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LARGE REGULAR IKTERCONNECTION NETWORKS

¥arl W. Doty

Systems Control Technology, Inc.
1801 Fage Mili Road

ABSTRACT |

Distributed computer systems can be mcdeled
reph thecry te evaluate potential network
topolegies. This paper presents a new construction
method for intevccennecticn networks. The method
generalizes the chordal ring networks of Arden and
Le2, znd produces the lzrgest known graphs for many
degrees zgnd diabeters. Numerical results are pre—‘
sented both for individual chordal rings and for
graph products cof chordel rings. A new construction
wethod for degree five grephs is also given.
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& 1. RODUCTION

Tnis paper looks at the design of intercon-
nection metworks for large systems of microcomputers.
An optimzl design would involve many factors, in-
cluding the network topology, the physical layout
of the mezwork, znd the =xpected requirements for
interprocessor coorunication. In this paper, the
coancern is with the network topolegy, which must be
carefully designed in order to take full advantage
of the cepabilities of a distributed computer system.

Yith 2 message-passing protocol, communication
betveen computers may require the use of several
intermecdiate computers as relays. Message queueing
may occur at each intermediate computer, causing
celays and a loss in efficiency for the svstem. An
cptimal metwork might have every computer directly
connected to every other one. This is usually not
possible, Lecause the nunber of connections for each
computer fs limited. The netvork must be designed
so that messages travel guickly between computers,
with the xestriction that each computer be comnected
to only a few others. ’

A grzph theory molel of a distributed computer
system has teen used by many authors to evaluate
netwvork tepologies. 1In this model, nodes represent
the cocputers and edges represent the cowmaunication
links. The degree of a node is the number of nodes
it {s connected to by a single edge. Each node is
assumed to have a degree not exceeding some pre-
scribed number d, which is the degree of the graph.
If all nodes have the same degree the graph is
called regelar. The distance between two nodes is
the minimus number of edges which must be used to
travel between the nodes. The waximum inter-nodal
distance &s the dizxzeter of the graph, which is de-
noted k.

.
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An cptimal network topology should have small
inter-nodal distances. There are seversl relevacnt
composite measures cf distances im a gre:ch, such
as the dizzeter or the average distance; in this
paper the diameter will be used. There zre severzl
related protlems involving the degree, dizmeter, znd
number of rodes in a2 graph. Perhaps the cost naz-
uvral is to find the tinimum dizmeter k for a grzph
Ecvever, the value

with n =nodes and degree d.

of this minizum k would be a function of n and
d, for hundreds or theousands of relevant vzlues of
n, with different graphs for each. Instezd the

dual problem of finding the maximuz nuzber of nodes
in a graph vith degree d and dizzmeter x will be
considered. There is alwost as ruch infcrz=stion
with this, and the results are easier to present.

following section, previous work by other
authors on caximizing the number of nodes im a grzph
with dégree d and dismeter k 1is discussed. Sec—
tion 3 locks at a generalization of the chordal

rings of Arden and Lee [2] which gives larger graghs's
for many values of d and k. Section &4 presents
the quantitative results of this research. The

final section summarizes the paper.

In the

2. PREVIOUS WORK

The maximum number of nodes in a2 graph vith de-

gree d and diameter k is denoted a(d,k). An
upper bound on n(d,k) 1is easily caiculzted. Fro=

any given ncde at most d nodes can be reached 1o

a distance of one arnd, for j > 1, at most d(d-l)J‘l

nodes can be reachked in a distance of j. Thus
n(d,k) < 1 +d+ ...+ d@-1*?
g% - 3 @’

=

d -2

Expression 1 is called the Moore bound, &nd any
graph which has that number of nodes is czlled a
Mocre graph. Most Moore graphs fall into two
classes: 1) the odd polygons, where d = 2; 2) the
complete grzphs, where k = 1. In [13] it wvas shcwa
that for k = 2 there are only a few other Moore
graphs: the Petersen graph (figure 1) where d = 3;
the Hoffman-Singleton graph, vhere d = 7; and pos-
sibly a graph with d = $7. In [6] and [9] it was
sh~wmn that there are no other Moore graphs. 1In [7]
it was shown that except for the sguare tlhere are
no graphs with a nu=zber of nodes egual to onez less
than the Moore bound. No better upper bound on
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Figure 1. Petersen Graph

+{d,k) has been established.

A lower bound on n(d,k) will be denoted by
2(d,k). Values of b(d,k) can be obtained by
sxhibiting a graph witl degree d, diazeter k, and
-(d,k) nodes. A number of authors have written
-zpers on finding impréved values of b(d,k). One
sf the first papers on the subject was by Elspas
‘11). ~ He defined the problem explored here and pro-
ided the first resuits. In particular, he showed
~at n(3,3) = 20, n(4,2) = 15, and n(5,2) = 24,
_hich are the only known values of n(d,k) other
tan these associated with Moore graphs.

Friedman [12], Korn [15), and Storwick [17]
:ave related construction nethods to obtain improved
;zalues of b(d,k). These methods involved connecting
.any copies of hierarchical graphs in specified
<tructures. Formulas were obtained expressing
s(d,k) as a function of d and k. All of the
‘ormulas had b(d,k) proportional to ak/2,

Tutte [18] and Bzizban (4], [5] obtained im-
-roved values of b(3,k) for specific values of k
shile working on a related problem. larger velues
:f b(3,k) were obtained by Arden and Lee [3] by
:ing a construction method called multitree struc-—
c.red netwarks., A special construction was devised
5y Akers [1], in which b(d,d-1) is equal to the

7.
~iromial coefficient (-é d ! ‘

cas @

Imase and Itoh [14) gave a simple number-
‘Seoretic construction based on de Bruijn sequences
'10] which has significantly more nodes than the
‘ther constructions for large degrees and dianmeters.
‘onsider the nodes to Se nuxbered from 0 to n - 1.
\n edge 1s added connecting nodes i and j if

j=4i- (d/2) +a(nodn), a-= 0,1,...,d/2 - 1.

e resulting graph has diameter k = [I;gd/z :n
Yherer%—l denotes the srallest 1nteger'not less

Fhan x), so as many as (d/2)k nodes can be usea
in a graph wvith diameter k.’

The best published results for many degrees and
!iameters are those of Leland et al [16]. Graphs
“ith small degrees and diameters were constructed
:sing heuristic methods. These were then combined

: ~

by using varicus graph procducts co forc larger
graphs.

3. CHEIRDAL RINGS

In this section a new construction method is
proposed vhich produces graphs vith larger values
of b(d,k). This methcd is a generalization of the
chordal ring networks ¢f Arden and Lee {2]. Their
work will be summarized before proceeding to the
generalization.

In their construction, a chordal ring network
is a ring on n mnodes, plus n/2 additional links
cennecting pairs of ncdes. Every node has one of
these chordal lirnks, sc the graph is regular and
has degree 3. Let the aodes be nuzbered consecu-
tively 0, 1, ..., n-1 arcund the ring. Zach od<
node 1 1is connected te the even node 1 + W
(mo¢ n), where w 1s zn odd integer. Figure 2
{llustrates a chordal ring metwork with n = 14,

w = J.

Figure:il Execple of Arden
: and ‘Lee Chordal Ring

The largest chordzl riang for given ciameters
{s derived in their paper. For k > 5 and odd
the maximum number of nodes is k2 ¥ 3k - &, and
the optimal w is k + 4. For k > 8 =zand even
the maximum number of nodes is k2 + 3k - 12, and
the optimal w is k + 5. These are fewer nodes
than can be obtained by other methods. The paper

also gives a distributed routing algorithm for imier-
node coummunication. =

L3

v 4V

The chordal ring netwerks will be generalized
in two ways. First, more complex chordal connection
cethods will be used fer the degree 3 case. Secend,
chordal rings of higher degrees will be investi-
gated. :

The Arden and Lee ring can be thcught of as

_having a pattern of length two. That is, the chord

of length w 1is repeated every two nodes around the
ring. The fundazental generalization is .to look at
other pattern lengths, or orders.

A chordal ring of crder r will be defined as
ha&ing the property that r 1is the scmallest integer
such that if {1 1s concected to j, thean 1 +71
(mod n) is connected to § + T (mod n) for all 1
and j. An Arden and lLee chordal ring is thus 3
degree 3 chordal ring of order 2. Figure 3 1llus-
trates two 24 node degree 3 chordal rings, the first
with-order 3 and the second with crder 4.
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Order 3
Figure 3. Higher Crder Chordzl Rings

chordal ring of degrée 3 must have an even
of nodes, since any regular graph with an
ree myst kave n  even. In addition, the
of nodes must be a multiple of the order.

The objectiwve is to find the largest chordal
ring for given d&iameters. With the higher order
chordal- rings, there does not appear to be a simple
formula giving the maximum number of ncdes as a
function of either the chord lengths or the diameter.
As a reswvit, 2i1l values of n less than the Moore
bound for a givenn k must be considered, in order
to determine if there is a chordal ring on n nodes
=ith diameter k. Given a value of n, the ideal
algorithm for this determination would proceed as

follows:

Find the acceptable orders for this n.

2. Find tke sllowable chord lengths for each

order.
3. €3alculate the diameter of the graph for
: every set of chord lengths.
4. Chocse 2 set of chord lengths which give

the smalliest diameter.

The determination of the acceptable orders is
€asy. Any r suvch that 1 < r< n/2 and such
that r divides =n may be used. If r =1 (a
chordal ring in which every node is connected to
the node opposite it) it is easy to see that

k= {;/Z}- If r = 2 the results of [2) can be
applied. Thus ve need to only censider the case of
r > 3.

Next, the choxd lengths which produce allowable
chordzl rings must bte determined. Not all chord
I=ngths are acceptzdble--for example, in the order 2
case the chord length must be odd. If the nodes are
zi—bered from O to n - 1, each node can be con-
sidered to belong to one of r residue classes,
cepending on its value modulo r. If one node in
residue class p ds connected (by a chord) to a
noede in residue class g, then by definition of a
chordal ring all nofes in residue class p are
c€onnected €o node residve class q. As a resule,
the next step is to determine which residue classes

a
s -

"must be the same node.
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Order 4

can be ccrrnected, and what the correspeniing cherd
lengths ere.

Suppcse residue class p  is zssigned to be
connécted to itself. The chord length w is then
congruent to 0 (=o0d r). 1If node i ic in class
P, it is ccrnnected to node i + w. Hewever, node
i - w, also in class p, is coanected to node 1i.
Since the graph is of degree 3,. i + w znd i - w
Then w = n/2, zad node i
is connect=d to the nade opposite it.

P 1is connected to class ¢ dif-
p, this problem does not arise. The
corresponding chord length w.must be congruent to
Q - p (mod r). However, if r is odd least one
class must be connected to itself, because an even
number of clssses zust be paired.

If cless
ferent froz

-3¢

For 1 =2 there 1s only one method of pairing
the classes, vhich is the one used in (2]. For
r = 3 there is also only one: one class =ust be

connected to itself, and the other two are paired.
(If all threce classes are connected to t& zselves
this becomes an order 1 chordal ring.) Ecowvever,

for r 4 there are two different pairing methods.
Let { i} derote the class containing i . One methcd
connects { &} to {1} and {2} to{ 3}, while the ather
connects { 0} to {2} 2nd {1) to {3}. A third method--
{0} to{3) 2nd {1} to{2)--is the same as the first

via rotatica. In general, for r even there are

(r‘— lj!
Y 2r/2 -1

(r/2

pairing methods, with some reduction for duplication
due to rotation and reflection.

Given 2 pairing method for the residue classes,
the chord lengths must be selected. For each pair

of residue classes, there are n/r chord lengths
with the allcwed congruences. With r evan there
are /2 pairs of classes, so there are (a/r)f/2
possible chordal rings with a given residue class
pairing. :

Apar




For st2ll values of and r 1t is feacible
.o evaluate all possible sets of chord lengths to
ieter=zine which set is best, but for large values
of this is impossible. For exzmple, with

- =103) and r = 10 there are over lOll dif-
serent chordal rings. To Tind the cptimal cne the
c.ameter of each would have to be calculated, which
ic comjutaticnally infeasible., Instead, some
scarch —ethod which examines’ cnly a relatively few.
sossibilities must be employed. Such a method is

1ikely to lead to sub-optimal solutions.

o

a T

Crce a search method is chcsen, the diameter
27 each chordal ring must be calculated. This can
e dore by dsing any shortest-path algorithm, and
-an be speeded up by taking advantage of the fact
that g1l edge lengths are cne. In addition, in-
stead of calculating the distances between ull
rairs of nodes only the distence from representa-
-ives of each residue class to all other nodes need
:0 be calculated.

Gicbal search, local search, and random search
—athoés were used to find the chord lengths for ce-
zree 3.chordal rings between 6 and 10. The
Zargesf graphs found are listed in Table 1. The

tzngth of the chord from each residue class is in-
zluded. The largest chordal rings found with diame-’
zers & and 5 had 30 and 56 nodes, respectively;

a
larger grephs zre given in section 4 of this pzper.

Chordal rings can also be extended to larger
Jegrees. Now each residue class must be paired
with d - 2 other classes. A class may be paired
with itself without each node being connected to
its opposite node. Node 1 would be connected to
“oth i +w and i - w, where w 0 (mod r).
Lowever, this would take care of two of the neces-
sstry d - 2 pairings for {i}.

Figure 4 shows an example of a higher degree
-hordal ring--a 36 node, ‘degree 4 graph with diaze-
ter 3. This ring has order 3, and each of the
inree residue classes has a chord to the other two.

4., QUANTITATIVE RESULTS

Table 2 lists the largest known graphs with de-
3rees between 3 and 10 and diameters between 2 and

Number of Nodes

Diameter Chordal Ring
6 100 190
180 382
8 280 766
9 462 1534
‘10 708 3070

‘Moore Bound

theses refer to the

them are graph produc

s of chordal rings, using the
methods and notation ¢

[16].
and

uct operands. Five c¢f the graphs
are Uhr products invelwving large degree,

ihe numbers in paren-—

10. 'The largest degree twe graphs are pclygens and
have 2k + 1 nodes, while the largest ciameter cne
grapns are complete grzphs and have d + 1 nodes.
0f the 72 .valves in Tz=le 2, 52 are new. Ch:ordal
rings account for 37 cf these, for which the com-
puter search wes lizized to 7000 roces. Eight of

t

c

1

< K Vi

lves cf the prod-
n ciameter 8

bo

diazeter 2

graphs. A diazeter I graph with cezree ¢ and

z : ; ; 5 g

d” - d + 1 nodes alwzws exists if d - 1 1is a
power of a prime nuzi:<r, using the cc ructicn in

ters ~ and

[8]. Twec of the graghs (degree 3, &
5) were found by heuristic methods, w
based upon chordal rings. These lest
in Figures 5 and 6.

cr

W

werle

are shown

Another grazph product can be used 1o consirugt
the largest known grephs in certain szall degree,
large diameter cases: This product coxziines =
copies of a graph G. Each noce in the ;rocuct
graph is of the form (vl, Vs sees v:), where vi:
is a node of the compcnent greph. This node is
connected to . ’

(vz, v3; ey . Vf)

v__.)

(vm) \‘l) e \'m_zl m_l

and to all nodes of the form
o |
(vl k] vz' LB vm)Y .

v 1

1
If the comporent

kG, and n.

ncdes, degree

vhere v and are connected by an edge in the

1
component graph.

degree dG, diemeter

uct -graph has

graphs each have
nodes, the prod-
e
mkG + o - 1.

Using this product, the largest knewm infinite
family of degree five graphs can be constructed.
Teking the product of =© copies of the Petersen
graph, a degree 5 grayh can be forméd which has

10" = 10(k+l)/3 nodes.
graph has only 2" noces.

dG + 2, and

diameter

By comparison, a de Bruijn

Order Chord lengths
so, 11, 89, 21, 79
6 153, 16, 116, 27, 64, 164
7 140, 101, 73, 17, 179,
207, 263
11 231, 37, 16, 139, 247,
A 425, 79, 446, 383, 215,
323
12 632, 685, 23, 208, 601
107, 483, So00, 76, 225,
433, 275

TABLE 1 DEGREE 3 CHORDAL RIXNGS

~
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\\\\ 2 3 4 s 6 . . 7 8 9 10
d 3 i}

) r 10¢ 20¢ 38 h 60 h 100 ¢ 180 C 280 C 462 C l 70& ¢
119] {20] {34] [56) [R4] {122) [176] [311) {s25)
“ 15¢ 3o C 92 ¢ 188 € 118 C 856 C 1872 ¢ 3708 ¢ 2000 ¢
i1%) sy (67) (134] [261) [425) 1910] [136C) ! [2212)
: . B o : 1
S pIAY 60 C 164 C 400 C 1014 C 2604 C 7000 C 8556 U 116628 L
(24 («8]) [126) [262) {505) [1260] (2450) (4,6) HE OIS TY
i [4690) 19355}
6 31 s 94 C 284 C 820 C 2604 C 7000 C 13272 U 27¢60 v 550<9
i31) [65]) {164 {600 ] 11152} 12520) (5,2)x(24,2) | (5,4) dE
[e561) (19583} [s92¢9)
? 30+ 122 € 420 C 1550 C S04 ¢ 8930 U 27001 U 80940 U
133] {88} (252) 1992) {28%0} 6,3) 16,2)x(30,2) (6,4)
: [«680) [12250) [43200)
8 57°s 176 € 609 C 2550 U 7000 C 1€384 d2 122550 U 262144 4B 10c237¢
i57) [105) [384) (7,2) {5760} (16384} - (7,2)x(50,2) | (282144) - ds
[2550) [65536] [1G<ESTe)
9 7t s 212 € 882 C 390C C 12500 LQ 31152 v 163191 U 382500 R 1082500 R
£74) 1150) [600) [3308) (7,2)x(2,2) (8,3) (8,2)x(54,2) | (2,2)x(&,5) | (7,22x(8,¢)
(12590) (20160} {76500) (382500) [10<8576])
10 91 s 23R C 1216 € 6000 C 25000 LQ 76125 d8 399822 U 1953125 dB | 9765625
{31} (200) [864) (5550) (7.2)x(3,2) (78125} (9.2)x(24,2) {(1953125] ds
{25¢00) 1390625} [97¢5€25)
Key: .
¢ Frcver Optinal h Heuristic methods . S Storwick (17]
€ Chordal Ring L Leland product {16]) . U Uhrt product [16]
dB de Eruijn graphs [14]) LQ L1 product {16} Bracketed valuves are from Leland, et al {i6]

R Regular Leland product [16]

TABLY 2 LARGEST N»EER OF NODES IN KNOWN GRAPHS
WITH DEGREE d AND DIAMETER k

Figure- 4. Degree 4 Chordal Ring

Figure 6. 60 Node, Diameter 5 Graph

5. SUMMARY

This paper has presented a new candidate de-
sign for interconnection networks. It procduces
graphs with more nodes for given degrees anc diame-
ters than other methods have produced. However,
these graphs are still much smaller than the Moore
bound indicates may be possible. Either much larger

graphs rezzin to be discovered i
Figure 5. 38 Node, Diameter 4 Graph bousd should be found.. FaRC, O = plovger gppes

316

[EYICTINN

)
1

aeh! ﬁ*kﬁhﬁmﬂﬁm“m Amant s




o' ..

6. ACKNOWLFDGEMENTS (16]
? would like to thank P. McEntire, J. O'Reilly,
Testini for many helpful éiscussions. This
.zrch wzs partially supported by the Naval Air (17)
...pment Center under Contract N62269-81-C-0477.
7. REIFERENCES (18]

(]} Akers, S., "On the Construction of (d,k)
1EEE Trans. Electron. Comput., vel.
448, 1965. .o

~ S W
urapas,

£C-14, p.

srden, B., and Lee, H., "Analysis of Cherdal
IEEE Trans. Cemput., 'vol. C-30,

Ring Network,'" IEEE |

sp. 291-295, 1961.

.. Arden, B., and lLee, H., "A Regular Network for
Multicomputer Systems," IEEE Trans. Comput.,

vol. C-31, pp. 60-69, 1982.

Ralebzn, A., "A Trivalent Graph of Girth Ten,"
J. Cembinatorial Theory (B), vol. 12, pp. 1-5,
1972,

i

Balzban, A., "Trivalent Graephs of Girths Nine
and Eleven, and Relationships Among Cages,"
Revue Roumaine de Math. Pures & Apliquees,
vol. 16, pp. 1033-1043, 1973.

Zznnai, E., ‘and Ito, T., '"On Finite Mocre
Grephs," J. Fac. Sci. Univ. Tokyvo, vol. 20,
pp. 191-208, 1973. ) .

Bannai, E., and Ito, T., "Regular Graphs with
Excess One," Discrete Math., vol. 37, pp. 147-
158, 1981. _ ' A

. Brewvn, W., "On Grzphs that do not Contain a
Thozpson Graph,' Cazn. Math. Bull., pp. 281-
285, '1566.

ell, R., "On Moore Graphs,"' Proc.
idge Philos. Soc., vol. 43, pp. 459-474,

| ée Bruijn, D. G., " A®Cochinatorial Problem,"

Els;as, B., "Topolecgical Constraints on Inter-
connection-Limited Logic," Switching Theory

Logic Design, vol. S-164, pp. 133-147, 1964.

Friedman, H., "A Design for (d,k) Graphs,"
iFEE Trans. Electron. Comput., vol. EC-15, pp.
253-254, 1966.

Hoffman, A., and Singleton, R., "On Moore
GSraphs with Diameters 2 and 3," IBM J. Res.
Develop., vol. 4, pp. 497-504, 1960.

icase, M., and Itch, M., "Design to Minimize
Dilameter on Building-Block Network.," IEEE

Trans. Comput., vol. C-30, pp. 439-442, 1981.

Komn, I;, "On' (d,k) Graphs," I1EFE Trans.
Electron. Comput., vol. EC-16, p. 90, 1967.

317

Leland, W., et a2l "Eigh Density Graphs for
Processor Interconnection," Information Pro-

cessing letters, voi., 12, pp. 117-12J, 1981.
Storwick, R., "Ipproved Construction Téch-

niques for (d,%) Graphs,'" IEXE Trans. Comput.,
vel. C-19, pp. 1214-1216, 1970.

Tutte, W.,
Proc. Canbridge Philcs.
459-474, 1947.

"4 Familv of Cubical Graghs,"
i Soc., vel. <3, pp.




