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1 Introduction

The clustering of a graph is defined as the fraction of existing edges between the neighbors of a vertex
and the maximum number of edges that could possibly exist among the neighbors, averaged over all the
vertices of the graph. Unlike other important graph parameters the clustering is a local measure.

A small-world graph is a graph which has a relatively low diameter (with respect to a regular graph
with the same number of vertices and edges) and a large clustering (in relation to a random graph also
with the same number of vertices and edges). These graphs are of considerable interest because they
model important real-life networks [7] as the WWW, transportation and communication networks, or
even the neural system of the worm Caenorhabditis elegans and social networks like the graph associated
to the Erdés number [2].

In this paper we show that it is possible to obtain a small-world graph starting from any graph
with a relatively large diameter by interconnecting a certain subset of vertices. We show that this
interconnection may reduce the diameter of the graph until a given arbitrarily small threshold without
significatively changing the clustering of the graph.

2 Diameter reduction

The diameter of a graph G = (V, F) may be reduced by choosing a subset of vertices H C V(G), h = |H|,
such that any vertex of G is at a distance at most k£ from some vertex in H (in this case H is called
k-dominating set [4] and its vertices hubs). After joining the vertices of this set by a connected graph
Gy of diameter Dy we obtain a new graph of diameter Dy < 2k + Dpy.

To minimize the effects that the addition of new edges has on the clustering, we join the hubs using
a star graph, in such a way that every new edge joins one of the hubs, called the root, to all the other
hubs, as seen in Figure 1. Therefore we connect the hubs using the minimum possible number of edges
and with a structure that has a small diameter Dy = 2.

We recall the following result:

Proposition 2.1 ([5]) For k > 1, if G is a connected graph of order n > k + 1, then there exists a
k-dominating set H with cardinality h < n/(k+ 1).

Therefore, given a connected graph G of order n, it is possible to find a set of at most h = n/(k+1)
hubs such that no vertex in G is at distance greater than k from one of the hubs of the set.

If we use a star graph to interconnect the hubs, the resulting graph will have diameter D¢ < 2k 4 2.
The same result holds if the initial graph G is not connected and the star graph joins all its connected
components.

By proposisiton 2.1 we have h < n/(k+1) and, since Dy < 2(k+1), it results f,, = h/n < 1/(k+1) <

1/(Dy/2).
Theorem 2.1 Let G = (V, E) be a connected graph of diameter D and ordern. Let fq, fn € R, fa > 1

and fn, <1, and such that D/ fq is an even integer. Then if D > 2fq/ fn, it is possible to decrease the
diameter of G by a factor of at least fq by connecting a fraction of the initial vertices not greater than

fn-



Figure 1: Connecting the hubs using a star graph.

Therefore, it is possible to reduce the diameter of any graph by only connecting a small number of
vertices or hubs. The condition D > 2,/ f,, is easily fulfilled, as we need initial graphs with a relatively
large diameter to obtain a small-world graph. On the other hand, and because we are considering a star
graph to interconnect the vertices of H, the number of new added edges will be in general small.

Next we show that, after reducing its diameter following the former method, the clustering of the
new graph is not far from the clustering of the initial graph. In that way, it is possible to obtain a
small-world graph from any arbitrary graph.

3 Clustering bounds

We study the change in the clustering of a graph (induced by the new connections of the hubs) by
considering the change that occurs at the clustering of each hub and its adjacent vertices. Clearly, the
clustering of any other vertex of the graph will not be modified.

Thus, we can give an upper bound on the clustering Cy of the final graph by considering that, in
the worst case, the change in the clustering of a vertex is from 0 to 1 in at most h + A vertices (i.e. all
vertices in H, and those vertices that are simultaneously adjacent to the root hub and at least one other
hub). On the other hand, we can only have a lowering of the clustering in vertices of H. So, taking into
account Theorem 2.1, we obtain the following results.

Lemma 3.1 Let G = (V, E) be a graph of order n, maximum degree A and clustering Cy, and let H be
a k-dominating set of G with cardinality h. Define f, = h/n. Then, by joining the vertices of H with a
star graph, the clustering Cy of the resulting graph verifies
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Theorem 3.1 Let G = (V, E) be a connected graph of diameter D and ordern. Let fq, fn € RT, fa > 1
and fn, <1, and such that D/ fq is an even integer. Then if D > 2fq/ fn, it is possible to decrease the
diameter of G by a factor of at least fy in such a way that the final clustering C¢ is bounded by
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The bounds in Theorem 3.1 can be substantially improved by a careful computation of the change
in the clustering of the affected vertices. This leads to the following theorem.

Theorem 3.2 Let G = (V, E) be a connected graph of diameter D, order n, clustering Cy, minimum
clustering (of one of its vertices) ¢min, mazimum clustering cmaz, minimum degree § and maximum



degree A. Let fq,fn € RY, fo > 1 and f, < 1 and such that D/fq is an even integer. Then if
D > 2f4/fn, and there exists a k-dominating set with at least one vertex which is not adjacent to the
rest of the vertices (k being an integer such that 2(k+1) = D/ fq), it is possible to decrease the diameter
of G by a factor of at least fq in such a way that the final clustering C¢ is bounded by
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when 6 > 3 or by
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Corollary 3.1 Any graph (connected or not) with relatively large diameter and clustering can be changed
to a small-world graph with independence of its original topology.

Example 3.1 Consider a graph with the same parameters as those analyzed by Watts and Strogatz [7],
i.e. a vertex-symmetric graph of order n = 1000, diameter D = 100, degree A = 10 and clustering
Cy = 0.67. In this case, to reduce the diameter by a factor fq of at least 16.67, the fraction f, of hubs
should be less than or equal to 1/3 provided that D > 2fq/f, = 100. In that case, the clustering of
the final graph would be 0.6254 < Cy < 0.6898, and it is possible to obtain a final diameter of 6 with a
change in the clustering of at most 6.2%.

Therefore, if Watts and Strogatz had analyzed any other topology with the same parameters as the
circulant graph in [7], it would have been also possible to obtain a small-world graph. However, while
Watts and Strogatz reconnected the edges of the graph at random, we have defined a deterministic
strategy. So Theorem 3.1 does not prove that any randomly reconnected graph should obey the same
pattern as the graph studied by Watts and Strogatz. On the contrary, given a graph with the parameters
described in [7], Theorem 3.1 ensures the existence of at least one deterministic interconnection strategy
which leads to a reduction greater than 16 of the diameter and a variation of the clustering not greater
than 6%, which is enough to guarantee the existence of a small-world graph.
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