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Abstract

Two near-optimum planarization algorithms are presented. The algorithms belong
to a general class of algorithms known as genetic algorithms because the search proce-
dures on which they are based are inspired by the mechanics of natural selection and
natural genetics. The first algorithm is intended to generate a near-maximal planar
subgraph from a given graph and also provides the routing information needed to
embed the subgraph on the plane. The second planarization algorithm studied finds
a near-maximum independent set of a circle graph. This algorithm may be used for
finding a routing on one layer from a set of n two-pin nets in a channel. After small
modifications, it may also be used to predict the secondary structure of ribonucleic
acids. The main advantage of both algorithms is that they are easily implemented in a
parallel computer.

1. COMBINATORIAL OPTIMIZATION

An instance of a combinatorial optimization problem consists of a discrete set of so-
lutions or state space, together with a cost or objective function that assigns a real number
to each solution. The problem is to find a solution for which the cost function is opti-
mal. Many optimization problems arising in practice are NP-complete: obtaining an
optimal solution requires an exponentially increasing number of steps as the problems
become larger. In this case several approaches are used to find good solutions. For
particular NP-complete problems heuristic methods have been developed to give an
acceptable answer in a reasonable time, although the optimum answer is not guaran-
teed. Heuristics are problem-specific. A heuristic procedure may be very efficient for
finding near-optimal solutions for one NP-complete problem and useless for another.
Also, most heuristic algorithms are descent algorithms with respect to the cost function.
Consequently they are unable to escape local minima. Heuristic strategies come in sev-
eral styles: constructive, divide-and-conquer methods and iterative improvements. In
the first, the answer is built up directly. The second style divides the problem into sub-
problems of manageable size and then solves the subproblems. The solutions found
must be adequately patched back together. This method is effective if the subproblems
are disjoint. Iterative improvement is of more interest than other heuristics because of
its broad range of applicability. Iterative improvement strategies attempt to generate
from some existing suboptimal solution a better lower-cost solution. This solution
then becomes the new configuration of the system, and the process is continued until



no further improvements can be found. Standard iterative improvement is a downhill
method. Each iteration moves the system to a configuration downhill from the previous
one. The system usually becomes trapped in local minima. In practice, it is customary
to carry out the process from many random initial configurations and save the best
solution found. For very large problems this process is computationally expensive and
there are still no guarantees of finding the desired solution.

Simulated annealing (SA) may be seen as a modification of iterative improvement
which allows the system to move uphill in a controlled manner. The SA method comes
from the analogy made between the states of a physical system, e.g. a liquid, and the
configurations of a system in a combinatorial optimization problem. If the temperature
of the interacting molecules in a liquid is suddenly reduced below its freezing point, the
result will be a disordered glassy state with an energy higher than the true crystalline
ground state. In fact the molecules are in a local energy minimum. On the other hand,
if the temperature of the liquid is reduced slowly (annealing), waiting for equilibrium
to be reached before a new reduction is made, the liquid freezes to the solid state
through a cooling process that leads to the crystalline state, which is the global energy
minimum. Inthe analogy with the combinatorial optimization problem the parameters
being varied are equated with atomic positions in the liquid and its energy is identified
with the cost function being optimized. The temperature is then defined as a control
parameter related to the probability that changes which make the state worst will be
accepted. This ensures a more exhaustive search of the state space. In the algorithm,
a change of state that decreases the energy is always accepted; if the energy increases,
the change is accepted with a certain probability that depends on the temperature of
the system, according to the rule e-28/T. At a given temperature several exchanges
are attempted; then the process is repeated after decreasing the temperature. The
system is gradually cooled until it is stopped according to some criteria such as when
the number of changes accepted is small and/or the reduction of the energy is not
significant. The number of attempts made at a given temperature has to be large enough
to obtain a good statistical set of trials. The algorithm may also take into account the
number of successful attempts at each temperature to decide whether the state space
has been properly searched, and the search may be finished for this temperature. The
SA technique has been successfully applied to scheduling problems like the traveling
salesman problem, spatial organization problems like the chip placement and several
other problems (see [1,2]). However, SA suffers from one major drawback: It requires
careful tuning of its control parameters to achieve good results.

Neural networks based on the Hopfield model (see [3]) have been used with success
for solving different combinatorial problems. These networks are composed of many
simple computing elements (or artificial neurons) which cooperatively search the state
space to find a local or global maximum or minimum.

Another family of algorithms with a possible broad range of applicability are genetic
algorithms. Genetic algorithms (GA) were first introduced by J.H. Holland in the 60’s,
and have been successfully applied to the travelling salesman problem, pattern recog-
nition, classifier systems, pipeline operations, scheduling, symbolic system evolution,
and some other problems (see [4] for an extensive description and bibliography).

In a genetic algorithm the starting point is always a collection, known as population,
of possible solutions generated at random. A suitable encoding of each solution in the
population is used in order to compute its fitness. At each iteration a new population,
or generation, is obtained by mating the best of the old solutions with one another. To
create the next generation, new solutions are formed through reproduction, crossover
and mutation. The solutions that will be considered for crossover are probabilistically



selected according to the fitness values from the set that constitutes the current gen-
eration. This new population become the parent pool. Usually, a constant number of
solutions are selected so that the maintained population is of fixed size. Crossover
creates two new child solutions from two solutions sampled from the parent pool. In
this way, fitter parents have a better chance of producing children. This is done for
the whole population. Children solutions are obtained by interchanging random parts
of their parents. Some randomness is also introduced through a mechanism called
mutation to ensure that the algorithms avoid getting stuck at local minima. Mutation
changes selected parts of a solution without keeping the original. The crossover and
mutation operations are done with probabilites p..s and pmu. This ensures that some
solutions from the current generation will be kept in the new generation. Once a new
generation is created, the fitness of all solutions is evaluated and the process is repeated.
At each generation the best solution is recorded. The algorithm ends when the results
stabilize or the optimal solution, when it can be identified, is reached.

In this paper we will discuss the applicability of genetic algorithms to some NP-
complete problems that arise in Graph Theory. Other methods such as neural nets and
simulated annealing have been previously considered for dealing with these problems
(see [5]). For all of them genetic algorithms might be of interest. There follows a list of
several of these problems:

= Max (or min) cut problem. Consists in finding, for an edge weighted graph G(V,E),
a partition of V, V = V,uV; and V,nV; = §, such that the sum of the weights
corresponding to the edges joining both sets is maximal (or minimal). The graph
partitioning problem corresponds to the particular min cut case in which all weights
are equal.

= Independent set problem. This problem consists in finding an independent set of
maximal size V' € V such that between any two vertices in V' there is no edge.

= Graph colouring problem. This is to find a minimal coloring of a graph G(V,E), i.e. a
set of | colors and a mapping of V to this set such that any two adjacent vertices have
a different color and the set of colors has minimal cardinality.

= Steiner tree problem. Given an undirected connected and weighted graph G(V, E) and
a proper subset V' of V, find a minimum-weight tree which spans the vertices of V/
and, if necessary, some others.

= Planar subgraphs. Given a (non planar) graph, find a maximal planar subgraph.

In this work genetic algorithms are used to solve two different graph planarization
problems. In Section 2 we describe a genetic algorithm that finds a near-maximal
planar subgraph from a given graph and also provides the routing information needed
to embed the subgraph on the plane. Section 3 presents another planarization algorithm
that finds a near-maximum independent set of acircle graph. After small modifications,
it may also be used to predict the secondary structure of ribonucleic acids. Finally, in
Section 4 the conclusions are presented.

2. GRAPH PLANARIZATION

The first graph planarization problem studied is directly related to the design of
printed circuit boards and the routing of very large scale integration circuits (VLSI), and
consists in finding a near-maximal planar subgraph from a given graph, in general non-
planar. Jayakumar et al. [6] proposed an O(N?) near-optimal planarization algorithm,
where N is the number of vertices. For the same problem, Takefuji and Lee [7], used



an N x N neural network. The genetic algorithm presented here, as in the case of
the Takefuji and Lee algorithm, not only yields this near-maximal subgraph but also
provides the routing information for the embedding on the plane of the subgraph
founnd. Both algorithms are able to find a new maximal planar subgraph with 20
edges instead of 19 from the nonplanar graph with 10 vertices and 22 edges which
Jayakumar et al. used as an example in [6]. For solving this problem using a genetic
algorithm, the state space of possible solutions is obtained from the original graph
by drawing its vertices in a single row. A connection between two vertices, when
considered, is made by either an upper edge or a lower edge. Edge crossings may
thus appear. The algorithm tries to find a drawing without crossings and with the
maximum possible number of edges from the original graph. Let us supose that the
given graph has M edges. We code each possible solution by a list of M elements. Each
position in the list corresponds to an edge of the original graph, and has values -1, 0
or 1 according to whether, for this solution the edge is a lower edge, is not considered
or is an upper edge. In the first generation we generate at random a population of
P states from the given graph to be planarized. The crossover on pairs of solutions
XP = X1 X, ... X and yP¥ =y, ... ym, With X;,yi € —1,0, 1, is done by randomly choosing
acutting point r < M and creating the child lists as follows: X¥"d = x;X, ... X Y1 ...Ym and
yed = yiy, .. VX ... X Mutation is done by replacing the value of one list element
randomly chosen with another admissible value generated at random. The fitness of a
solution is evaluated according to the equation:

f(X) = neve + (M — ne)ve

Where n. is the total number of crossings in solution x, n. is the number of edges
from the original graph considered in this solution and v and v, the values assigned
repectively to a crossing and to an edge. The existence of a crossing between two upper
edges (or two lower edges) is easy to determine from the single row representation
used.Two edges (i,j) and (ILm) crossifi<l<j<morl<i<m«<j Figurel shows
a run of the genetic algorithm for a random generated graph with 12 vertices and 28
edges. A population of 200 individuals was considered. Other parameters were set
as follows: peross = 0.9, pmut = 0.3, v, = 1.1 and v, = 1. Figure 2 shows the initial graph
and Figure 3 shows the best planar subgraph found at generation 120. The same set of
parameters with a population of 80 individuals was used for finding, at generation 38,
the maximal planar subgraph with 20 edges which contradicts the result of [6].
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Figure 1. Evolution of the average fitness and best generated solution.

Figure 2. The initial non planar graph.

Figure 3. A planar subgraph found at generation 120.

2. PLANARIZATION OF CIRCLE GRAPHS

The second algorithm presented here finds a near-maximum independent set of a
circle graph. An independent set in a given graph is a set of vertices, no two of which
are adjacent. An independent set with the largest possible cardinality is a maximum
independent set of the graph. A circle graph is the graph associated to a finite set of
chords of a circle in such a way that each vertex of the graph corresponds to a chord
and that there is an edge between each pair of vertices whose corresponding chords



intersect (see Figure 4).
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Figure 4. A set of chords and its circle graph.

Although the problem of finding a maximum independent set for arbitrary graphs is
NP-complete [8], several polynomial time algorithms have been developed for finding
a near-maximum independent set in a circle graph [9,10]. Neural nets have also been
considered for this problem (see [11]).

As in the previous genetic algorithm , for this algorithm we code each possible
solution by a list of M elements (M is the number of chords of the circle graph). Each
position in the list corresponds to a chord of the original graph, and has values 1 or 0
according to whether or not the chord is considered for this solution. The algorithm
follows the same steps as the previous one but uses a different cost function. In this
case the cost function also depends on the chord length, and the fitness of a solution is
evaluated according to the equation:

f(X):L— Z |i+ Z Ii

present crossing

Where L is the sum of the length of all chords in the circle graph to be planarized and |
is the length of chord i. Figure 5 shows a run of the genetic algorithm for a circle graph
with 10 vertices and 20 edges. A population of 200 individuals was considered. and
the crossing and mutation probabilities were poss = 0.9, pmue = 0. 3. Figure 6 shows the
best graphs found at generation 1. Figure 7 shows the best graphs found at generation
125.
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Figure 5. Evolution of the average fitness and best generated solution (circle graph

planarization).

Figure 6. Best graph at generation 1.



Figure 7. Best graph found at generation 125.

A modification of the algorithm based on [11] is useful for predicting the secondary
structure of ribonucleic acids (RNA). The primary structure of RNA is determined by
the sequence of organic bases. The folding of the chains into a two-dimensional shape
determines the secondary structure. Non intersecting edges in a circle graph may be
related with the base pairs for this folding. To generate a stable RNA structure here it
is required to maximize the number of non intersecting edges or base pairs. The use
of the RNA structure stability model from Tinoco et al. [12], enables the computation
of the stability number of the resulting structures. This number is also used in the
cost function. The modification was implemented and we were able to reproduce the
result of Takefuji et al. [11] for the sequence of 38 bases used by them with their neural
net. Work is still in progress for adapting the algorithm presented to process bigger
sequences.

4. CONCLUSIONS

The results show that the genetic algorithms presented in this work perform well,
and that with a similar (or less) computational effort than in other approaches (neural
networks, simulated annealing, etc.) it is possible to obtain the desired solutions.

The main advantage of the method lies in its simplicity and the fact that by their
very nature the algorithms may be easily implemented on a parallel computer.
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