Covering the vertices of a Cycle Prefix Digraph.
F. Comellas(*), M. Mitjana(#)
(*) Departament de Matemàtica Aplicada i Telemàtica; Universitat Politècnica de Catalunya
(#) Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya 
Proceedings I Jornades de Matemàtica Discreta i Algorísmica.    pp. 20-23  (Barcelona, 23-24 març 1998),  DL B-15.873-98.


Cycle prefix digraphs are an interesting family of directed Cayley coset graphs that have been proposed as a model of interconnection networks for  parallel architectures. They have many remarkable communication properties such as symmetry, large number of nodes for a given degree and diameter, simple shortest path routing, Hamiltonicity, optimal connectivity, etc. The digraphs can be decomposed into vertex--disjoint cycles of the same length as it was shown in \cite{CoMi97}. However, the distribution of tasks of different size in a network should be based in a decomposition of the digraph in
vertex--disjoint paths of different length.  In this paper we show  that the cycle prefix digraph $\Gamma_{\Delta}(D)$  can be decomposed into one single path with $(D+1)!$ vertices and  ${\Delta-D+k} \choose {k+1}$ paths of  $(D-k)D!$ vertices, for $k=0 \dots D$.

Load a preprint version of the paper: