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Cycle prefix digraphs are directed Cayley coset graphs that have been pro-
posed as a model of interconnection networks for parallel architectures.
In this paper we present new details concerning their structure that are
used to design a communication scheme leading to upper bounds on their
broadcast time. When the diameter is two, the digraphs are Kautz di-
graphs and in this case our algorithm improves the known upper bounds
for their broadcast time and is indeed optimal for small values of the
degree.

1 Introduction.

A wide variety of new models for parallel architectures and distributed com-
puting have been introduced in recent years. One important issue in their
design and possible implementation is the topology of the associated network.
The consideration of highly symmetric and dense interconnection networks,
particularly for massively parallel computers, leads to a question of special
interest in graph theory: the construction of vertex symmetric digraphs with
order as large as possible for a given maximum degree and diameter. One im-
portant reason to consider vertex symmetric digraphs is that in the associated
network each node is able to execute the same communication software. Other
aspects of interest are their modularity and simple definition.

Most large vertex symmetric digraphs correspond to Cayley (coset) digraphs
and have been found either by random computer search, special graph prod-
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ucts, or direct constructions. Very often, vertex symmetric digraphs may be
described as digraphs on alphabets. A digraph on an alphabet is constructed
as follows: the vertices are labeled with words on the given alphabet and the
arcs are defined according to a rule that relates two different words. This rep-
resentation of the digraph facilitates the direct calculation of the diameter and
other distance-related parameters. An interesting family of vertex symmetric
digraphs was defined by Faber and Moore as Cayley coset digraphs [5] and
may be viewed as well as a family of digraphs on alphabets [4,6]. This latter
representation gives them the name that we will use through this paper: cycle
prefiz digraphs.

On the other hand, much work has been done related to the dissemination of
information in interconnection networks. The importance of this research area
lies in the fact that the ability of a network to effectively disseminate infor-
mation is an important measure of the suitability of the network for parallel
computing. Broadcasting is one of the most studied problems in communi-
cation networks and refers to the sending of a message from one node of the
network to all the other nodes as quickly as possible, subject to the constraints
that each call involves only two nodes, a node which already knows the mes-
sage can only inform one of the nodes to which it is connected, and each call
requires one unit of time.

In this paper we are interested in the study of communication schemes for
cycle prefix digraphs. We present an efficient broadcasting scheme based on
the recursive structure that we describe below.

The paper is organized as follows. The next section will introduce the notation
and give some general definitions. Section 3 presents the cycle prefix digraphs
and some of their properties. Then we focus on the recursive structure of
the digraphs which will suggest the broadcast strategy presented in Section 4
together with the upper bounds on the broadcast time. Finally, in Section 5,
we compare the broadcast time obtained with the known upper bounds for de
Bruijn digraphs of similar order for the same diameter and degree. When the
diameter is two, we also make a comparison with the upper bounds known for
the corresponding Kautz family. We see that our scheme improves considerably
the bounds given by Bermond and Peyrat [1] and by Heydemann, Opatrny
and Sotteau [9], and is indeed optimal for small values of the degree.

2 Notation

Let I' = (V, A) be a digraph with vertex set V' and arc set A. The out-degree
of a vertex u, 67 (u), is the number of vertices adjacent from u and its in-
degree 6~ (u), is the number of vertices adjacent to u. A digraph is regular of



degree A or A-regular if the in-degrees and out-degrees of all vertices equal
A. We define a path in I" from vy € V to v, € V as a sequence of abutting arcs
(vo, v1), (v1,v2),- -+, (Vg_1, V) such that foreach i € 0,1,- -,k — 1, (v;,v41) €
E. A digraph is (strongly) connected if there is a path from every vertex to
every other vertex.

A digraph is verter symmetric if its automorphism group acts transitively on
its set of vertices. A Cayley coset digraph, Cay(G, H, S), is a digraph defined by
a finite group G, a subgroup H and a set of generators S C G'\ H. The vertex
set is given by the set of left cosets {gH |g € G} and there is an arc (g; H, go H)
whenever g;sH = goH for some s € S. Cayley coset digraphs are |S|-regular,
connected and vertex symmetric. Moreover, every vertex symmetric digraph
is a Cayley coset digraph, as is shown in [13]. In particular, a Cayley coset
digraph T is a Cayley digraph iff H = {e}, where e is the identity of G.

I' = Cay(G, H, S) is a hierarchical or quasi-minimal Cayley coset digraph iff
there is an ordering of the elements of S, say {si, sq,---,sx} such that for
every i = 1,2,--- k — 1, the group (H, s, Sa,---,s;) is a proper subgroup of
(H, $1,89, ", Si, Si+1). [ is minimal iff for no S’ C S, (H, S") = G. A hierarchi-
cal Cayley (coset) digraph can be decomposed into a collection of isomorphic
subdigraphs along with edges connecting them. Each subdigraph is a smaller
Cayley (coset) digraph.

Broadcasting in a graph is the process of spreading a message known initially
by one vertex, subject to the following rules. The transfer of the message from
one vertex to another (termed a call) takes one unit of time. A vertex can only
call an adjacent vertex. A vertex can participate in at most one call per unit
of time. A broadcast scheme is a formal description of this process.

Given a connected digraph I' and a vertex u, the broadcast time of u, de-
noted b(u), is the minimum number of time units required to broadcast a
message originating at u. The broadcast time of the graph T is defined b(T") =
max{b(u)|u € T'}. For any vertex u in a connected graph with |V| vertices,
b(u) > [log, |V|], since during each time unit the number of vertices informed
can at most double. For a vertex symmetric graph, the broadcast time is equal
to the broadcast time of any of its vertices.

The de Bruijn digraph B(A, D), A > 2, has vertices labeled with words
T1To -+ xp where z; belongs to an alphabet of size A. There is an arc from
any vertex xixs - - - xp to the A vertices zo - - - xpxpy1, where zp 4 is any letter
of the alphabet. B(A, D) is A-regular, has AP vertices and diameter D.

The Kautz digraph K(A, D), A > 2, has vertices labeled with words z1z5 - - - zp
where z; belongs to an alphabet of A+1 letters and x; # x;,1 for1 <7 < D—1.
A vertex xyx9 - --xp is adjacent to the A vertices x9---xpxpi1, Where xp g
can be any letter different from xp. Hence, the digraph K (A, D) is A-regular,



has AP + AP~ vertices and diameter D. For D = 2 the Kautz digraphs are
vertex symmetric. Figure 1 shows K(2,2) (in the figures of this paper a line
represents two opposite arcs).
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Fig. 1. K(2,2), a 2-regular vertex symmetric digraph with diameter 2.

3 Cycle prefix digraphs. Recursive structure.

The cycle prefiz digraphs Ta(D), A > D, were introduced as Cayley coset
digraphs by Faber and Moore in 1988 [5]. These digraphs may also be defined
on an alphabet of A + 1 symbols as follows [4,6]: Each vertex x;zo---xp is a
sequence of distinct symbols from the alphabet. The adjacencies are given by

ToX3T4 " TPDIT D41, Tp1 # T1, T2y, Tp
1T -Tp —

T1Tg+* Tp—1Tgs1 - TpTp, L < k<D -1

The first kind of adjacency, that introduces a new symbol, will be called a
shift. The other adjacencies will be called rotations. I'a(D) has order (A+1)p,
diameter D and is A-regular (A > D).

Cycle prefix digraphs have several relevant properties which are of interest
when modelling an interconnection network. The digraphs are Hamiltonian, as
was proved by M. Jiang and F. Ruskey in [11]. In [4], Comellas and Fiol proved
that, for D > 3, the digraphs are D—reachable (every pair of vertices, not nec-
essarily different, may be joined by a path of exactly D arcs). Together with
new families constructed from them, cycle prefix digraphs have provided im-
portant improvements to the table of largest known vertex-symmetric (A, D)
digraphs, see [4]. It has been shown by Chen, Faber and Knill [3] that the
wide diameter of I'a(D) is D + 2 (the wide diameter of a graph is considered
an important measure of communication efficiency and reliability, see [10]).
By extending a former result for hierarchical Cayley graphs from Hamidoune,
Lladé and Serra [8] to this particular family of Cayley coset digraphs, Knill,
in [12], showed that the cycle prefix digraphs have optimal connectivity.

Some hierarchical Cayley graphs can be recursively decomposed. This is the
case for the pancake and star graphs (see GowriSankaran [7] and Berthomé,



Ferreira and Perennes [2]). By using the description as digraphs on an alpha-
bet it is also possible to give a recursive decomposition for the cycle prefix
digraphs. The following lemma summarizes this result.

Lemma 1 The cycle prefiz digraph T'a(D) decomposes into (Agl) subdigraphs,
each isomorphic to I'p_1(D — 1).

PROOF. Let us consider all vertices of I'a(D) which have the same set of
symbols, together with their corresponding edges. Clearly, they form a sub-
digraph that is isomorphic to I'p (D — 1). Since there are {A; 1) possible
different ways of choosing this set of symbols from the given alphabet, we can
express I'a(D) as a vertex disjoint union of (A; 1) subdigraphs. O

Figure 2 shows one of the subdigraphs that can be obtained from T'a(4).
Note that, for clarity, we have omitted some edges that join the four terminal
subgraphs, I'2(2) (~ K(2,2)), in the recursive structure.

Fig. 2. One subdigraph of I'a(4) isomorphic to I'3(3).

4 Broadcasting in cycle prefix digraphs

The broadcast algorithm we have designed uses the decomposition into subdi-
graphs of I'a(D) given in Section 3. The first phase of the algorithm distributes
the message from the initial vertex to (A; 1) —1 other vertices, each in a differ-

ent subdigraph of the decomposition. In phase two, the message is sent within



each subdigraph. The two phases are recursively executed, in parallel, in each
subdigraph.

The main point is to build a structure in T'a (D) containing a set of vertices
such that any two vertices of the set differ in at least one symbol. This set
will have (Ag ) elements. With this set it is possible to construct a tree to be
used in the first phase of the broadcast scheme.

Lemma 2 For any cycle prefiz digraph T'a(D) with A > D, and any vertex x,
there exists a tree T rooted at x with AH) vertices, depth D, and maximum
degree A + 1 — D, such that any two vertices in T differ in at least one symbol.

PROOF. We give a constructive proof. Without loss of generality, we may
choose x = 12--- D as the root of 7. The successive adjacencies are always of
type shift as follows:

Level 1: x is adjacent to the A + 1 — D vertices Xil =23---Ds;, D+1<
s1 < A+ 1. The upper index of Xil corresponds to the level and the lower
index is the last symbol of the vertex.

Level 2: Vertices at this level are denoted x2 , = 3---Ds;s,. They are adja-
cent from x; and s, is 1 or is a symbol from {D +1,...,A; A+ 1}\ {s;}
such that sy, > s;. At this level there are:

— A+ 1 — D vertices which end with 1.

- (AJF;_D ) other vertices.

The total number of vertices at level twois A +1 — D+ (A+1 b ) (AJ’2 b )
Level 3: Vertices x3 =4...Ds1s983 are adjacent from x , by shifts that

515283
add s3, which is 2 or a symbol from {D+1,...,A A+ 1} \ {s1, s2} such
that s; < s9 < s3 or s1 < s3 (if s = 1). There are:

_ (A+2—D
2

_ (A+1—D
2

_ (A+1—D
3

The total number of vertices at this level is (AJF;_D) + (A+é_D) + (AJF;)_D) =
(12)

Level k: Vertices are x¥ = (k+1)---Dsys,---s; and they are adjacent
from vertices x¥ 1~ at level k — 1. s, is either k£ — 1 or a symbol from
{D+1,...,A0 A+ 1} \ {s1,59,..., 561} All symbols sy, so, ..., si satisfy

the inequaliti sp< spmifl<mand s; #1—1 and s, # m — 1. There are:

) vertices with s3 = 2.
) vertices with s, = 1 and s; < s3.

) vertices with s; < s9 < 83 :

- (AH’,Z:P_D vertices with s =k — 1.
- (A%*D) vertices with D4+ 1<s; < ... <s, <A+1.
_ (A;::D) vertices with D+ 1 <s1 < ... <81 <811 <...<s<A+1

and s; =1 — 1.



A+1-D . .
_ ( ;:_2 )VertlceSW1thD+1Ssl<...si,1<s,~+1...sj,1<sj+1<...<

sk <A+4+lands;=i—1lands;=j—1(i#}).

— <A+1’D) vertices with s; =1 —1for1=2...k.
The total at level £ is (AHk - ) + E (AH D) = (A+27D)
Level D: Vertices are x), . = s15;---sp and they are adjacent from ver-

tices at level D—1 X51521 spo1 and sp issuch that s; < s < ... < sp_ 1 < sp

except when s; = j — 1, j = 2...D — 1. The process finishes at this level

A

D) vertices.

and a similar count than in level k gives (

Therefore the maximum degree of 7 is A 4+ 1 — D, its depth is D and 7T has
Py (A“L',Z*D ) = (A; 1) vertices. This is precisely the number of choices of D
different elements from an alphabet of A + 1 symbols.

It is not difficult to see that any two vertices in 7 differ in at least one
symbol. First, notice that any vertex at level k of the tree has the form x =
(k+1)---Dsysy---sg (x = s182-+-sp, if k = D) with s; < s; if ¢ < j and
si #t¢—1and s; # j — 1. The symbol k is not contained in any of the vertices
of level k. Let x = (p+1)---Dsisy---s, and X' = (¢g+1)---Dsish---s
be two different vertices of 7 not at level D. If p # ¢, say p < ¢, then
x = (p+1)---q(¢g+1)---Dsysg---s,, but as ¢ is not a symbol of x/, the
vertices differ at least in this symbol. If one of the vertices is at level D it will
not contain the symbol D, but as all other vertices contain it, the two vertices

will differ at least in that symbol. On the other hand, if the vertices are both

at the same level, in order to differ at least in one symbol {s1,--,s,} should
be a different set of symbols than {s},---, s}, (p < D) . Let us suppose that
s1 # 51 and s; < si, then, because of the construction s; ¢ {si,...,s,} and

both vertices will not share the same set of symbols. Otherwise, let 7,1 < i < p
be the first position for which s; # s}, if s; =i —1 (or s; =i — 1) then symbol
s; is not in x’ (or s} is not in x). Therefore s; < s, and in this case s; will not
be in x’ because after position ¢, the construction only allows to add symbols
s’ such that s’ > si. O

Remark 3 If A = D, instead of a tree we have a path of length D.

Example 4 The tree associated with U's(4) has depth D = 4, mazimum degree

A+1—D =2, and contains <A;;1) = (i) = 15 vertices. The tree is shown in
Figure 3.

From the proof of the preceeding lemma, the vertices of level one are obtained
by shifts that add one of the symbols {5,6} to the end of the root 1234. These
vertices are 2345 and 2346

At level two there is one vertexr ending with 1 adjacent from each of the vertices



5123 (4)

4512 (3) 2L 5196 (5)

3451 (2) 2 516 (4) — 5163 (5)

2345 (1) 3456 (3) —> 4562 (4) — 5623 (5)

1234 (0) o (2) — 3461 (3) —> 4612 (4) — 6123 (5)

Level 1 Level 2 Level 3 Level 4

Fig. 3. The basic tree for I's(4). Boldface numbers indicate the broadcast order
using the scheme of Theorem 5.

of level one (3451, 3461). The other vertex of this level must be 34s1se with
s1 < 89 and s1,s9 € {5,6}. The only possible choice for s; and sy gives 3456
which s adjacent from 2345.

We obtain three vertices of level three (4512,4562,4612) from vertices of level
two by shifts that add 2. The other vertices of this level must end with one of
the symbols in {D +1,..., A A+ 1} \ {s1,s2} = {5,6} \ {s1, s2}. Therefore,
vertex 4s15983 must be such that s; € {5,6} and when sy = 1 the condition
s1 < s3 leads to the choice s; = 5, s3 = 6, giving vertex 4516. When so # 1 it
s not possible to give symbols satisfying s; < s9 < S3.

The vertices of the last level start with a symbol from {D +1,... A+ 1} =
{5,6}. Four vertices will end with 3 and are adjacent from each vertez of level
3, (5123,5163,5623,6123). The other vertex, following arguments similar to
those for level three, is 5126.

Theorem 5 The broadcast time for Ua(D), A > D, is bounded as follows.

D(D - 1)

b(La(D)) <A+ 5

PROOF. We start the broadcast process using the tree constructed according
to Lemma 2. The originator sends the message to its adjacent vertices in
lexicographic order. Any vertex in the tree proceeds in the same way, as shown
in Figure 3. Therefore, to broadcast a message from the origin to all vertices
of the tree takes A time units.

From each vertex of the tree the message is then broadcast to a subdigraph
(isomorphic to I'p_1(D — 1)). To broadcast in this digraph, we will follow the
same scheme but now instead of a tree we have a path (Remark 3). The process
is recursively repeated for each new vertex reached. We denote by (T (k))
the time that this broadcasting scheme takes to broadcast in I'y(k). As the
broadcasting process first uses a path P, of length & we have the following



expression:

B(Lr(k)) = b(Py) + B(Ti-1(k — 1)) k>3
Using this recurrence relation, and the facts that b(FP;) = k£ and G(I'y(2)) =
b(K(2,2)) = 3, we obtain:

B(Tk(k)) =b(Py) + b(Pr-1) + -+ b(P3) + B(I2(2))
k(k +1)

=k+(k-1)+---+3+3= 5
Combining the results, the broadcasting time of a cycle prefix digraph is:

D(D —1)
2

b(Ca(D)) < b(T) + ATp-s(D— 1)) = A+ 0

5 Conclusions

In this paper we have presented a recursive decomposition of the cycle prefix
digraph that yields an efficient broadcasting scheme.

It is interesting to compare the broadcast times that result from this scheme
with those known for other digraphs with similar order for the same degree
and diameter. In [1] Bermond and Peyrat give b(B(A, D) < %, 2 <
D < 14, as the smallest upper bound on the broadcast time of de Bruijn
digraphs. Our scheme leads to much better broasdcast times for comparable

cycle prefix digraphs (see Table 1).

I'a(3) B(A,3)
ANV srae) || V]| 8B, 6)
3| 24 6| 27 8
4| 60 7| 64 10
5 (| 120 8 125 12
6 || 210 9| 216 14
7 || 336 10 | 343 16
8 | 504 11 | 512 18
9 | 720 12 | 729 20
10 || 990 13 || 1000 22

Table 1
Comparative values of the broadcast time of cycle prefix digraphs, 5(I'a(3)), and
de Bruijn digraphs of diameter three, 5'(B(A,3)), for small values of the degree.



On the other hand, ['A(2) is the Kautz digraphs K (A, 2). Heydemann, Opa-
trny and Sotteau [9] give the best known upper bounds on the broadcast time
of Kautz digraphs as:

b(K(2,D)) < 2D,
b(K(3,D)) < 3D,

(a43)(D+1) if4<A<12, A9
b(K(A, D)) <

min{2D[log, A],3D[log; A]}, if A=9 or A > 13

For D = 2 and small degrees, Theorem 5 improves these results giving a new
upper bound of S(K(A,2)) = A + 1. This broadcasting time is optimal for
small values of the degree (A < 6).

Finally, we mention that it should be possible to further exploit the hierarchical
nature of the cycle prefix digraphs to deal with other communication problems.
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