
Using Genetic Algorithms to
Design Constant Weight Codes

Francesc Comellas and Ramon Roca

Departament de Matem�atica Aplicada i Telem�atica
Universitat Polit�ecnica de Catalunya

ETSE Telecomunicaci�o, Campus Nord C-3, Gran Capit�an s/n
E-08071 Barcelona, Catalonia, Spain

comellas@mat.upc.es

Abstract

Genetic algorithms have been used successfully for solving di�er-

ent combinatorial optimization problems. We give here a new e�cient

application for the search of constant weight codes. The algorithm

presented is intended to generate codes with the maximum number

of codewords for a given length, constant weight and minimum Ham-

ming distance. A comparison with the simulated annealing technique

is also discussed. On the other hand, the algorithm introduces a new

scaling for the cost function that proved to be more e�ective than

other scalings used in the literature.

c
1993 by Lawrence Erlbaum Assoc. Inc. Pub., Hillsdale, NJ 07642
Applications of Neural Networks to Telecommunications
pp. 119{124 (1993). ISBN 0-8058-1560-0

1 Introduction

The design of good codes is of fundamental importance in a communication
system. Information to be transmitted is represented via a source code as
the ASCII code, Hu�man code, etc. This source-encoded information is
then sent over a channel, such as a telephone line, optical �ber, microwave
link, etc. To have a reliable transmission the data are encoded again by us-
ing an error-correcting code that enables the detection and the correction of
possible errors introduced during the transmission of the message (see Fig-
ure 1). Several modes of e�cient codi�cation are known: Hamming codes,
Reed-Solomon codes, convolution codes, etc. The error-correcting code that

119



Figure 1: The coding process.

we consider in this paper is a set of binary n-tuples C = fx1; x2; : : : ; xng.
Each member w 2 C is called a codeword. The Hamming distance dH(v; w)
between two codewords is the number of bit positions where they di�er.
The minimum distance of C is dmin = minv;w2C

v 6=w
dH(v; w). When the error-

correcting code is used in a communication system, up to dmin=2 trans-
mission errors can be detected and corrected. Therefore a large minimum
distance dmin is a desirable property of an error-correcting code.

The Hamming weight of a codeword w 2 C is the number of ones in w.
We consider only constant-weight codes where all codewords have the same
Hamming weight.

The optimization problem studied consists of �nding an error-correcting
code of size as near as possible to the theoretical maximum size A(n; d; w)
for a �xed length n, minimum distance d (or more) and constant weight w.

Codes with size A(n; d; w) are extremely di�cult to �nd, see [1, 4]. So it
is interesting to give simplemethods that explicitly construct codes with size
as high as possible and in this way to obtain a bound for A(n; d; w). One of
the methods that has proved useful is simulated annealing. El Gamal et al.
in [2] describe the application of simulated annealing to several codi�cation
problems and in particular to the design of constant weight codes. In this
paper we present a new method based on a genetic algorithm. The work
of El Gamal et al. is used as a reference to compare both techniques. In
Section 2 we describe the algorithm and also a new scaling procedure for
the cost function that was developed for it. The performance of this scaling
is compared with other known scalings. In Section 3 we give the results
obtained and a comparison is made with the results coming from simulated
annealing. Finally, in Section 4 the conclusions are presented.

120



2 The Genetic Algorithm

The genetic algorithm considered is based on the Simple Genetic Algorithm
from the book of Goldberg [3]. Each generation has the same constant
number of individuals and three genetic operators are used: reproduction,
crossover and mutation.

The main aspects to decide are the representation of the solutions, the
cost function and the crossover and mutation operators.

We are interested in the design of constant weight binary codes of size
S, length L, weight w and minimum distance dmin or more. We code each
possible solution by a list ofM = SL elements. Each position in the list has
values 0 or 1. The list may be seen like the concatenation of all codewords
from the corresponding code.

Cost function

The cost function used in the algorithm is:

f = K �
X
x;y2C

x6=y

1

g2 + 1
g =

�
dH(x; y) if dH(x; y) < dmin

dmin if dH(x; y) � dmin

where K must prevent the cost function from taking negative values.
This cost function has a clear advantage over the cost function f =P

x;y2C

x6=y
[dH(x; y)]

�2 used by El Gamal et al. [2]. Namely, in the El Gamal's

function a large distance within two given codewords may compensate a
short distance between two others and the total cost function be the same
than in a code where all words are at equal distance. As a consequence,
this function can not discriminate correctly between codes.

Exponential scaling

The study of standard scaling mechanisms used in the selection process lead
us to the introduction of a new scaling, the exponential scaling:

s = e
C(f�avg)
max�avg

where f is the cost function and C a constant that enables the control of the
probability of selection of an individual with maximum�tness in relation to
an individual with average �tness. Usual values for C are between 2 and 3.

We have compared this new scaling mechanismwith the linear, and rank
scalings [3].

121



Figure 1 shows the maximum �tness at each generation (average of 50
runs) for the three scalings. The problem was the search of a code of size
26, length 23, minimum distance 10 and constant weight 9. A population
of 300 individuals was considered. Other parameters were set as follows:
pcross = 0:9, pmut = 0:6, K = 20 and C = 2. Similar performances were
found for related problems.

Figure 2: Exponential, rank and linear scalings compared.

The exponential scaling facilitates the control on the evolution of the
algorithm, may deal with negative values of the cost function and is easy to
implement. This new scaling might be also considered in other applications
of genetic algorithms.

Crossover and mutation

The crossover and mutation operators were designed to deal with the char-
acteristics of the problem. One important point is that all codewords must
have the same constant weight and therefore, the genetic operators must
preserve it.

The crossover on pairs of solutions xpar = x1x2 : : :xM and ypar =
y1y2 : : : yM , with xi; yi 2 f0; 1g, is done by randomly choosing a cutting
point r < M; r mod L = 0, and creating the child lists as follows: xchld =
x1x2 : : :xryr+1 : : : yM and ychld = y1y2 : : : yrxr+1 : : : xM . The crossover op-
erator keeps full codewords from both codes but mixes the codes. The
weights of the codewords are not modi�ed. The fact that this crossover
does not create new codewords may be seen as a drawback for the algo-
rithm. To ensure a more extensive exploration of the state space, a special
mutation operator was designed. Mutation is done by complementing the
value of two di�erent list elements, chosen at random, from positions cor-

122



responding to the same codeword. This operator preserves also the weights
of the codewords.

3 Results

For our research we implemented a small program in C (less than 500 lines)
based on the Pascal code presented in the book of Goldberg [3]. All exper-
iments were performed on Sun SPARC2 and HP Apollo 730 workstations.
After initial trials, the population size was set to 300, the crossover rate to
0.9 and the mutation rate to 0.6.

With these parameters we found the results shown in Table 1. Each code

Simulated Genetic
Code Annealing Algorithm

A(21,10,9) 22 words 22 words
A(22,10,9) 23 words 25 words
A(23,10,7) 18 words 17 words
A(23,10,8) 28 words 24 words
A(23,10,9) 24 words 26 words
A(23,10,10) 39 words 39 words
A(23,10,11) 39 words 40 words
A(24,10,8) 33 words 30 words
A(24,10,9) 24 words 27 words
A(24,10,11) 57 words 58 words

Table 1: Codes found using Simulated Annealing and a Genetic Algorithm.

was obtained in the following way: Once �xed the code size, word length,
minimum distance and constant weight the program was let running until
the code was found (usually in less than 300 generations) or generation 1000
was attained.

As an example, Table 2 shows a code with 26 words, length 23, minimum
distance 10 and weight 9.

The genetic algorithm found an equivalent result or a better code than
the simulated annealing technique in most of the cases we studied. It was
not possible to �nd three of the codes from El Gamal et al. paper. They
have reported that these codes were found with \more computational e�ort"
in order to improve some new results from Conway and Sloane, see [2]. The
use of a more elaborated genetic algorithm would permit to obtain these
codes and other codes that at present may be only constructed by special
techniques as those cited in [1].

123



1. 11111101100000000000100 14. 00010001101000001101101

2. 01010001110000101010010 15. 00101011010110000100100

3. 00101110101001010001000 16. 11100001000100001101010

4. 10111000010000011100001 17. 00100000100011010110011

5. 10000000110101001110100 18. 11000110101000001010001

6. 00000100000110001011111 19. 00110110010101000000011

7. 00010100111010010010100 20. 00100101101100100110000

8. 01000001111101010000001 21. 10110000001000100011011

9. 00001100001000110100111 22. 01110010000110010011000

10. 00001010100110111000001 23. 01100101010010100001001

11. 10000110110000100001110 24. 00011001000101011000110

12. 00001000011011100111000 25. 10011011000011000001001

13. 01010110000011001100100 26. 11100000001001111000100

Table 2: A constant weight code A(23,10,9).

4 Conclusions

The results show that the genetic algorithm presented in this work perform
well, and that in general, with less computational e�ort than in simulated
annealing it is possible to obtain the desired codes. The main advantage of
the method is its simplicity. On the other hand, the method is robust and
may be easily implemented on a parallel computer.

Acknowledgement

This work was supported by the CICYT, Spain, under grant TIC-92-1228-E.

References

[1] A.E. Brower, J.B. Shearer, N.J.A. Sloane and W.D. Smith. \A new
table of constant weight codes", IEEE Trans. Inform. Theory, vol. 36,
pp. 134{138, 1990.

[2] A.A.El Gamal, L.A. Hemachandra, I. Shperling and V.K. Wei. \Us-
ing simulated annealing to design good codes", IEEE Trans. Inform.
Theory, vol. 33, pp. 116{123, 1987.

[3] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley, 1989.

[4] R.L. Graham and N.J.A. Sloane. \ Lower bounds for constant weight
codes", IEEE Trans. Inform. Theory, vol. 26, pp. 37{43, 1980.

124


