# SageMathCell online https://sagecell.sagemath.org/?q=mesnun # (5,4) = 212; Moore bound= 426;; # Ord.: 212 / Size: 530 / Diam.: 4 / Avg.dist: 3.37441 # 5-reg.? True / Degree histogram: [0, 0, 0, 0, 0, 212] / Girth: 6 / Alg.conn. 1.59561 # Aut.group.ord.: 53 / Cayley ? False --- vtx.trans. ? False -- edge.trans. ? False # # Communicated by G. Exoo (May 21, 2010). # import networkx as nx exoo212 = Graph(r":~?BS_C?_C?_C@_K@_KA_SA_SB_[B_[C_cC_cD_kD_kZBSMBSYbSYa_ZbGZb[ZbcUBc[bk\`W\bk]_o]bsLBsFB{^b{^e_r_wfE[r`Gra?rb?lEcqEcsect`wtbGu`Ou_ocEsuaov`g_E{eE{TCGwfCwbLHhKbHKPDHH`GNEHIh@I`PIapIbGgaOqH[MH[_FhJh[nHceFHKfpKdoyHlLeT[b@[`w{JciGH[cWgGx\jX\`p\dx\eP?dXGJsLCx]a`]gp^iP^aXDHx_``_hCTLkpLkgIHlgPTLkPF`?LtkLsfLtGIdBJXn`_eFxnaOlL|YMDdMCkJHaMKGChp`?mjX|gx}aX?K`}b@UNsiIHSNk~NlZK{VIxkN{dFpRN{HDX~mi?g`iMY@_waOKaGlkP[PPcTD`SPcpLAKgPcKyJ`XRP[oLH{PkFIPePkbGYLoaM`@WNQNcGzP{zJKLNaWdQXgxwRKTIpvRCcKqWa@xPQYcHdMqYf`VRSNCQGR[EFPOR\OLSePQbgQcaIFScmLAES[|MqbaWhQydfPtOidiHhSkgFYTSs_HxbSs}Q{VKXyTsEIqm`OiQamghwQYnhyCQQok`xUCxKPsUKSIQae@sPAu`pASAujIFRyv`_SKQ]hprOYwdhdTkOOYTVcfIqjVdiQaiVkdDhrTKGKIPVsH@XtUk~LAsWSJNQ_U[UCPqRjBaObCaCV[cPAjVSQDwzOQg`_jF_|WK|QisWCVDXEIAOe@BJPbRcOIxjMafdHhNYBUT@NIHQIxaXTQq\V{WDa`TBCawpGakW{IE@FJBI~~~") exoo212nx =exoo212.networkx_graph() # List of graphs to process graphs = [('Exoo212 ', exoo212 )] def count_k_cycles(G, k): count = 0 visited = set() def dfs(path, start, depth): nonlocal count current = path[-1] # Early exit if we?re going too deep if depth == k: if start in G.neighbors(current): # Normalize to avoid duplicates cycle = tuple(sorted(path)) if cycle not in visited: visited.add(cycle) count += 1 return for neighbor in G.neighbors(current): if neighbor not in path and neighbor >= start: dfs(path + [neighbor], start, depth + 1) for v in G.vertices(): dfs([v], v, 1) return count # each cycle counted twice (once forward, once reverse) def algebraic_connectivity(G): """ Compute the algebraic connectivity (Fiedler value) of a graph G. INPUT: - G: a SageMath Graph OUTPUT: - The second-smallest eigenvalue of the Laplacian matrix of G """ L = G.laplacian_matrix() eigenvalues = L.eigenvalues() eigenvalues.sort() if len(eigenvalues) < 2: return 0 # Trivial case: empty or isolated vertex graph return eigenvalues[1] def domination_number(G): """ Compute the domination number of a graph G using MILP. INPUT: - G: a SageMath Graph OUTPUT: - The domination number (integer) """ p = MixedIntegerLinearProgram(maximization=False) x = p.new_variable(binary=True) # Objective: minimize the number of chosen vertices p.set_objective(sum(x[v] for v in G.vertices())) # Constraint: each vertex is dominated for v in G.vertices(): p.add_constraint(x[v] + sum(x[u] for u in G.neighbors(v)) >= 1) return p.solve() # Print properties for each graph in the list print("\n Main properties of the graph\n") for label, graph in graphs: print(f"{label} | Ord.: {graph.order()} / Size: {graph.size()} " f" / Diam.: {graph.diameter()} / Avg.dist: {graph.average_distance().n(digits=6)} \n" f" / 5-reg.? {graph.is_regular(k=5)} / Degree histogram: {nx.degree_histogram(exoo212nx)} / Girth: {graph.girth()}\n ") #f" / Alg.conn. {algebraic_connectivity(graph).n(digits=6)}") # / Domin. number: {domination_number(graph)} ") print("\n Symmetry properties of the graph\n") for label, graph in graphs: print(f"{label} | Aut.group.ord.: {graph.automorphism_group().order()} / Cayley ? {graph.is_cayley()} --- vtx.trans. ? {graph.is_vertex_transitive()} -- edge.trans. ? {graph.is_edge_transitive()}" ) # Compute the distance distribution from a given vertex v in graph G # Returns a list where the i-th element is the number of vertices at distance i from v def distance_distribution(G, v): from collections import Counter distances = G.shortest_path_lengths(v) distribution = Counter(distances.values()) result = [distribution[d] for d in sorted(distribution)] return result print("\n") for label, graph in graphs: print(f"{label} distance distrib from vtx. 0: {distance_distribution(graph, 0)}") print(f"{label} distance distrib from vtx. 2: {distance_distribution(graph, 2)}") print(f"{label} distance distrib from vtx. 4: {distance_distribution(graph, 4)}") # Counting k-cycles for each graph print("\nNumber of k-cycles for k=3 up to 7") for label, graph in graphs: print(f"{label} ", " ".join(str(count_k_cycles(graph, k)) for k in range(3, 8))) print("\n") ##