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Abstract

Cycle prefix digraphs are a class of Cayley coset graphs with many
remarkable properties such as symmetry, large number of nodes for a
given degree and diameter, simple shortest path routing, Hamiltonic-
ity, optimal connectivity, and others. In this paper we show that the
cycle prefix digraphs, like the Kautz digraphs, contain cycles of all
lengths [, with [ between two and N, the order of the digraph, except
for N — 1.

1 Introduction

Several families of digraphs have been proposed as a model for directed
interconnection networks for parallel architectures, distributed computing
and communication networks [6, 2]. One of these is the family of Kautz
digraphs that have been extensively studied in the literature. In particu-
lar, Villar (see [10]) showed that Kautz digraphs are almost pancyclic and
contain cycles of any length between two and IV, the order of the digraph,
except for NV — 1. Cycle prefix digraphs constitute a family of Cayley coset
digraphs which is particularly attractive. For diameter two, the cycle pre-
fix digraphs and the Kautz digraphs are isomorphic. In general they have
many properties that make them an interesting alternative to the Kautz
digraphs. Firstly, the cycle prefix digraphs are vertex symmetric, or arc
transitive, and therefore in the associated network each node is able to ex-
ecute the same communication software. These digraphs are also specially
significant for the construction of networks with order as large as possi-
ble for a given maximum degree and diameter. They form, together with
other families constructed from them [2], most of the entries of the table
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of largest known vertex symmetric digraphs'. Other remarkable properties
are: Hamiltonicity [8], simple shortest path routing, and optimal connec-
tivity [9]. The wide diameter of a cycle prefix digraph with diameter D is
D+2 [1] (the wide diameter of a graph is considered an important measure
of communication efficiency and reliability, see [7]). For D > 3, the di-
graphs are D—reachable and a message sent from any vertex may reach all
other vertices (including the originator) in exactly D steps [2]. Other as-
pects of interest are their modularity and simple definition. A broadcasting
algorithm based on their hierarchical structure was given in [3].

In this paper we are interested in the existence of cycles of all lenghts
in these digraphs. This knowledge will help in designing good communi-
cation strategies for the corresponding networks. In the next section we
will introduce the notation and give some known results and in Section 3,
given a cycle prefix digraph of order |V|, we obtain cycles of any length [,
for 1 =2...|V|, except when [ = |V|— 1.

2 Cycle prefix digraphs. Notation and previ-
ous results.

T'a (D) will denote a cycle prefix digraph of degree A and diameter D. These
digraphs were introduced as Cayley coset digraphs by Faber and Moore in
1988 [4, 5] and they may also be defined on an alphabet of A + 1 symbols
0,1,...,A as follows: Each vertex x1xo---xp is a sequence of distinct
symbols from the alphabet. The adjacencies are given by

L2X3%4 -+ - LDT D1, Tpy1 # T1,T2,...,TD
1o "Tp — XLoX3Ty4 """ TPDA1
T1T2 Tk 1Tky1  TpTg, 2<k<D-—1

The first kind of adjacency, that introduces a new symbol, will be called
a shift. The other adjacencies will be called rotations: rj is the adjacency
rotating the symbol in position k£ to the end of the word. Through this
paper = will denote the adjacency 7.

T'a(D) is a vertex symmetric digraph that has order (A+1)p = %,
diameter D and is A-regular (A > D). The digraph has a hierarchical
structure and may be decomposed into (Ag 1) subdigraphs isomorphic to
I'p_1(D — 1), with D > 3, see [3]. Shift adjacencies connect different
subdigraphs whereas rotations join vertices in the same subdigraph.

Cycle prefix digraphs are Hamiltonian, see [8]. Another result that we
will use from the paper of Jiang and Ruskey [8] is the existence in I'p(D)

1An up-to-date table of the largest known vertex symmetric digraphs is maintained
at http://www-mat.upc.es/grupde_grafs/grafs/taulavsd.html
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of a Hamiltonian path in each subdigraph isomorphic to I'p_1(D — 1) that
contains D adjacencies of type 71 such that first symbols are different from
one to another.

Finally, we will also use in this paper the fact that an adjacency ry,
connects two vertices such that the first symbol of the first vertex is equal
to the last symbol of the second vertex, i.e. z1...2p = T2...Tpx].

3 Cycles in I'a(D)

In this section we obtain for the cycle prefix digraph of degree A and
diameter D (A > D) Ta(D) = G(V, E) cycles of any length |V|, for N =
2...]V|, except when N = |V|—1. We will distinguish between short cycles
(with length less than or equal to D + 1) and long cycles.

3.1 Short cycles.

We show in the following theorem that each vertex x in Ta(D), A > D,
belongs to a cycle Cy(z) of length k, 2 < k < D. Cycles Cy(x) are vertex—
disjoint, except for x.

Theorem 1 Let TaA(D), A > D, be the cycle prefiz digraph of degree A
and diameter D and let x = x1x9..xp be a vertex in Ta(D). Then x belongs
to a family of cycles Ci(x), where Ci(x) has length k, 2 < k < D, and

() Cr(x) = {x}.
k=2

Proof. The cycle Cj(x) is obtained by successively applying the rotation
rD—(k—1) tO X.

Remark 1 All D adjacencies of the cycle C'p are of type r1.
Example 1 In T'7(5), the cycles C(x) for a verter x = 63412 are:

Cy(x): 63412 — 63421 — 63412

C3(x): 63412 — 63124 — 63241 — 63412

Cy(x): 63412 — 64123 — 61234 — 62341 — 63412

Cs5(x): 63412 — 34126 — 41263 — 12634 — 26341 — 63412

The next theorem allows the construction of cycles of length D +1. We
show that each vertex x in T'a(D), A > D, may be included in A+1— D
different cycles of this length where the adjacencies are all of type shift.
We will call this cycles shift cycles.
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Theorem 2 Given T'a(D), A > D and a verter X = x1x2..xp then X is
in A+1—D cycles, Cy(x), of length D+ 1 and ﬂ Cy(x) = {x}.

Y#T1,...,TD

Proof.
Cy X =T1T2..Xp — X2..TDY — X3..TDYT1 ... — Yr1..rp—-1 — L1T2..TpD

Since in each cycle Cy, the symbol y is different, all the cycles have only x
as a common vertex. The number of cycles of length D41 is the number of
choices of y # x1,...,zp from the alphabet of A 4+ 1 symbols: A+1— D.

3.2 Long cycles.

We begin the construction of cycles of length k, & > D + 1 by studying the
cases D = 2 and D = 3. We use then the recursive structure of the cycle
prefix digraphs to generalize the results to the case Ta(D), A > D.

Since digraphs T'a (D) are vertex symmetric, without loss of generality
we may consider the identity vertex I = 12...D as the starting vertex of
a cycle.

I'2(2)

Cycles containing I = 12 are:

Cy 12 21

Cs 12 23 31

Cy 12 21 13 31

Ce 12 21 13 32 23 31

The cycle Cs does not exist.
I'3(3)

Remark 2 Any arc in Ta(3) of type r1, say, xyz = yzx, can be replaced
by a path with 3, 4 or 6 vertices . These vertices have symbols {y, z,t}
with t # x, therefore they are in the same subdigraph and the paths are
isomorphic, respectively, to Cs, Cy and Cg in the former case, see Figure 1.
For example, the arc 123 = 231 can be replaced with vertices that contain
the symbols {2,3,4}:

234 342 423
123 =231: 123<¢ 234 243 432 423 231
234 243 432 324 342 423

e Cycles of length 5. It is not possible to obtain a cycle of length 5
with all the vertices in the same subdigraph (isomorphic to I'2(2)),
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12 01 231 12

N N3/
Y% %

20 312

Figure 1: The digraph I'2(2) and one subdigraph of T'a(3) isomorphic to
it.

i.e. vertices with symbols {1,2,3}. We show here several possible
cycles of length 5. Notice that in all of them there is always an
adjacency of type r1:

123 — 234 = 342 — 421 — 412
123 — 234 — 341 = 413 — 132
123 = 231 — 314 — 341 — 412

e Cycles of length 6. The Hamiltonian cycles of each subdigraph I'z(2)
have length 6.

e Cycles of length 7. They may be constructed from any cycle of length
3, C3, by replacing one arc with a path of four vertices. This substi-
tution is always possible because all the adjacencies are of type 1.
From C3(I) : 123 = 231 = 312 we obtain

123 — 234 — 243 = 432 — 423 — 231 = 312

e Cycles of length 8. Notice that there is always an adjacency of type
r1 in the cycles of length 5 listed above which can be replaced by a
path of three vertices to obtain a cycle of length 8:

123 — 234 — 341 = 413 = 134 — 342 — 421 — 412

e Cycle of length 11. It may be constructed from any cycle of length 3
by replacing two arcs with paths of four vertices and one arc with a
path of three vertices.

e Cycles of length 9,10,12,...22,24. T'3(3) contains four subdigraphs
isomorphic to I'y(2). In each I'y(2), as was stated in Section 2, there
is a Hamiltonian cycle containing three adjacencies of type ry. Fol-
lowing the substitution process of Remark 2, we have cycles of lengths
9,10,12...22 and 24 vertices. see Figure 2.
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123 132 1321 213 231 312

324 9243 432

342 423 234

Figure 2: An Hamiltonian cycle in I'3(2) and the substitution of each arc
r1 by paths of three, four or six vertices.

In general, to obtain a cycle of length k (k # 5,7,8,11) we write k =
6(14+¢q)+r with 0 <¢g<3and 0 <r < 6. We consider a Hamiltonian
cycle in one of the subdigraphs isomorphic to I'y(2). This cycle has three
arcs of type r; that may be replaced by a path with three, four or six
vertices, then:

e If r =0,3,4. Replace ¢ adjacencies r1 by ¢ Hamiltonian paths and a
different adjacency 71 by a path with r vertices.

e If r = 1,2 then 1 < ¢ < 3. Replace ¢ — 1 adjacencies r; with
Hamiltonian paths, use the remaining adjacencies 1 to complete 6+1r
vertices.

e Ifr =5then 1 < ¢ < 3. Replace ¢—1 adjacencies r; with Hamiltonian
paths. We need three more adjacencies to complete the 11 remaining
vertices with two paths of length 4 and one path of length 3. This
process is only possible if ¢ # 2 and, consequently, k # 23.

a3, A>3

We recall that T'a(3) contains (A; 1) subdigraphs isomorphic to I'3(2),
and that the order of the digraph is [Ta(3)] = (A + 1); = 6(%5") =
@I(35):

Next we introduce the substitution tree T of T'a(D), see Figure 3. This
tree will be used to select pairs of cycles in different subdigraphs with
vertices differing only in one symbol. The cycles may be joined to obtain
new longer cycles.

Each node of this tree is a subset of D symbols used in I'a (D) and the
tree is made as follows. We choose the vertex I = 12...D asroot of 7. At
the first level we replace each one of the symbols 1,2...D by D+ 1, at the
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second level we replace each symbol in a node of the first level by D+2 and
so on. Boldface numbers in Figure 3 indicate the replaced symbol. After
this process, we obtain a tree with depth A + 1 — D, maximum degree D
and such that a new symbol is introduced at each level. Notice that the
branches of 7 are not directly related to the arcs of T'a(D). To obtain a

(8){4,5,6}

g (4){3,5,6}

(2){3,4,5} (5){3,4,6}

(4){2,5,6}

(3) {2,450 — (5){2.4,6}

(1){2,3,4} (4){2,3,5} (5){2,3,6}

(4){1,5,6}

(3){1,4,5} 4(5){1,4,6}

(2){1,3,4} 4(4){1,3,5} (5){1,3,6}

{1,2,3} (3){1,2,4y ___ (4){1,2,5} (5){1,2,6}

Figure 3: The substitution tree 7 of I'5(3)

cycle of length k, k > 23, we start by writing the cycle with symbols {1, 2, 3}
(associated to the root of 7), which is isomorphic to the Hamiltonian path
inT'5(2). We can replace the three adjacencies r of this cycle by paths using
the symbols {2,3,4}, {1, 3,4} and {1, 2,4} respectively and obtain in this
way, cycles of lengths k£ = 9,...22 and 24. Next we will replace the three
adjacencies 1 in the Hamiltonian path with symbols {2, 3, 4} by paths using
{3,4,5}, {2,4,5} and {2,3,5}. Then we will replace two adjacencies ry in
the Hamiltonian path which has symbols {1, 3,4} by paths on {1,4,5} and
{1, 3,5}. Finally we replace one adjacency r in the Hamiltonian path with
symbols {1,2,4} by paths using {1,2,5}. A new symbol, 6, is introduced
here following the scheme given by 7.

Notice that in T'a(3), because of the Hamiltonian path in I'y(2), there
are (A; 1) — 1 adjacencies of type r1 that may be replaced.

To obtain a cycle of length k in Ta(3) , we write k = 6(1 + q) + r,
q< (A; ") — 1 and r < 6, and we distinguish the following cases:

e Case r =0,3,4. We construct ¢ Hamiltonian paths on the Hamilto-
nian cycle with symbols {1, 2, 3}, and we replace one of the remaining
arcs r1 by a path of length r.

e Case r = 1,2. Notice that ¢ < (A;’H) — 1. We construct ¢ — 1

Hamiltonian paths on the Hamiltonian cycle with symbols {1, 2, 3},
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Figure 4: An schematic description of the procedure to substitute adjacen-
cies r1 in a Hamiltonian cycle of a subdigraph I'z(2)

and we replace two of the remaining arcs r; by two paths of total
length 6 + 7.

e Case r = 5. We construct in this case ¢ —1 Hamiltonian paths and we
replace the three remaining arcs r1 by two paths of total length 11 =
4+4+3. This is always possible except when ((A;’H) -1)—(¢—1)=2,
that is, when k = G(A;’H) —1=Ta(3)] -1

The main result of this paper is summarized by the following theorem:

Theorem 3 The cycle prefiz digraph Ta(D), A > D, contains cycles of
any length k, 2 < k < |Ta(D)|, except when k = |Ta(D)| — 1.

Proof. Theorems 1 and 2 ensure the existence of cycles of length 2 to
D + 1 in Ta(D). To prove the existence of longer cycles we will proceed
by induction over D. The assertion holds when D = 3.

Suppose that there exists a cycle of length k, 2 < k < |[Ta(D — 1)],
kE#|Ta(D—=1)]—1in Ta(D —1). We need to construct paths of length
k=Ta(D—1)|—1and [Ta(D —1)| < k < |Ta(D)|, k # |Ta(D)| — 1, in
T'a(D).

e Case k= I'p_1(D —1)| — 1. The path
12...D—23..D(D+1)=3...D(D+1)2—

4..D(D+1)21 »4..D(D+1)12— ... — (D+1)12...(D—1)

has D + 2 vertices and one adjacency of type r; which can be re-
placed by a path with [Tp_1(D — 1)] — D — 3 vertices and symbols
{1,3...D,(D+1)}, to obtain a path with |[I'p_1(D —1)| — 1 vertices.
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e Case Tp_1(D —1)| < k <|Ta(D)| and k # [Ta(D)]| — 1. We start
with a Hamiltonian path in one of the subdigraphs isomorphic to
I'p_1(D-1)

12...D—...—Dl...(D—1)

The results obtained by Jiang and Ruskey [8] and quoted at the end
od Section 2, ensure that this path has D adjacencies r; which can
be replaced following the scheme given by the corresponding substi-

tution tree 7. Overall there are (Ag 1) — 1 adjacencies r; to replace.

Moreover [Ta(D)| = |Tp—1(D — 1)|(®}"'). To obtain the cycle of
length k, we write k = |[Tp_1(D —1)|(¢+1) +r, with ¢ < (Agl) -1,
r < |Ip_1(D — 1)|, and we consider the following cases:

— Caser=0,D,D+1...lp_1(D—1)| — 2. Replace ¢ adjacen-
cies 1 by Hamiltonian paths in ¢ different copies of Tp_1(D—1)
and use a remaining adjacency 71 to replace it with r vertices.

— Case r = 1,2,...D — 1. In this case ¢ < (Agl) — 1. Replace
q — 1 adjacencies r; by Hamiltonian paths in ¢ — 1 different
copies of I'p_1(D — 1) and use two remaining adjacencies r1 to
replace them with [I'p_q1(D — 1)| + r vertices. This can always
be done because [I'p_1(D —1)|+r = a+ b with D < a,b <
ITp_1(D — 1)] — 1 and there are always two arcs to replace:
() -1--1=2

— Case r = |I'p_1(D — 1)] — 1. Replace ¢ — 1 adjacencies 1 by
Hamiltonian paths. We need to add 2|T'p_1(D —1)| —1 vertices.
We must use three of the remaining adjacencies r; to ensure
that each adjacency is replaced by less than [T'p_1(D —1)| — 1
vertices. This process can be done when (Agl) —1-(¢g-1) > 3.

When (Agl) —1—(¢g—1)=2then g = (Agl) — 2 and it is not
possible to have a cycle of length

A+1

k=|Tp_1(D— 1)|< D

>—1:|I’A(D)|—1

4 Conclusions

In this paper we have studied the cycle structure of cycle prefix digraphs.
In particular, for the cycle prefix digraph of degree A and diameter D,
A > D, Ta(D) = G(V, E), we have obtained cycles of any length I, for
Il =2...|V|, except when | =|V| — 1. The existence for T'a(D) = G(V, E)
of cycles of length |V| — 1 is an open problem. We have checked that all
cycle prefix digraphs with small order (|[V| < 720) do not contain a cycle of
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length |V|—1 and we conjecture that, as it happens for the Kautz digraphs,
these digraphs are almost pancyclic.
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