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In this paper we find spectral bounds (Laplacian matrix) for the vertex and the edge

betweenness of a graph. We also relate the edge betweenness with the isoperimetric

number and the edge forwarding and edge expansion indices of the graph allowing a new

upper bound on its diameter. The results are of interest as they can be used in the study

of communication properties of real networks, in particular for dynamical processes taking

place on them (broadcasting, network synchronization, virus spreading, etc).
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1 Introduction

Betweenness is a good measure of the centrality of a vertex (or edge) in a graph modeling

a social or communication network. It is usually defined as the fraction of shortest paths

between vertex pairs that go through the vertex (or edge) considered. Therefore, in many

models, betweenness is a measure of the influence of a node (or link) in the dissemination

of information over a network [4, 6] and can also be used to detect communities or clusters

in networks [5].

Vertex betweenness was first proposed by Freeman [4] in 1977 in the context of social

networks and has been considered more recently as an important parameter in the study

of networks associated to complex systems [9]. Girvan and Newman in [5] generalize

this definition to edges and introduce the edge betweenness of an edge as the fraction of

shortest paths between pairs of vertices that run along it.

To be more precise, if σuv(w) denotes the number of shortest paths (geodetic paths)

from vertex u to vertex v that go through w, and σuv is the total number of geodetic

paths from u to v, then we define bw(u, v) = σuv(w)/σuv and the betweenness of vertex w

is Bw =
∑

u,v 6=w bw(u, v). The (vertex) betweenness of a graph G = (V,E) of order n is
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B = (
∑

u∈V Bu)/n and the maximum (vertex) betweenness of G is Bmax = max{Bw |

w ∈ V }. The (vertex) betweenness B is related with the average distance l of the graph

as B = (n − 1)(l − 1) [3].

The edge-betweenness is defined as follows [5]: let σuv(e), e ∈ E(G), be the number

of shortest paths from u to v that go through edge e, and let σuv be the total number of

shortest paths from u to v, then we introduce be(u, v) = σuv(e)/σuv. The betwenness for

an edge of the graph is defined as Be =
∑

u 6=v be(u, v), the maximum edge-betweenness is

BE
max = maxe∈E Be and the average edge-betweenness or edge-betweenness of a graph G

of size m is B
E

= (
∑

e∈E Be)/m.

In the next section we obtain new spectral bounds based on the Laplacian matrix, for

the vertex betweenness of a graph. In Section 3 we relate the edge-betweenness with the

isoperimetric number and the edge expansion and edge forwarding indices of the graph,

we give an spectral bound for the maximum edge-betweennes and we improve known

upper bounds on the diameter.

2 Spectral bounds for the vertex betweenness

2.1 Notation and preliminary results

First, we introduce some notation and preliminaries which will we useful to obtain the

main results.

Given two vertices u, v ∈ V at a distance d, let us consider the sets:

P i
u,v = {w ∈ V | d(u,w) = i, d(w, v) = d − i}, 0 ≤ i ≤ d.

which we call i-layers. It is obvious that P 0
u,v = {u} and P d

u,v = {v}. Let ni be the cardinal

of the i-layer P i
u,v, and let ei be the number of edges that connect the vertices of P i

u,v with

those of P i+1
u,v .

It is not difficult to see:

Lemma 1. For all 1 ≤ i ≤ d − 1:

1. 1 ≤ ni ≤ α = max
0≤i≤d

ni.

2. ei ≥ ni, as there is at least one edge from every vertex in the layer i to vertices of

the next layer.
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3. ei ≤ nini+1 ≤ α2, with equality when all the vertices of the layer P i
u,v are connected

to those of the next layer P i+1
u,v and α = ni = ni+1.

4. ei−1 + ei ≤ ni∆.

5. n0 + · · · + nd ≤ n.

Another property of these sets which is easy to prove is:

Lemma 2. Let G be a graph of order n, let u, v ∈ V (G) two vertices of G at a distance

d ≥ 2 then
∑

w∈P i
u,v

bw(u, v) = 1, for all 1 ≤ i ≤ d − 1.

2.2 Bounds from the Laplacian spectra

Let us consider the Laplacian of the graph G, L = D − A (D is the diagonal matrix of

vertex degrees of G). The eigenvalues of this matrix can be used to obtain bounds for the

betweenness of a vertex w:

Proposition 1. Let G be a connected graph of order n. Let u, v,w ∈ V (G) be vertices

such that d(u, v) = 2 and d(u,w) = 1 = d(w, v). Let ∆ be the maximum degree of G and

let θn be the largest eigenvalue of the Laplacian of G, then

n

(n − 1)θn
≤ bw(u, v).

Proof. We have that 1 ≤ σuv ≤ min{δu, δv} ≤ ∆ as at most one of the vertices u or v has

all its neighbours in a shortest path connecting both vertices. Besides σuv(w) = 1 for all

w between u and v and 1/∆ ≤ σuv(w)/σuv = 1/σuv. Therefore using the inequality given

by Fiedler in [2], (n∆)/(n − 1) ≤ θn, we can write:

n

(n − 1)θn

≤ 1

∆
≤ bw(u, v).

Proposition 2. Let G be a graph of order n, let u, v,w ∈ V (G) be vertices of G such

that d(u, v) = d > 2 and w is contained in some layer P i
uv for some 1 ≤ i ≤ d− 1. Let m

be the total of vertices of the layer, ∆ the maximum degree of the graph and let θ2 be the

second largest eigenvalue of the Laplacian of G, then:

(
θ2

n∆

)d−1

≤ bw(u, v) ≤ 1 − (m − 1)

(
θ2

n∆

)d−1

.
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Proof. It is known that we can determine the second eigenvalue θ2 of the Laplacian matrix

from a variation of the Courant-Fisher theorem, [2]:

θ2 = min
x∈Rn

2n
∑

uv∈E(xu − xv)
2

∑
u∈V

∑
v∈V (xu − xv)2

.

Now let us consider the vector of Rn defined as xu =

{
1 if u ∈ P i

u,v

0 if u /∈ P i
u,v

where the i-layer

is such that ni ≤ nh = α (with equality if all the layers have the same cardinality), then

we get that

θ2 ≤
2n(ei−1 + ei)

2ni(n − ni)
≤ nni∆

ni(n − ni)
=

n∆

n − ni
≤ n∆

α
.

as we know that n ≥ n1 + · · · + nd−1 and n − ni ≥
∑

1≤j≤d−1,j 6=i nj ≥ nh = α, then

θ2

n∆
≤ 1

α
⇒

(
θ2

n∆

)d−1

≤
(

1

α

)d−1

.

We now consider that σuv must be greater than α, as there will be at least one shortest

path for all the vertices of the corresponding layer. And we can also obtain an upper

bound from the product of the total of vertices of the i-layers: α ≤ σuv ≤ αd−1 and

1

αd−1
≤ 1

σuv
≤ 1

α
.

If w is at a distance h1 of u, i.e. belongs to the layer P h1
u,v, then there will be at least

one shortest path from u to v going through w. As m = nh1, the maximum of this number

will be reached if for the remaining vertices of the layer P h1
u,v there is only one shortest

path, and all the others σuv −(m−1) paths, go through w, so 1 ≤ σuv(w) ≤ σuv −(m−1).

Using both inequalities:

1

αd−1
≤ σuv(w)

σuv

≤ σuv − m + 1

σuv

= 1 − m − 1

σuv

≤ 1 − m− 1

αd−1
.

And finally, using the lower bound obtained for the second eigenvalue of the Laplacian

(
θ2

n∆

)d−1

≤ bw(u, v) ≤ 1 − (m − 1)

(
θ2

n∆

)d−1

.

Example 1. Fig. 1 shows a graph where the upper bound is almost attained. The be-

tweenness of vertex w1 is bw1(u, v) = 30/31 = 0.9677 and the betweenness of vertex w2

is bw2(u, v) = 1/31 = 0.0322. Other parameters are: ∆ = 7, n = 15, d = 4, m = 2 and
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u
w1

w2
v

Figure 1: A graph with a vertex, w1, which has a betweenness approaching the upper

bound

θ2 = 0.6301. Then the lower bound is

(
0.6301

15 · 7

)3

= 1.7813·10−7 < 0.0322 = bw2(u, v) and

the upper bound is 1−1·
(

0.6301

15 · 7

)3

= 0.9999 > 0.9677 = bw1(u, v). Notice that if in Fig. 1

the bipartite subgraph K6,5 is replaced by a larger bipartite subgraph the approximation to

the upper bound would be better.

3 Spectral bounds for the edge-betweenness

The main results of this section are a spectral bound for the maximum edge betweenness

of a graph and an improved bound for its diameter. First we give several results that

relate the edge betweenness with other parameters and invariants of a graph like the edge

expansion index and the isoperimetric number.

The following lemma provides some basic properties for the betweenness related pa-

rameters. Let us recall that for a graph G, Be is the betweenness of edge e, BE is the

edge betweenness of the graph, BE
max is the maximum edge betweenness of G and B

E
is

the (average) edge betweenness of G.

Lemma 3. Let G be a connected graph and let e ∈ E be an edge with endvertices u, v ∈ V ,

then

1. be(u, v) = 1 = be(v, u).

2. 2 ≤ Be ≤ n2/2 if n is even and 2 ≤ Be ≤ (n2 − 1)/2 if n is odd.

3. Be ≤ max{Bu + 2, Bv + 2}.
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4. Be = 2(n − 1) if one of the endvertices of e has degree 1.

5. BE
max ≤ Bmax + 2.

6. B
E ≤ m

n
(B + 2).

Proof. The second property is obvious as the minimum clearly is 2 and the maximum

would be reached for an edge-bridge leaving half of the vertices of the graph in each of

the two components.

The third is also easy to prove as all the shortest paths that go through vertices u

or v, should not go through the edge e joining them and Be ≤ Bu, but if the equality is

reached, we will have to count the path that goes from u to v and the reverse, so in that

case Be ≤ Bu + 2 or Be ≤ Bv + 2.

The last two properties are a consequence of the third.

Lemma 4. Let G be a graph of order n, then

• If e is an edge-bridge of the graph G connecting G1 with G\G1 where | V (G1) |= n1,

then Be = 2n1(n − n1).

• If C is a cut-set of edges of the graph G, connecting two sets of vertexs X and

V (G)\X and | X |= nx, then
∑

e∈C Be = 2nx(n − nx).

Proof. The first part is clear since an edge-bridge connects at least two connected com-

ponents of the graph, so all the shortest paths going from a vertex of one component to

another vertex of the second component, must pass necessarily by e, and the equality

holds. The second part can also be shown by a similar argument.

3.1 Edge betweenness and other related parameters.

Let us see the connection of the edge betweenness with parameters related with the

expansion in graphs like, for instance, the edge expansion index introduced in [11] as:

β = min{ | ∂X |
(|X||X|)

: X ⊂ V, 1 ≤| X |≤ n − 1}.

where X is a proper set of vertices of V , X is its complement in V , | ∂X | is the number

of edges connecting X with X.
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The isoperimetric number was introduced by Mohar in [8] and is defined as:

i(G) = min{| ∂X |
|X| : X ⊂ V, 1 ≤| X |≤ n

2
}.

Another interesting parameter related with those above is the edge-forwarding index,

introduced by Heydemann, Meyer and Sotteau in [7] as an extension to edges of the

vertex-forwarding index defined by Chung in [1]. Let a route R be the set of n(n − 1)

paths connecting the vertices of a graph, and let R(e) be the number of paths of the route

R that go through the edge e, then the edge-forwarding index is defined as

Π = min
R

max
e∈E

R(e).

In [11] we can find the relation among these parameters:

i(G) ≥ β
n

2
,

Πβ ≥ 2.

Proposition 3. Let G be a graph of order n, edge expansion index β and isoperimetric

number i(G), then

Bmax + 2 ≥ BE
max ≥ 2

β
,

Bmax + 2 ≥ BE
max ≥ n

i(G)
.

Proof. Let X1 denote the set of vertices of G which reach the edge expansion index bound,

i.e. β = | ∂X1 |/(|X1|(n − |X1|)) then |X1|(n − |X1|) = | ∂X1 |/β.

As X1 is a cut-set, from Lemma 4, we have |X1|(n − |X1|) = (
∑

e∈∂X1
Be)/2, and

therefore | ∂X1 |/β = (
∑

e∈∂X1
Be)/2 ≤ (| ∂X1 | BE

max)/2 and finally 2/β ≤ BE
max.

To prove the second inequality we use that β and i(G) are related by i(G) ≥ (nβ)/2.

Then 1/β ≥ n/(2i(G)) and the result follows.

Therefore for graphs with poor expansion properties, i.e. with small β, Bmax will be

large. The same happens for graphs with a small isoperimetric number (which can be

easily disconnected).

Using relations between these parameters obtained in [8] let us see the relation with

the second eigenvalue or the Laplacian, θ2.

Corollary 1. Let G be a graph of order n, maximum degree ∆ and θ2 the second eigenvalue

of the Laplacian matrix, then

n√
θ2(2∆ − θ2)

≤ BE
max ≤ Bmax + 2.
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Following the proof of Theorem 2.3 from Solé [11] we can improve the bound given

there as Corollary 2.4. This bound improves also a former result from Mohar [8].

Corollary 2. Let be G a graph of order n, maximum degree ∆ and diameter D, then

D ≤ 2

⌈
ln(n/2)

ln BE
max∆+n

BE
max∆−n

⌉
≤ 2

⌈
ln(n/2)

ln Π∆+n
Π∆−n

⌉
≤ 2

⌈
ln(n/2)

ln ∆+i(G)
∆−i(G)

⌉
.

Solé [11] Mohar [8]

We should note that, for a given graph, this new bound for the diameter is easier

to obtain as the maximum edge betwenness is less difficult to compute than the edge

forwarding index or the isoperimetric number.
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