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Abstract

Simulated annealing is a computational technique reported to give good results
in coping with complex combinatorial problems. These problems usually consist of
finding a global minimum of a cost function on a (large) set of states (also known as
feasible solutions). In this paper we explore modifications to the standard simulated
annealing method that we apply to the design of dense interconnection networks,
that is networks that have as many nodes as possible for a given maximum number
of links from each node to other nodes, and a given maximum distance between
all pair of nodes. We are particularly interested in the directed-symmetric case in
wich all links have a direction, and the network, roughly speaking, looks the same
from any node. In that case each node may execute, without modifications, the
same communication software.

The set of states are the different networks and a cost function is defined and is
used to accept or reject a new network obtained from a modification of a previously
accepted one. The annealing algorithm reduces the ‘temperature’ parameter and
drives the sequence of networks towards an optimum. The results show that with
less computational effort than in more traditional approaches we are able to find
the best results known and in some cases improve them.
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1 Introduction

In the design of interconnection networks two main objectives are to minimize the
number of links connecting to a node and the number of nodes that a message must
pass through to reach the destination node. In this work we will consider the case in
wich the links have a direction, and the same communication software may be used in
any node. This is an area of considerable interest for its applications to the design of
large interconnection networks, particularly for the construction of massively parallel
computers. Other applications include the design of local area networks, the problem
of data alignment and the description of some cryptographic protocols.

Such a network can be modelled by an directed graph (or digraph) the vertices
of which being associated to the nodes of the network. This digraph should have,
therefore, the following properties:

1) The in-degree and out-degree (number of arcs incident to or from a given vertex)
should be relatively small.

2) The diameter of the digraph has to be small in relation to the number of vertices.
3) The digraph should be vertex symmetric.
In the context of Graph Theory the problem is an instance of the (∆,D) problem

and consists in the construction of large vertex symmetric graphs and digraphs of a
given maximum degree and diameter.

Much work has been done for the undirected case, see [2] for a survey. Some inter-
esting results correspond to Cayley graphs which, as it is known, are vertex symmetric
[6]. Actually, most networks related with parallel systems (hypercubes, grids, butterfly
networks ...) may be modelled by Cayley graphs. For directed graphs there are well
known results concerning bounds [21, 3] and infinite families [4, 14, 15, 13] but the
digraphs are vertex symmetric only in special cases.

The search for large digraphs which have the additional property of being vertex
symmetric has been considered more recently. Faber and Moore [12], for example,
study families of digraphs on permutations and give a table of the largest known vertex
symmetric (∆,D) digraphs. The interest on vertex symmetric digraphs comes from the
fact that in the associated network each node is able to execute the same communication
software without modifications and in this way these digraphs may be considered for
an easy implementation of parallelism.

An extensive part of the search for large graphs and digraphs has been done by
using computer methods, sometimes the computer is used for testing for the desirable
properties through an exhaustive search. Where exhaustive search was not possible
due to the extent of the state space some authors used local search as in [23, 5] or
random algorithms, see [10]. The main limitation of local search is that usually leads
to local minima. That is because the algorithm only accepts changes that lower the
cost function that measures the acceptability of the state. Random algorithms does
not perform well if there are few optimal solutions.

In this paper we use another approach based on the so called simulated annealing
(SA) technique. The algorithm was first introduced by Kirkpatrich and others, [16],
and is derived from a well known work from Metropolis, [18]. In practical optimization
problems sometimes it is acceptable to reach a state near the global optimum, because
it is better finding a quick good solution to expend a long time to find the global
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optimum itself which is only slightly better. The SA algorithm avoids getting stuck at
metastable local optima in the search for the global solution because accepts not only
changes that lower the objective function but also changes that raise it. The latter
are accepted with a probability given by the Boltzmann factor e−∆E/kT . The range of
the parameter T , that is known as temperature, depends on the problem considered;
the higher the temperature, the more readily is accepted a change that increases the
objective function by ∆E. If the model system is first heated and then the temperature
is lowered slowly waiting for equilibrium to be established at each temperature, we are
performing a simulated annealing procedure. It is precisely such annealing that has the
best chance of bringing a real fluid to a true near ground state rather than freezing it
to a metastable configuration.

In this paper we use simulated annealing for obtaining new largest vertex symmetric
(∆,D) digraphs and most of the digraphs in the table of largest vertex symmetric (∆,D)
digraphs. Section 1 is devoted to notation. In Section 2 we describe the SA algorithms
and their application to the solution of problems in Graph Theory. Section 3 shows how
it is possible to apply the SA technique to the problem (∆,D) for vertex symmetric
digraphs. Finally in Section 4 we give the main results obtained in relation to the table
of largest known vertex symmetric (∆,D) digraphs

2 Notation and Known Results

A directed graph or digraph for short, G = (V,A), consists of a non empty finite set
V of elements called vertices and a set A of ordered pairs of elements of V called arcs.
The number of vertices N = |G| = |V | is the order of the digraph. If (x, y) is an arc of
A, it is said that x is adjacent to y or that y is adjacent from x, and it is usually written
x → y . The out-degree of a vertex δ+(x) is the number of vertices adjacent from x,
the in-degree of a vertex δ−(x) is the number of vertices adjacent to x. A digraph is
regular of degree ∆ or ∆-regular if the in-degree and out-degree of all vertices equal
∆. A digraph is strongly connected if there is a (directed) path from any vertex to
every other. The distance between two vertices x and y, d(x, y), is the number of
arcs of a shortest path from x to y, and its maximum value over all pair of vertices,
D = maxx,y∈V d(x, y), is the diameter of the digraph. A digraph G is vertex symmetric

if its automorphism group acts transitively on its set of vertices. A (∆,D) digraph is a
digraph with maximum degree ∆ and diameter at most D.

The order of a ∆-regular digraph (∆ > 1) of diameter D is easily seen to be bounded
by

1 + ∆+∆2 + . . .+∆D =
∆D+1 − 1

∆− 1
= N(∆,D)

This value is called the Moore bound, and it is known that, except for ∆ = 1 or D = 1,
there exists no ∆-regular digraphs with N(∆,D) vertices and diameter D [21, 3].

The optimization problem considered in this article consists of finding vertex sym-
metric (∆,D) digraphs which, for a given diameter and maximum out-degree, have a
number of vertices as close as possible to the Moore bound.

A well known infinite family of large (∆,D)-digraphs, is constituted by the Kautz
digraphs [14, 15]. The Kautz digraph K(∆,D), ∆ ≥ 2, have vertices labeled with
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words x1x2 . . . xD where xi belongs to an alphabet of ∆ + 1 letters and xi 6= xi+1 for
1 ≤ i ≤ D− 1. A vertex x1x2 . . . xD is adjacent to the ∆ vertices x2 . . . xDxD+1, where
xD+1 can be any letter different from xD. Hence, the digraph K(∆,D) is ∆-regular
and has ∆D + ∆D+1 vertices. For D = 2 the Kautz digraphs are vertex symmetric.
Figure 1 shows K(2, 2). In this figure a line represents two opposite arcs.
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Figure 1: K(2, 2), the largest v-s digraph with degree two and diameter two

Faber and Moore in [12] give a family of large vertex symmetric digraphs, which
they call Γ∆(D). These digraphs may also be defined as digraphs on alphabets in the
following way: The vertices are labeled with different words of length D, x1x2 . . . xD,
such that form a D-permutation of an alphabet of ∆ + 1 letters. The adjacencies are
given by:

x1x2 . . . xD →




















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











x2x3x4 . . . xDxD+1 xD+1 6= x1, x2, . . . xD
x2x3x4 . . . xDx1
x1x3x4 . . . xDx2
x1x2x4 . . . xDx3
. . .

x1x2x3 . . . xDxD−1

These digraphs have order (∆+1)!
(∆−D+1)! , diameter D and are ∆-regular (∆ ≥ D). Note

that the digraphs Γ∆(2) are in fact the Kautz digraphs K(∆, 2).
Most of the entries in the table of large vertex symmetric (∆,D) digraphs given in

[12] correspond to this family.
In this paper we are able of obtaining digraphs with the same order through the

SA technique for most of the values of ∆ and D, ∆ < 6 and D < 10

3 Simulated Annealing and Graph Theory

The simulated annealing method comes from the analogy made between the statistical
mechanical problem of finding the ground state of a many-body system and finding
the minimum or maximum of a given cost function in a combinatorial optimization
problem.

If the temperature of the interacting molecules in a liquid configuration is suddenly
reduced below its freezing point, the result will be a disordered glassy state with an
energy higher than the true crystalline ground state. In fact the molecules are in a
local energy minimum.

On the other hand, if the temperature of the liquid is reduced slowly (annealing)
waiting for equilibrium to be reached before a new reduction is made, the liquid freezes
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to the solid state through a cooling process that leads to the crystalline state, which is
the global energy minimum.

In the analogy with the combinatorial optimization problem the parameters being
varied are equated with atomic positions in the liquid and its energy is identified with
the cost (or objective) function being optimized. The temperature is then defined as
a control parameter and is related with the probability that changes which make the
state worst will be accepted in order to have a more exhaustive search.

In the algorithm, a change of state that decreases the energy is always accepted;
if the energy increases, the change is accepted with a certain probability that depends
on the temperature of the system, according to the rule (Metropolis criterion) e−∆E/T .
At a given temperature several exchanges are attempted; then the process is repeated
after decreasing the temperature. The system is gradually cooled until it is stopped
according to some criteria such as when the number of changes accepted is small and/or
the reduction of the energy is not significative. In order to obtain a sufficient statistical
set of trials the maximum number of attempts made at a given temperature has to
be large enough. The number of successful attempts at each temperature may be also
taken in account by the algorithm in order to decide that the state space has been
properly searched and the search may finish for this temperature.

Figure 2 correspond to an implementation of the details discused so far.
The most known applications of the SA technique are for scheduling problems like

the traveling salesman problem [17] and spatial organization problems like the chip
placement [16, 9].

Problems concerning to Graph Theory have been considered more recently, see [1]
for a review. For each of these problems there is need of specifying the set of states
where to apply the SA method and the cost function.

We give a list of some of these problems where annealing technique has proven
useful:

Max (or min) cut problem. Consists of finding, for an edge weighted graph
G(V,E), a partition of V , V = V0 ∪ V1 and V0 ∩ V1 = ∅, such that the sum
of the weights corresponding to the edges joining both sets is maximal (or mini-
mal). The graph partitioning problem correponds to the particular min cut case
in which all weights are equal.

Independent set problem. This problem consists of finding an independent set of
maximal size V ′ ⊆ V such that between any two vertices in V ′ there is no edge.

Graph colouring problem. This is to find a minimal colouring of a graph G(V,E),
i.e. a set of l colors and a mapping of V to this set such any two adjacent vertices
have different color and the set of colors has minimal cardinality.

Steiner tree problem. Given an undirected connected and weighted graph G(V,E)
and a proper subset V ′ of V , find a minimum-weight tree which spans the vertices
of V ′ and, if necessary, some others.

For these problems although the SA technique is computationally laborious, in fact,
it is no more time expensive than most of the best heuristic methods being applied.
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Another interesting use of SA in Graph Theory is proposed by Mikhaliov in [19].
From a graph a melody is obtained through the adjacency matrix. A SA technique is
used to reproduce the graph from its melody.

INITIALIZE(istart, T0, N0);

k:=0;

i:=istart;

repeat

for l:=1 to Nk do

begin

GENERATE(j from States(i));

if cost(j) <= cost(i) then i:=j

else

if exp((cost(i)-cost(j))/Tk) > random[0,1)

then i:=j;

end;

k:=k+1;

CALCULATE(Nk);

CALCULATE(Tk);

until STOPCRITERION.

Figure 2: The Simulated Annealing Algorithm.

4 Simulated Annealing and the (∆, D) Problem

In this Section we show how the SA method may be used in the context of the (∆,D)
problem. In this case the set of states are the different graphs or digraphs and the
optimization problem consists of finding graphs or digraphs which, for a given diame-
ter and maximum out-degree, have the largest possible number of vertices. The case
that we have considered corresponds to vertex symmetric digraphs. For applying the
technique, after deciding on the set of states, there is need for giving a cost function.

We have tested different cost functions. Some of the cost functions are based on
previous results using local search [23, 5]. From these results it is known that the
diameter is not enough sensitive to changes of the graph and that it is expensive to
compute (taking O(N2)). We tested other cost functions used in these works: the
number of extremal pairs (two nodes i, j ∈ V are said to be a extremal pair if their
distance is equal to the diameter of the graph), the diameter vector described in [5] and
the mean distance. We found that the easiest to implement, being sensitive enough to
changes in the graph, is the mean distance.

Another question refers to the change of states. The more common way, described
also in the literature for local search, consists of obtainig a new digraph from an old
one by interchanging arcs or X-crossing, that is, if in the old digraph we consider two
arcs, (i, j) and (k, l), in the changed digraph these arcs no longer exist but there are the
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arcs (i, l) and (k, j). It had been proven that by these changes it is possible to reach
any state and the state space may be fully explored.

In our study we perform the change of state by changing generators in a Cayley
digraph as we describe.

The digraphs we have considered are digraphs on permutations. The vertices of
the digraph are different permutations and given a set of generators we contruct the
adjacencies through permutation products. More specifically, if γ1, γ2, . . . , γ∆ is the set
of generators therefore a vertex α is adjacent to vertices γ1 ◦ α, γ2 ◦ α, . . ., γ∆ ◦ α. So,
the number of generators gives the degree of the digraph. The starting point in the
state space is a set of generators choosen at random and such that the corresponding
digraph have de desired order. At each step a generator is replaced at random and the
order and cost of the new digraph calculated. If the order is the right one we accept the
digraph according to the SA algorithm. Each time that there is an improvement in the
cost function, the diameter of the corresponding digraph is tested and the best digraph
is recorded. So far we have used this approach for permutations of eight elements.

For the practical implementation we used the algorithms for ranking and unranking
permutations described by Stanton and White in [22]. These algorithms enables us to
store the graphs in a very compact way and to access any permutaion quickly. The
resulting program is small and efficient.

5 Conclusion

The following tables sumarize the results obtained. The small size values of Table 1
are the best best vertex symmetric digraphs as reported in [12]. The large size values
were obtained by SA. As we see they reproduce or improve (in bold) those obtained by
Faber and Moore. More improvements to this table have been found by using another
different approach based on some generalizations of results from Conway and Guy, see
[7, 8].

Table 2 shows the generators of the symmetric group that were obtained through
the algorithm.

D 2 3 4 5 6 7 8 9

∆

2
6.

10

10
20

20
24

24
60

60
120. 171. 336.

3
12. 24.

60

60
120

120
168.

720

720
.

.
2 520

2 520

4
20. 60.

120

120
360

360
720

720
2 520

2 520
5 040

5 040
.

.

5
30. 120. 360.

840

840
2 520

2 520
5 040

5 040
.

40 320
.

.

Table 1: Best Vertex Symmetric Digraphs Obtained by Simulated Annealing.
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TAULA DE RECORDS:

Grafs sobre permutacions.

Millors valors trobats per

ANNEALING o busqueda exhaustiva

=====================================

=====================================

GRAU 2 / DIAM 4 ==> ORDER 20

20 >> 4 6 --> 4

4 :: 15234 ....>(1)(2543)

6 :: 51243 ....>(1532)(4)

++++++++++++++++++++++++++++

GRAU 2 / DIAM 5 ==> ORDER 24

24 >> 4 12 --> 5

4 :: 15234 ....>(1)(2543)

12 :: 14253 ....>(1)(2453)

++++++++++++++++++++++++++++

GRAU 2 / DIAM 6 ==> ORDER 60

60 >> 5 23 --> 6

5 :: 51234 ....>(15432)

23 :: 41532 ....>(14352)

++++++++++++++++++++++++++++

GRAU 2 / DIAM 11 ==> ORDRE 720

0.00100 11 5842

++++++++++++++++++++++++++++++

4690 :: 2146537 ....>(12)(346)(5)(7)

4566 :: 2641573 ....>(126734)(5)

++++++++++++++++++++++++++++++

=======================================

=======================================

GRAU 3 / DIAM 4 ==> ORDRE 60

60 >> 5 15 63 --> 4

5 :: 51234 ....>(15432)

15 :: 51423 ....>(15342)

63 :: 43521 ....>(14235)

++++++++++++++++++++++++++++++

GRAU 3 / DIAM 9 ==> ORDRE 2520

2520-> 9

2520 >> 3583 35 7 --> 9

3583 :: 5623471 ....>(1543267)

35 :: 7162345 ....>(1753642)

7 :: 7123456 ....>(1765432)

+++++++++++++++++++++++++++++++

GRAU 3 / DIAM 10 ==> ORDRE 5040

5040 >> 2 31420227 --> 10

2 :: 1234576 ....>(1)(2)(3)(4)(5)(67)

314 :: 1726543 ....>(1)(273)(46)(5)

20227 :: 7246351 ....>(17)(2)(3465)

======================================

======================================

GRAU 4 / DIAM 4 ==> ORDRE 120

120 >> 3 7 41 50 --> 4

3 :: 12534 ....>(1)(2)(354)

7 :: 15243 ....>(1)(253)(4)

41 :: 31245 ....>(132)(4)(5)

50 :: 31425 ....>(1342)(5)

+++++++++++++++++++++++++++++++++++

GRAU 4 / DIAM 5 ==> ORDRE 360

0.00100 5 1427

++++++++++++++++++++++++++++++

701 :: 265134 ....>(1264)(35)

339 :: 453612 ....>(14625)(3)

317 :: 364512 ....>(1345)(26)

217 :: 153246 ....>(1)(254)(3)(6)

++++++++++++++++++++++++++++++
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=====================================

=====================================

GRAU 4 / DIAM 6 ==> ORDRE 720

0.00100 6 3290

++++++++++++++++++++++++++++++

244 :: 316245 ....>(136542)

95 :: 541263 ....>(1563)(24)

537 :: 236415 ....>(12365)(4)

694 :: 521634 ....>(153)(2)(46)

++++++++++++++++++++++++++++++

=======================================

=======================================

GRAU 5 / DIAM 6 ==> ORDRE 2520

0.00100 6 12177

++++++++++++++++++++++++++++++

363 :: 1264573 ....>(1)(2)(367)(4)(5)

2057 :: 6314572 ....>(16723)(4)(5)

3197 :: 3572146 ....>(1376425)

2137 :: 6734125 ....>(16275)(3)(4)

369 :: 1672453 ....>(1)(2654)(37)

++++++++++++++++++++++++++++++

========================================

========================================

GRAU 5 / DIAM 8 ==> ORDRE 40320

0.00100 8265290

++++++++++++++++++++++++++++++

Order: 40320 Degree: 5 Diameter: 8

1810 :: 51627483 ....>(15783642)

31637 :: 75284316 ....>(17)(254863)

6720 :: 41235678 ....>(1432)(5)(6)(7)(8)

8952 :: 81564372 ....>(182)(3546)(7)

614 :: 71823564 ....>(17653842)

++++++++++++++++++++++++++++++

==============================================

==============================================

Table 2: Generators of Sn.
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