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Abstract

Distributed loop computer networks are extensions of the ring networks and are widely
used in the design and implementation of local area networks and parallel processing
architectures. We give a survey of recent results on this class of interconnection net-
works. We pay special attention to the actual computation of the minimum diameter
and the construction of loop networks which can achieve this optimal number. Some
open problems are offered for further investigation.

1 Introduction and motivation

The advent of VLSI circuit technology has enabled the construction of very complex
and large interconnection networks. These interconnection networks have been used in
the design of local area networks, telecommunication networks and other distributed
computer systems. They can also be inter-PE (processing element) communication
networks which perform necessary data routing and manipulation function in many
parallel architectures.



The study of loop networks has been motivated mainly by conception problems
in the construction of local area networks and in the design of topologies for parallel
processing computer systems. Local area networks consist of several stations placed
at short distances (less than 4 or 5 km) that exchange data information at very high
speeds. Ome of the main problems in the design of such networks is the choice of a
good topology for which these exchanges can be optimized.

In a number of array processors, for instance the ILLIAC IV computer, the PE
array (a PE consists of a CPU and a local memory) can be operated as a circulator.
When depicted as a ring of PE’s, each PE of the ILLIAC IV network is connected
to a fixed number of other PE’s. Each node ¢ is connected to nodes ¢ + 1 and 7 £ s
modulo n. On the other hand, it is a common practice to combine several independent
memory modules into the memory systems in a high-performance computer to help
with parallel block transfers. In this context, the network called memory circulator
consists of a group of interconnected registers, one for each memory module, and the
control circuitry. Fach register is connected to a fixed number of other registers and
the pattern is cyclically symmetric.

In the design and implementation of local area networks, the ring topology has
been used frequently. This is due to its simplicity, expandability and regularity. The
switching mechanism at each node can easily be implemented using building blocks of
the same specification. Moreover, a token or message can be passed over the ring in
a uniform way. Hence it is feasible to design software for message transmission or file
transfer. However, the ring network has a low degree of reliability and hence very high
vulnerability. More specifically, the connectivity of an unidirectional ring network of
n nodes is 1 since the breakdown of any node ¢ would disable any directed path from
node ¢ — 1 to node ¢ + 1 taken modulo n. Another way of measuring the performance
is the maximum distance among any pair of nodes. A large distance would contribute
to the transmission delay between these two nodes. For a directed ring network, the
maximum distance (or the diameter) is as big as n — 1 and for an undirected ring is
2.

One common way to improve the performance of a network is to increase its con-
nectivity and decrease its diameter. That can be done by adding links to the network.
However we want to add as few links as possible since the cost of more links would
be a practical factor in the design and also the number of links going out of a node
must be small to allow VLSI drawing. Furthermore one wants to add these few links
in a homogeneous way such that the switching mechanism at each node can be easily
implemented and messages or information can be routed in a systematic way.

Networks with at least one ring structure (i.e. hamiltonian cycle or circuit) are
called loop networks. In what follows, we survey the various loop networks considered
in the literature. For a given number of nodes n, one wants to find the smallest possible
diameter of a loop network and give the construction of such a network. We will see
that most of the time, the exact value is unknown. However one can obtain some good
bounds. Another related question of interest is to find the minimum average distance
of a loop network (i.e. the average transmission time in the network). It is also
interesting, when possible, to exhibit the different routings between two nodes. Other
issues include parameters such as vulnerability of the network. For general reference
on computer architecture and parallel processing, see Hwang and Briggs [50].



2 Definitions and notation

Let G(n; 1,582, ..., 5k) be the network with n nodes, labeled with integers modulo n,
and k links per vertex such that each node 7 is adjacent to the k other nodes i + s1,¢+
S2,...,4+ S (mod n). The network G(n;£s1,+sg,...,+s,) is the undirected version
of G(n; s1, 83, ..., ;) where each node is adjacent to the 2k nodes i+ sy,i+s9,..., 1% 5.
This network has been called circulant graph and studied extensively. The reader
is referred to the survey of Boesch and Tindell [13] and its references. We will call
these networks multiple fixed step digraphs or multiple fixed step graphs to
emphasize the fact that the s;’s are given. We consider essentially the case sy = 1 and
also several variations of loop networks which have the ring property.

If G is a digraph (resp. graph), let d(z,y) be the length of a shortest directed (undi-
rected) path from z to y (resp. between z and y). Let the diameter be the maximum
of d(,y) over all couples (resp. pairs) of vertices. We will denote by d(n; s1,s2,. .., k)
the diameter of the network G(n; sy, sa,...,s%) and by d(n; £s1,+sg,...,+s;) the di-
ameter of G(n;4sy,+sy,...,£s;). We use d(n;sy,ss,...,5;) to denote the mean
distance (or average distance) of G(n;sq,ss,...,5;). The mean distance is de-
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fined as: ﬁ E d(z,y). Since we are interested in optimizing the diameter
n(n —
(z,9)

among all possible choices of s1,s3,...,%, let d(n) = min{d(n;s1,s2,...,5¢);1 <
$1,82,...,8x < n — 1}. The network G(n;sq,s2,...,5;) is said to be optimal if
d(n;s1,82,...,8;) = d(n). In some cases, it is difficult to obtain optimal networks;
however, one can find general simple functions [b(n) and ub(n) which are for every n
a lower bound and an upper bound for d(n). We will say that G(n;sqy,s2,...,5;) is
tight if d(n; s1,s2,...,s;) = [b(n). If a network is tight, then it must be optimal. The
converse is certainly not true as it can be seen in the next section. A similar notation
will be used in the undirected case.

A routing is a function that assigns to each pair of nodes z and y a directed path
r(z,y) from z to y in the network. Routing plays an important role in the design and
implementation of distributed networks. The routing algorithm dictates token passing
strategies and information transferring schedules.

A directed graph is said to be strongly connected if there exists at least one directed
path from any vertex to any other one. It has node connectivity equal to k if the removal
of some set of k£ nodes results in a disconnected graph while the graph remains strongly
connected after removal of any set of less than & nodes. The connectivity of the network
measures the degree of reliability and hence the fault tolerance of that network. Similar
definitions hold in the undirected case.

3 Double fixed step digraphs

In this section, we consider the double-fixed step digraph G(n;s1,s2) as a model for
loop networks. Fach node is directly connected to two other nodes.

The network with s; = 1 and s, = —1 was considered by Liu [55], Wolf, Weide
and Liu [75] and by Wolf and Liu [73]. This structure was called Distributed Double
Loop Computer Network (DDLCN). A DDLCN has diameter [ 5] and mean distance
roughly 7.



Grnarov, Kleinrock and Gerla [42] considered the network G(n;s1,s2) with 53 =1
and s = —2. It is known as daisy chain loop. It was shown that d(n;1,-2) =
|2] 4+ 1 and d(n; 1, —2) is approximatively equal to Z. In fact, Wong and Coppersmith
[76] showed that taking s; = 1 and sy around /n gives rise to a small diameter,
approximatively 2\/n, and a small mean distance, approximatively y/n. More exactly,
they proved that d(#?;1,¢) = 2¢t—2 and d(¢?; 1,t) = t—1. This was partly rediscovered by
Raghavendra and Gerla [62], Raghavendra, Gerla and Avizienis [63] and Raghavendra,
Gerla and Parker [64] (see also the comment of Hwang [48]). Simulation was then
used to study the performances of these networks in case of node or link failures (see
[63, 66]). Futhermore, Wong and Coppersmith [76] showed that (b(n) = [v3n] —
2 is a lower bound for d'(n) = min d(n;1,s) and so lb(n) is also a lower bound for

d(n) = min d(n; 51, s2). They also showed that 31/3n — 1 is a lower bound for the mean
51,52

distance d’(n) and d(n).
The problem of determining d(n) = min d(n; sy, s3) and of finding G(n; s1, s3) which
51,52

attain the value d(n) seems to be a difficult one. It might seem easier to determine
d'(n) = msi:u d(n;1,s)and the optimal G(n; 1, s). But that is not the case. Furthermore,
most of the time, among the solutions s; , sy that give the values d(n), there is one
with s; = 1. Fiol, Yebra, Alegre and Valero [38] have shown by using an exhaustive
search that the smallest value of n such that d(n) # d'(n) is n = 450. In that case
d(450) = 35 = d(450;2,185) and d'(450) = 36 = d(450;1,59). Their search shows also
that the function d(n) does not increase monotonically with n: for example d(20) =
d(20;1,4) = 7 while d(21;1,9) = 6. Similarly, d(n) has no regularity, here again
d(20) = d(20;1,4) = 3500 but d(21) = d(21;1,9) = 3429. Some optimal graphs for d
are not optimal for d: for example d(59;1,8) = d(59) = 6576 but d(59;1,8) = 13 >
12 = d(59) = d(59;1,25). However, their computer search showed that for n < 256,
Ib(n) = v3n—-2 < d(n) <v3n-1and 3v3n—1<d(n) < 2(v/3n—1). Recently Esqué,
Aguilé and Fiol [37] exhibit an infinite family of values of n for which d(n) # d'(n)).

Cheng [22], see also Cheng and Hwang [23], gives a simple algorithm to compute
d'(n) = msi:u d(n;1,s). Consider all pairs of non-negative integers p,q such that - p+¢ #
0 is minimum and ps+¢ =0 (mod n). Among all these pairs define the pair P, @ as
the one with minimum P. Let S be the smallest positive integer such that Ss mod n <
S. Let T be the smallest integer such that T'=ts (mod n) for some positive integer
t < T. Then it can be shown that d(n;1,s) = max{P + T — 2,0 + 5 — 2}. Using this
algorithm, a computer search shows that there are several n’s, 1 < n < 30000 for which
d'(n) — Ib(n) = 3; and there are three n’s, 1 < n < 75000 such that d'(n) — lb(n) = 4,
these are n = 53749 (d'(n) = d(n;1,985) = 404), n = 64729 (d'(n) = d(n;1,394) = 443)
and n = 69283 (d'(n) = d(n;1,1764) = 458).

It seems that lim sup d’(n)—1b(n) increases, but in a slow fashion. That is confirmed
by a recent result of Coppersmith (private communication to D.F. Hsu) who showed the
existence of an infinite set of values of n for which d’(n) is greater than v/3n + ¢(log n)%
for some constant ec.

On the other hand it was not known until recently whether the function [b(n) =
[v/3n] — 2 could be achieved by d(n) for infinite values of n. We recall that a digraph
is called tight if its diameter achieves this bound. Infinite families of tight digraphs and
also of families of digraphs for which d(n) is known have been found by different authors



[35, 37, 38, 49]. Furthermore in [37] Esqué, Aguilé and Fiol completely characterized
the values of n for which tight digraphs exist. An algorithm to find the values of sy
and sy of tight digraphs and digraphs with diameter d(n) is given by Aguil6é and Fiol
[1].

Erd6s and Hsu [35] used the following approach. All nodes are labeled modulo n,
these nodes are evenly distributed on a circle. In order to find s such that d(n;1,s) =
d'(n), they travel around the circle at steps of 1 or s counterclockwise (or the other way
around as long as it is consistent). The optimization problem is then to find suitable
s such that all nodes on the circle can be reached in as few steps as possible. That
gives rise to infinite families of tight digraphs. An example is given in Figure 1 with
n = 3t% +3t,d(n; 1,3t +2) = 3t = d'(n) and ¢ = 3. Hence n = 36 and d(36) = 9. We
note that d(36;1,+/36) = d(36;1,6) = 10 > d(36) = 9.

Wong and Coppersmith [76] and Fiol, Yebra, Alegre and Valero [38] have visualized
the problem in a geometrical manner. If the link (¢, ¢+s1) is represented by an horizontal
segment and the link (4,74 s3) by a vertical one, then the distance between two nodes
is obtained by adding the number of horizontal and vertical segments between them.
It is then possible to represent a network by a tessellation of the plane, see Figure 2.

The optimization problem consists in finding an L-shape tile of » unit squares which
periodically tessellates the plane with minimum diameter and/or mean distance. Then
the problem consists of finding, for a given tile, the values of s; and sy that enable this
construction. It was pointed out that, for a given n, there might be different optimal
solutions s; and sy (that is d(n;sy,s2) = d(n)) and that one of them is a solution
with sy = 1 with very few exceptions. For example, in [38] the authors obtained that
d(n) = Ib(n) for infinite values of n like d(3t* + ¢;1,3t) = d(3t* + 2t;1, —3t) = 3t — 1;
d(3t2 + 204 1;1,3t 4+ 1) = d(31> + 3t + 1; 1,3t + 2) = d(3t? + 4t + 1;1, -3t — 2) = 3¢;
d(3t* + 41+ 2;1,3t4+3) = d(3t* + 5t +2; 1,3t +4) = d(3t* + 6t +2; 1, -3t +4) = 3t + 1.
In some other cases they showed that although a tight tile exists, there do not exist
corresponding values of s; and s;. For example, if n = 3¢? then d(3t%;1,3t + 2) =
d(3t*) = 3t — 1 but Ib(3t*) = 3t — 2 (see also Erdés and Hsu [35] or Hwang and Xu
[49]). Finally in some cases there cannot exist tight tiles for example for n = 25 or 46.
As we said, recently Esqué, Aguil6 and Fiol [37] fully characterized the tiles associated
with tight digraphs and when there exists possible choices of sy and s5. They fall into
9 different families (at most 3 for a given value of n). As an example for n < 50 there
exist tight digraphs for all n except n = 12,20,25,27,32,46 and 48. Note that optimal
tiles do not exist only for 25 and 46. For the other exceptional values the impossibility
comes from the non existence of values of s; and s;.

Since the problem of optimizing d(n;1,s) is not completely solved, one might be
interested in finding an upper bound for d'(n). We note that as mentioned before,
Wong and Coppersmith [76] proved that if n = ¢2, then d(t%;1,1) = 2t — 2 = 2\/n — 2.
Hwang and Xu [49] showed that for n > 6348, d(n; 1,s) < v/3n+ 2(3n)i + A —1 where
A = [¥21] — 3ag and ap = \_ﬁj Erd6s and Hsu [35] gave an asymptotic result

using Di?)ophantine approximation?j For every € > 0 there exists an ng(e€) such that if
n > ng(e€) there exists a number s such that d(n; 1, s) < (1+ €)v/3n.

The routing problems and fault tolerance for G(n;1, s) and G(n; s, s3) were studied
by Erdés and Hsu [35]; Hu, Hwang and Li [46]; Fiol,Yebra, Alegre and Valero [38] and
Escudero, Fébrega and Morillo [36]. The last authors also showed that the diameter of

the network after a node failure is at most d(n;1,s)+ 1. Furthermore, Fiol and Yebra



[39] determined when G(n; sy, s) has a directed hamiltonian cycle. Further references
can be found in the forthcoming survey of Hwang [47].

4 Double fixed step graphs

One can also consider the same problems for undirected double fixed step networks
G(n; £s1,£s2). This class of networks is also known as 2-jump circulant graphs. If s; <
89 < %, these graphs are 4-regular. They are connected if and only if gcd(sy, s2,n) =
1. In this case it has been proved by Bermond, Favaron and Maheo [8] that they can
be decomposed into two hamiltonian cycles.

It is easy to show that if G(n;4s;,£sy) has diameter D, then n < 2D? 4+ 2D + 1
(see [10, 14, 76, 78]). Solving for D, we obtain d(n) > (@W = ulb(n), where
d(n) = g?}!}; d(n; +s1,+s2). Beivide, Vifals and Rodriguez [4], Bermond, Illiades and

Peyrat [10] and Boesch and Wang [14] showed that this lower bound wlb(n) can be
achieved by taking sy = ulb(n) and sy = ulb(n)+ 1. Furthermore in [10, 78] it is shown
that d(2t* 4+ 2t + 1;4sy,£s9) = ¢ if and only if s; = tp and sy = (¢ + 1)p where p
is any integer less than n and relatively prime with n. An algorithm to compute the
diameter of G(n;£s1,+s2), analogue to that of Cheng and Hwang [23] has been given
by Zerovnik and Pisanski [79].

The mean distance d(n) for the double fixed step graphs is asymptotically equal
to \/g (see [10]). Moreover, it was proved by Boesch and Wang [14] that the graph
G(n; £ulb(n), £ulb(n)+ 1) has maximum connectivity four.

Surprisingly, the problem of determining d'(n) = msin d(n;+1,+s) is more difficult.
By the result above, we have that for n = 2¢> + 2+ 1, d'(n; £1, £(2t 4+ 1)) = t = ulb(n).
But for n = 2¢>42t, Du, Hsu, Li and Xu [33] and Tzvieli [71] showed that d’'(2¢?+2t) =
t+1=ulb(n)+ 1. Let n; = 202 + 2t + 1, and R(t) ={ns—1 + 1,...,n:}. For example
R(4) = {26,...,41}. Du, Hsu, Li and Xu [33] obtained new classes of values of n
for which loop networks G(n;+1,+s) can be found that achieve lower bound ulb(n).
Namely these classes contains, for each ¢ > 3, 10 values of R(t) (that independently
of t). In [71] Tzvieli found several other classes, each of which intersects each R(t)
in a set of cardinality O(y/1). Recently Bermond and Tzvieli [12] found dense infinite
such classes. They proved that if n € R(¢), d’(n) = ulb(n) when gcd(n,t) = 1 or when
ged(n,t+1) =1, or when ged(n, ¢ —1) = 1 and n < 22 + 1. As a corollary, it is proven
that when ¢ is prime and n is in R(t), n # n; — 1, d'(n) = ulb(n). This equality also
holds when ¢ 4+ 1 is prime, n is in R(¢), n # n; — 1, with a possible exception when
n = 2({* — 2. In [70] Tzvieli conjectured that d'(n) is always smaller than or equal to
ulb(n)+ 1, and verified the conjecture for n up to 8000 000.

A double fixed step graph G(n; +1, £s) is said to be optimal if d(n; £1, +s) = d'(n).
Hsu and Shapiro [44] defined the notion of one-optimality which is stronger than being
optimal. They gave a complete census of double step graphs which have diameter equal
to ulb(n) and are one-optimal. Using the concept of one optimality, Hsu and Shapiro

[45] also showed that d'(n) < (%)% + (%)% + 2.



5 Multiple fixed step graphs and digraphs

A natural extension of the preceding results includes the consideration of the general
network G(n; s1, $2,..., ) or G(n;+s1,+sg,...,Esk). The general problem is far from
being solved. Results for several special cases have been obtained.

In the case of fixed k-step digraphs, Wong and Coppersmith [76] have shown that

the maximum number of vertices of such a digraph with diameter D is (k";D). From

that, one can deduce a lower bound for d(n): d(n) > (k'n)k — 2(k + 1). Fiol, in his
thesis (see [38]) showed that in fact one always has n < (¥ kD) as soon as D > 1. It is
not known whether there exists an infinite class of n for which optimal networks can be
constructed for & > 3. Wong and Coppersmith [76] gave an upper bound by showing
that if n = t* (where ¢ is an integer), d(¢*;1,2,4%,...,t*71) = k(1 — 1) = kn¥ — k.
Therefore, d(n) is bounded by a function of the order knk. They also give lower and
upper bounds for the average distance.

For k = 3, Erd6s and Hsu [35] showed that for some classes of n, there exist s;, s3
such that d(n) < d(n;1,ss,s3) < (\/_-I— “)n n3 — 3. The constant ¢ can be suitably
chosen to minimize the function \/_ + E' Then they generalized the result to the
cases when k£ > 3. That is, for some classes of n, there exist s5,s53,...,5; such that
d(n;1,s9,83,...,85) < (((k— 1)!0)’371 + %)n% — 52 Recently, Hsu and Jia [43] showed
that d(n;1, sg,s3) < (16n)% and d(n;1,sq,s3) > (14 — 3\/5)%71% The upper bound
(16n)% is an improvement of the result of Erdés and Hsu [35]. However, the lower
bound (14 — d\/g)%né_ is the first new result which improves the bound (6n)% —2in
the case k = 3 obtained by Wong and Coppersmith [76].

In the undirected case Wong and Coppersmith [76] gave an upper bound on the
maximum number of vertices of a fixed k-step graph G(n;+s1,+s2,...,£s;) with di-

k-1
k D :
ameter D. They showed that n <1+ Z () (k‘ ) ok (This was rediscovered by
1=0 ¢ -t
Boesch and Wang [14]). In the case k = 2, we obtain again n < 9D%2 4+ 2D +1 and in
thecase k =3, n < 14+ w. From this result Wong and Coppersmith deduced

a lower bound for d(n) of the order of %(k')%n% Recent results on lower bounds for
d(n), has been given by Garcia and Solé [40, 41] using a different approach Wong and
Coppersmith also gave a lower bound for d(n) of the order of £k+1 (k')k nk.

On the other hand, they showed that for n = t*, d(n;£1, £, +¢%, £1F71) = %(t -

1) = %n% — % (in the geometrical approach, this corresponds to a tessellation of the

space with k-dimensional cubes). In the case k& = 3, these bounds give that f(n) <
d(n) < g(n) where f(n) is of the order of (2 )é and g(n) of the order of (28—7)1)% C.
Peyrat (private communication) has shown that g(n) can be lowered to a function of

order (3n )L C. Delorme (private communication) exhibited a geometrical construction
that glves rise to generalized 3-step graphs with diameter bounded by a function of order
(g;n) . (In that case, the vertices are considered as element of a group, two vertices
v and 7 being joined if j — ¢ = +s1,+82,...,+s; where the s;’s are elements of the
group). Recently Chen and Jia [21] obtained the same result for £ = 3 as a particular
case of the following upper bound d(n) < (%k n)

Several variations of the networks described above have also been considered mainly



for triple and quadruple step digraphs or graphs. These networks are not optimal for
the diameter but they have nice regularity properties , a good mean distance and
are highly fault-tolerant. Furthermore they are associated to particular tessellations
of the plane. For example, Morillo, Fiol and Fébrega in [60] considered the class
G(n; 51, 82,81 + $2). The maximum order of such a graph with diameter D is (D + 1)2
and furthermore the minimum diameter d(n; sy, sz, 51 + s2) = |v/n — 1|, this minimum
being attained for s; = 1, sp = [/n — 1] + 1. After deletion of one edge or one vertex,
the diameter increases at most by one. These digraphs are associated with hexagonal
tessellations of the plane. Similarly in the undirected case, it is proved in [78] that the
maximum order of a triple loop graph G(n;a,b,a + b), where ¢ = +s1, b = +s5 and
0 < s < sy < |5, with diameter D is 3D? + 3D + 1. The bound can be achieved for
sy = 1, and s = 3D + 1. The problem of determining their diameters has been only
solved for some families of infinite values of n (see [57]). Here again, these graphs are
associated with hexagonal tessellations.

6 Generalized loop networks

Other related constructions include the chordal ring networks studied by Arden and Lee
[3] although they were introduced by Coxeter [28] more than thirty years ago. These
graphs are formed by adding chords in a regular manner to an undirected cycle or loop.
The simplest example is given by the cubic graph obtained by adding a perfect matching
(maximal set of disjoint edges) to an even cycle. A nice way to construct such a cubic
graph is as follows. Let the set of vertices be V.= V5 UV} where V5 = {0,2,...,n — 2}
and V3 = {1,3,...,n— 1} and n is even. Join every vertex i in V; to the vertices i + 1
in V; (these edges forming the cycle) and then join every vertex ¢ in Vj to the vertex
i+ sin Vi (where s is odd) and consequently every vertex j in V; is joined to the vertex
j —sin V. For example the Heawood graph is obtained with n = 14 and s = 5 (or 9).
Arden and Lee [3] constructed such graphs with a diameter D and a number of vertices
equal to D? + O(D). This was improved by Alegre, Comellas, Fiol, Morillo and Yebra
(see [78, 58]) who showed that the maximum number of vertices of such a graph with
diameter D is &2-{—_1 if D is odd (in that case the bound is achieved with s = 3D) and
%AE — D if D is even (in that case the bound is achieved with s = 3D 4+ 1). In [78]
the authors studied also two kinds of generalizations. In the first one every vertex i
of Vy is joined to the vertices ¢ £ s; of Vg and ¢ + s3 of V; and every vertex j of Vj
is joined to the vertices j + s9 of Vi and j — s3 of V3. The graphs thus obtained are
cubic and known as generalized Petersen graphs [72]. +s are of order %\/ﬁ In fact
the extremal graphs were already considered by Bermond, Delorme and Farhi [5] as a
special product of Ky by Cyp2y9541. In the second case, each vertex ¢ of Vj is joined
to the vertices i 4+ s1, ¢ 4+ sy and ¢ + s3 in V; (the s;’s being odd) and consequently
each vertex j of Vj is joined to the vertices j — sy, 7 — s3 and j — s3 in V. The graphs
thus obtained are bipartite and related in some way to hexagonal tessellations of the
plane (see [78]). Generalized bipartite or quadripartite graphs are also considered by
Comellas, Morillo, Fiol and Yebra (see [61, 57, 27]). The case where vertex 7 is joined
to vertices ¢ + 51 and ¢+ s3 is studied by Morillo and Fiol in [59].

Another generalization consists in considering Cayley graphs or digraphs. These
graphs are associated to groups. The fixed step loop graphs or digraphs considered in



the preceding paragraphs correspond to the case when the group is the additive group
of the integers modulo n. The vertices are the elements of the group, a vertex ¢ being
joined to the vertices ¢ + s1, @ + s2,..,¢ + s (in case of digraphs) and ¢ £+ s1, ¢ £ s9,.. .,
i+ sg (in case of graphs), where sq,. .., s are given elements of the group. For diameter
related properties of these graphs, see for example the articles of Bond and Delorme
[17], Bond, Delorme and de la Vega [18], Campbell et al. [19], Carlsson, Cruthirds,
Sexton and Wright [20], Chudnovsky, Chudnovsky and Denneau [24] and Hsu and Jia
[43].

In all the above cases, the diameter is of order nk. Using the classical Moore bound
for the maximum number of vertices of an undirected A-regular graph with diameter D,
n < I+A+AA-1)+.. +A(A- 1)D, one obtain that the diameter of a A-regular graph
on n vertices is at least logn_y n — %. It has been shown by Bollobds and de la Vega
[16] that a random A-regular graph has diameter of order logs_; n with probability
close to 1. Recently, Bollobds and Chung [15] showed that a random cubic loop graph
obtained by adding a random perfect matching to a cycle has a diameter also of the
order loga_q n. Therefore there is some hope to construct loop networks, A-regular
and with a diameter of order logs n. For digraphs, such networks were constructed a
long time ago for particular values of n. Indeed the de Bruijn digraphs , which exist
for n = d”, and the Kautz digraphs, which exist for n = d” + d”~! are hamiltonian
digraphs with in- and out-degree equal to d and diameter D (see the surveys [6] or [11]
for different definitions and properties). They are hamiltonian because they can be
defined as iterated line digraphs of complete symmetric graphs (with or without loops)
and it is well known that the line digraph of an eulerian digraph is hamiltonian.

Different generalizations of these digraphs have been proposed. Reddy, Pradhan
and Kuhl [68] and Imase and Itoh [51] defined generalized de Bruijn digraphs as follows
: the vertices are the integer modulo n and there is an arc from ¢ to j if and only if
j=di+a (mod n) for some a,0<a<d-1. The de Bruijn digraphs corresponds
to the case when n = d”. Imase and Itoh [51] defined generalized Kautz digraphs in a
similar way: the vertices are the integers modulo n and there is an arc from ¢ to j if
and only if j = —di — b (mod n) for some b, 1 < b < d. Kautz digraphs correspond to
the particular case when n = dP + dP~'. These digraphs have in and out degree equal
to d and diameter at most [log, n].

It was not known until recently if they were hamiltonian. The results of Du, Hsu,
Hwang and Zhang [32, 34] showed that they are in fact hamiltonian except when d = 2
and n is odd for the generalized de Bruijn digraphs and d = 2, n is odd and n # 3* for
the generalized Kautz digraphs. When d = 2, a class of networks called H,, obtained by
modifying the generalized Kautz digraphs has been proposed by Du, Hsu and Hwang
[31]. They showed that H, is hamiltonian, has connectivity 2 and diameter at most
[logy(n —1)] 4+ 1. The connectivities and other reliability properties of the generalized
de Bruijn and Kautz digraphs have been settled recently (see the survey [9]). It appears
that these digraphs and also the associated undirected graphs are highly fault tolerant;
for example, their connectivities are in most cases equal to their minimum degrees
(which is best possible).

Itoh, Imase and Yoshida [53] and Du, Hsu and Hwang [30] have proposed the class
of consecutive-d digraphs G(d, n, ¢, r); their nodes are labeled by integers modulo n and
vertex ¢ is joined to the d consecutive vertices gi+r+k (mod n) where 0 <k <d <n
and ¢ is a non zero element. Du and Hsu [34] and Du, Hsu and Hwang [30] studied



their hamiltonian and connectivity properties. Note that when ¢ = d and r = 0, one
obtains the generalized de Bruijn digraphs and that when ¢ = n — d and » = n — d the
generalized Kautz digraphs. Another generalization, called c-circulant digraphs, has
been introduced by Mora, Serra and Fiol [56, 69]. The nodes are labeled by integers
modulo n and node ¢ is joined to the nodes ¢t 4+ a5, where the ag take d given values.
When these digraphs are strongly connected and gcd(¢,n) = 1 they are hamiltonian.

All these results are good answers for the problem of constructing optimal loop
directed networks. It will be nice to construct in a similar way digraphs that are
not only hamiltonian but also admit a Hamilton decomposition; therefore they can be
considered as the union of arc-disjoint loops.

The undirected graphs associated to the digraphs defined above give examples of
good networks but they are far from being optimal; for example, we obtain 4-regular
graphs with a number of vertices of order 2P, but the Moore bound is of order 3.
Similarly, the best known constructions of cubic graphs give a diameter of 1.47log, n;
but one can hope, in particular in view of the results on cubic random graphs mentioned
above, a diameter of order log, n.

7 Conclusions and problems

The class of distributed loop computer networks plays an important role in the design
and implementation of interconnection networks. We have given a survey on recent
literature which deal in particular with the issues of diameter, connectivity and hamil-
tonian properties. It appears that already some good classes of networks exist: the
double fixed step graphs or digraphs with diameter of order \/n and nice regularity and
routing properties, or the generalized de Bruijn graphs or digraphs with diameter of
order log n.

The tutorial edited by Wu and Feng [77] provides a general survey of interconnection
networks. Other properties can be found in [54]. The reader might find some other
information in the recent surveys concerning the (A,D)-graph problem (construction of
the largest known graphs with given maximum degree A and diameter D) by Bermond,
Delorme and Quisquater [6, 7]; diameters of graphs by Chung [25, 26]; fault tolerant
(or vulnerability) properties of interconnection networks by Bermond, Homobono and
Peyrat [9].

Finally we list some open problems for further investigations. Some partial results
concerning these problems have been mentioned in the current survey.

(1.) In the case of double fixed step digraphs find d(n) = min d(n; sy, s2) or d'(n) =
min d(n; 1, s) for any given n. Moreover, find optimal loop networks G(n; sy, s2)
or G(n;1,s) having this diameter.

(2.) Study the function f(n) = d(n) — Ib(n) or f'(n) = d'(n) — lb(n) where [b(n) =
[V3n] — 2. In particular, how large can limsup f(n) or limsup f/(n) be.

(3.) Do the same as in (1) and (2) for the class of double fixed step graphs G(n; +1, +s).

(4.) Study the generalization of problems (1),(2),(3) for the & fixed step graphs and
digraphs, G(n;1,+s2,...,+s;) and G(n; sy, 82, ..., k).
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(5.) Find hamiltonian networks, A-regular on n vertices with a diameter of order

logpn_; n. In particular construct cubic hamiltonian graphs with diameter of
order log, n.

(6.) Construct networks with a good diameter which can be decomposed into hamilto-

nian cycles.
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N=36=0
3s=33

6s =30

s=11

2s =22
55 =19

Figure 1: An optimal loop network G(36;1,11), d(36;1,11) = 9 = d(36).
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Figure 2: Geometrical representation of G(9;1,7).
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