the algorithms find approximate solutions near (x ′, y′) = (1.14, 0.9), for which

f1(x ′, y′) = 1.9557, f2(x ′, y′) = 1.9496, f3(x ′, y′) = 1.5733.

In our context we have to study the behavior of f at a critical point (x∗, y∗) for which
f1(x∗, y∗) = f2(x∗, y∗) > f3(x∗, y∗). Therefore (x∗, y∗) must be a solution of

x2 + y4 = (x − 2)2 + (y − 2)2, x(y − 2) = 2y3(x − 2),

where the second equation comes from the linear dependence of the gradients
∇ f1(x, y) = (2x, 4y3) and ∇ f2(x, y) = 2(x − 2, y − 2). Solving these equations,
we find the “exact” optimal solution:

x∗ = 1.139037651992656,

y∗ = 0.899559938395897,

f (x∗, y∗) = 1.952224493870659.
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