
An Ant Algorithm for the Graph Colouring Problem
Francesc Comellas and Javier Oz�on

Departament de Matem�atica Aplicada i Telem�atica, Universitat Polit�ecnica de Catalunya

C/ Jordi Girona 1-3, Campus Nord C3, 08034 Barcelona, Spain

Tel: 93 401 60 09 Fax: 93 401 59 81

comellas@mat.upc.es ozzy@mat.upc.es



An Ant Algorithm for the Graph Colouring Problem

F. Comellas, J. Oz�on
Departament de Matem�atica Aplicada i Telem�atica

Universitat Polit�ecnica de Catalunya

comellas@mat.upc.es ozzy@mat.upc.es

Abstract

This paper describes an ant algorithm that colours graphs in an e�cient way. First, we

describe the graph colouring problem and the ant algorithm. We also present some results

and propose a simple generalisation of the algorithm that might allow its application to other

assignment problems. Finally, a short study of the algorithm operators explains its performance

and shows that it may be seen as a parallel variation of tabu search, with an implicit memory

instead of an avoidance list.

ANTS'98 - From Ant Colonies to Arti�cial Ants: First International Workshop on Ant Colony Optimization

Brussels, Belgium, October 15{16, 1998. c
 F.Comellas and J. Oz�on.

1 An ant algorithm for colouring graphs

Many assignment and combinatorial problems may be formulated in terms of graph colouring. A
proper colouring of a graph G = (V;E) is a function from the nodes of the graph to a set C of
colours such that any two adjacent nodes have di�erent colours. If k is the cardinal of C, we say that
G is k-coloured. The graph colouring problem is NP-complete. Hence, we need to use approximate
algorithmic methods to obtain solutions close to the absolute minimum in a reasonable execution
time. Most of the algorithms used to solve the colouring problem are summarised in Hurley [4],
and include sequential assignment methods, simulated annealing and genetic algorithms.

The ant algorithm that we propose for the colouring problem is a multi-agent system based on
the idea of parallel search. In this algorithm a given number of ants move around the nodes of the
graph and changes the colour of each visited node according to a local criterion. At a given iteration
each ant moves from the current node to the adjacent node with the maximum number of violations
(see Fig 1), and replaces the old colour of the node with a new colour that minimises this number.
For a given node i, the number of violations is computed as the number of adjacent nodes to i

with the same colour than i. This action is randomly repeated for each ant: the ant moves to the

0

0

32

0
1

0

0
3

2

0
1

Figure 1: Movement of an ant towards the worst local node (the �gures indicate the number of
violations of each node).

worst adjacent node with a certain probability pn (otherwise it moves to any other adjacent node
randomly chosen), and assigns the best possible colour with a probability pc (otherwise any colour
is assigned at random). The probabilistic nature of the algorithm allows the ants to escape from
local minima and obtain bounds close to the absolute minimum. This process, which is carried out
simultaneously by the set of ants, is repeated until the optimal solution is found or the algorithm
converges. The number of ants that move along the graph is an adjustable parameter and increases
with the order of the graph.

In [2] it is shown that the ant algorithm clearly outperforms other classical methods such as
simulated annealing and genetic algorithms. On the other hand, in Table 1 we present a comparison
between our algorithm and another ant algorithm proposed by Costa and Hertz [3]. The ant

1



algorithm was tested on random graphs with 100, 300, 500 and 1000 nodes (ten graphs for each
order) in which there exists an edge between any pair of nodes with a probability 0.5. The better
performance of our algorithm may come from the fact that the ants move over the graph instead
of the solution space, and by the simple way used by any ant to \remember" former actions of the
algorithm.

nodes 100 300 500 1000

C&H 15.2 35.7 55.6 111.0
ants 14.9 34.8 53.9 99.5

Table 1: A comparison between our algorithm, ants, and Costa and Hertz ant algorithm [3]. We
give the average of the number of colours used in each case.

One important concern for any algorithm is the extent of its possible applications. Although
it is possible to design speci�c algorithms for most combinatorial problems, there are some general
schemes, such as tabu search, simulated annealing or the ant algorithm by Colourni et al. [3], which
can be successfully applied to a wide range of combinatorial problems. The understanding of the
basic mechanisms of our algorithm will help to apply it to further problems.

The ant algorithm can be understood as a directed simulated annealing or a singular version of
tabu search. In our algorithm, we have at each move an speci�c solution (the actual colouring of
the graph, i.e., a string of jV j integers, where jV j is the number of nodes and the integer at position
i corresponds to the colour assigned to the ith node of the graph at that time). This colouring is
not normally proper. At each step the ant moves to a node and changes its colour according to a
local optimisation criterion. In the solution space, this action corresponds to select a position in
the current solution and a new integer that will be assigned to this position. These two operations
are the same than in simulated annealing, although in our ant algorithm they are performed trying
to minimise a local function, whereas in simulated annealing they are done at random. Besides,
this search mechanism may also be seen as a modi�cation of the tabu search algorithm with the
di�erence that in tabu search a list (which holds a memory of former actions) is updated at each
step and used to decide whether a move is forbidden or not, whereas in our algorithm this decision
is based on a local study of the graph.

Memory may be seen not as an explicit database with information from past events, but as a
strategy that will bene�t from the recent history of the algorithm. Our ant algorithm has actually
this sort of implicit memory which is not speci�cally saved in some �le although it takes into
account past events when making a new decision. As shown in Fig 1, once an ant k has moved
from node i to node j and has changed its colour, it remains there until the next iteration, when it
will move again towards one of the nodes of j's neighbourhood. Implicit memory means that the ant
\remembers" at each step the former changes performed by the algorithm, and takes into account
that these changes may have modi�ed the cost function of the neighbourhood of j. Therefore, at
the next step, the ant k will normally try to arrange the colouring of the worst adjacent node to
j. Any single action depends strongly on the last move of each ant; and this dependence reinforces
the results of recent modi�cations. This implicit memory is not continuously kept by the algorithm
in some matrix or list. It only exists over the graph and on the actual position of each ant, as
it happens in a real ant society with pheromones. Therefore there is a reduction in the global
computational e�ort in relation to other multi-agent algorithms, since the algorithm does not have
to evaluate all the nodes of the graph.

2 Further applications

To apply our algorithm to other assignment problems (a general class of problems where a set of
resources must be assigned to a set of items with some restrictions) we have classi�ed the di�erent
actions which are performed in our algorithm in three generic operators:

Op 1.a. From the actual node (item) move to the worst node (item) of the neighbourhood.
Op 1.b. Assign the best local colour (resource) to the new node (item).

2



Op 2. Continue the search in the neighbourhood (short term memory).
Op 3. Parallel operator (several ants work simultaneously).

To evaluate the importance of these operators we have done some modi�cations to the initial
algorithm excluding some of the operators from it, and we have tested the resultant algorithms on
random graphs. Table 2 shows the description of the algorithms, their features, and for each case
the missing operator from the list above.

Alg description performing missing op.

a-alg. each ant jumps at random to a neighbour and changes does not work 1a (and so 2)
to the best local colour (cbc)

b-alg each ant jumps at random to any node and cbc does not work 1a (and so 2)

c-alg each ant moves either to the worst neighbour or ok none
randomly to other neighbour and cbc

cI-alg each ant moves either to the worst neighbour or randomly does not work 1b
to another neighbour and changes to any colour

cII-alg as c, but not in parallel poor 3

d-alg each ant moves either to the worst neighbour or ok, but worse than 3 2 is weaken
randomly to any other node and cbc

e-alg each ant moves randomly to any node, searches quite poor 2
the worst neighbour and cbc

Table 2: A comparison between di�erent ant algorithms with missing operators.

As shown in Table 2, the best algorithm is c-alg, i.e., the original ant algorithm [2], whereas
if we eliminate one of the operators 1a, 1b or 2, the algorithm which results does not work at all.
Therefore, to obtain an e�cient algorithm these three operators should be used together. While
operators 1a and 1b bene�t from local information at each iteration, operator 2 reinforces the
memory of the algorithm and gives more restrict colourings of any given graph.

The three operators, as described above, can be applied to any assignment problem without
loss of generality by de�ning previously a neighbourhood for each item of the problem (normally
it should be the subset of items which had some restriction related to it), and a local function
to establish some local criterion. Although this local function may be the global function, it is
advisable (to increase the algorithm speed) to de�ne this local function which would be computed
at each step according only to the neighbourhood of the current node.

3 Conclusions

In this paper a new ant algorithm has been proposed for the graph colouring problem. It has been
shown that this algorithm, that may be implemented in less than 200 lines of code, performs better
than other methods. Furthermore we have shown how to generalise it and possible applications to
a wide class of assignment problems.

4 Bibliography

[1] Abril J., Comellas F., Cort�es A., Oz�on J., and Vaquer M., A Multi-agent System for Frequency
Assignment on Cellular Radio Networks, submitted to IEEE on Vehicular Technology
[2] Comellas F. and Oz�on J., Graph colouring algorithms for assignment problems in radio networks,
Applications of Neural Networks to Telecommunications 2. Edit. J. Alspector, R. Goodman y T.X.
Brown, Lawrence ErlbaumAss., pp. 49-56, 1995. http://www-mat.upc.es/~comellas/radio/radio.html
[3] Costa D. and Hertz A., Ants can colour graphs, Journal of the Operational Research Society
(1997) 48, 295-305
[4] Hurley S., Thiel S.U. and Smith D.H., Frequency Assignment Algorithms, Final Report Year2
1996/97, http://www.cs.cf.ac.uk/User/SteveHurley/Ra/year2

3


